Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p"

Transcription

1 ermiale S - Bac blac de mathématiques Mars 6 Les calculatrices sot autorisées mais celles-ci e doivet être i échagées i prêtées durat l épreuve. Les quatre exercices serot rédigés sur ue feuille double séparée sur laquelle o oubliera pas de faire figurer ses om, préom et classe. Exercice - 5 poits - Pour tous les élèves Ue ouvelle attractio est ouverte das u grad parc. Pour tout etier o ul, o ote p = P( ) la probabilité de l'évéemet : «u problème techique se produit le jour sur cette attractio». O suppose qu aucu problème techique e se produit lors de la mise e service correspodat au premier jour. D après des études sur les attractios existates, il est supposé que: Si u problème techique se produit le jour, alors la probabilité qu u problème techique se produise le jour suivat est 3 5 Si l attractio a subi aucu problème techique le jour, la probabilité qu u problème techique surviee le jour suivat est 7 ) a) Préciser la probabilité, otée p, qu u problème techique surviee le premier jour. b) Justifier que p = 7 ) Calculer la probabilité que l attractio e subisse aucu problème techique la première semaie. 3) a) Reproduire sur la copie et compléter l arbre suivat: b) Motrer, e utilisat l arbre, que, pour tout etier o ul, o a: p + = p ) O défiit la suite ( u ) pour tout etier aturel o ul par: u = p 5 a) Démotrer que la suite ( u ) est géométrique. Préciser sa raiso et so premier terme. b) E déduire p e foctio de. c) Calculer la limite quad ted vers l ifii de la suite ( p ). Iterpréter ce résultat. + Page sur 6

2 Exercice - 5 poits Uiquemet pour les élèves 'ayat pas suivi la spécialité mathématiques O se place das le pla complexe mui d'u repère orthoormal (O ; u ; v ). O appelle A le poit d'affixe. O cosidère la trasformatio du pla f qui, à tout poit M d'affixe z associe le poit M' d'affixe z' défiie par z' = z + ) Détermier les atécédets du poit O. ) Existe-t-il des poits ivariats par f? Si oui, préciser leurs affixes respectives. ( O rappelle qu'u poit ivariat est u poit cofodu avec so image) 3) Motrer que deux poits symétriques par rapport à O ot la même image. Que peut-o dire des images de deux poits symétriques par rapport à l'axe des abscisses? 4) Soit B le poit d'affixe z B = ( + i ). a) Ecrire z B sous forme expoetielle. b) E déduire que B appartiet au cercle de cetre O et de rayo. c) Détermier l'affixe du poit B' image de B par f d) Motrer que B' appartiet au cercle de cetre A et de rayo. e) Motrer que les poits O, B et B' sot aligés. i 5) Soit θ u ombre réel apparteat à l'itervalle [; π[ et M le poit d'affixe e θ. a) Motrer que M appartiet au cercle de cetre O et de rayo. b) Lorsque θ varie, motrer que M', image du poit M par f, reste sur u cercle dot o précisera le cetre et le rayo. c) Vérifier que OM' = cos(θ) OM. Que peut-o e déduire quat aux poits O, M et M'? d) Expliquer la costructio du poit M'. Exercice - 5 poits Uiquemet pour les élèves ayat suivi la spécialité mathématiques Das cet exercice, o appelle uméro du jour de aissace le rag de ce jour das le mois et uméro du mois de aissace, le rag du mois das l aée. Par exemple, pour ue persoe ée le 4 mai, le uméro du jour de aissace est 4 et le uméro du mois de aissace est 5. Partie A : Lors d ue représetatio, u magicie demade aux spectateurs d effectuer le produit de calcul (A) suivat : «Preez le uméro de votre jour de aissace et multipliez-le par. Preez le uméro de votre mois de aissace et multipliez-le par 37. Ajoutez les deux ombres obteus. Je pourrai alors vous doer la date de votre aiversaire». U spectateur aoce 38 et e quelques secodes, le magicie déclare : «votre aiversaire tombe le er août!». ) Vérifier que pour ue persoe ée le er août, le programme de calcul (A) doe effectivemet le ombre 38. ) a) Pour u spectateur doé, o ote j le uméro de so jour de aissace, m celui de so mois de aissace et z le résultat obteu e appliquat le programme de calcul (A). Exprimer z e foctio de j et de m et démotrer que z et m sot cogrus modulo. b) Retrouver alors la date de l aiversaire d u spectateur ayat obteu le ombre de 474 e appliquat le programme de calcul (A). Page sur 6

3 Partie B : Lors d ue autre représetatio, le magicie décide de chager so programme de calcul, oté programme de calcul (B). Pour u spectateur dot le jour de aissace est j et le uméro du mois de aissace est m, le magicie demade de calculer le ombre z défii par z = j + 3m. Das les questios suivates, o étudie différetes méthodes permettat de retrouver la date d aiversaire du spectateur. ) Première méthode : O cosidère l algorithme suivat : Variables : j et m sot des etiers aturels raitemet : Pour m allat de à faire : Pour j allat de à 3 faire z pred la valeur j + 3m Afficher z Fi Pour Fi Pour Modifier cet algorithme pour qu il affiche toutes les valeurs de j et de m telles que j + 3m = 53 ) Deuxième méthode : a) Démotrer que 7 m et z ot le même reste das la divisio euclidiee par. b) Pour m variat de à, doer le reste de la divisio euclidiee de 7 m par. c) E déduire la date de l aiversaire d u spectateur ayat obteu le ombre 53 avec la programme de calcul (B). 3) roisième méthode : a) Démotrer que le couple ( ;7) b) E déduire que si u couple d etiers relatifs ( ; ) ( x ) ( y) + = 3 7. est solutio de l équatio x + 3y = 53. x y est solutio de l équatio x + 3y = 53, alors c) Détermier l esemble de tous les couples d etiers relatifs ( x; y ), solutios de l équatio x + 3y = 53. d) Démotrer qu il existe u uique couple d etiers relatifs ( ; ) x y tel que : y. E déduire la date d aiversaire d u spectateur ayat obteu le ombre 53 avec le programme de calcul (B). Exercice 3-5 poits - Pour tous les élèves Partie A O cosidère la foctio f défiie et dérivable sur l itervalle [ ; + [ par f(x) = x e x ) Détermier la limite de la foctio f e +. ) Détermier la dérivée f de la foctio f sur [ ; + [ et e déduire le tableau de variatio de f sur [ ; + [ 3) Justifier que si x [ ; ] alors f(x) [ ; ] O doe e aexe la courbe c représetative de la foctio f das u repère du pla. La droite Δ d équatio y = x a aussi été tracée. Partie B Soit la suite ( u ) défiie par u = et, pour tout etier aturel, u + = f ( u ) ) Placer sur le graphique doé e aexe, e utilisat la courbe c et la droite Δ, les poits A, A et A d ordoées ulles et d abscisses respectives u, u et u. Laisser les tracés explicatifs apparets. Page 3 sur 6

4 ) Démotrer par récurrece que pour tout etier aturel, u 3) Motrer que la suite ( u ) est décroissate. 4) a) Motrer que la suite ( u ) est covergete. x b) O admet que la limite de la suite ( u ) est solutio de l équatio x e = x. Résoudre cette équatio pour détermier la valeur de cette limite. Partie C O cosidère la suite ( S ) défiie pour tout etier aturel par S = k = u k = u + u u k= Compléter l algorithme doé e aexe afi qu il calcule S Exercice 4-5 poits - Pour tous les élèves O cosidère les foctios f et g défiies pour tout réel x par : x f(x) = e et g(x) = Les courbes représetatives de ces foctios das u repère orthogoal du pla, otées respectivemet c f et c g, sot fouries e aexe 3. Partie A Ces courbes semblet admettre deux tagetes commues. racer au mieux ces tagetes sur la figure de l aexe 3. Partie B Das cette partie, o admet l existece de ces tagetes commues. O ote d l ue d etre elles. Cette droite est tagete à la courbe c f au poit A d abscisse a et tagete à la courbe c g au poit B d abscisse b. ) a) Exprimer e foctio de a le coefficiet directeur de la tagete à la courbe c f au poit A. b) Exprimer e foctio de b le coefficiet directeur de la tagete à la courbe c g au poit B. c) E déduire que b = a ) Das cette questio, toute trace de recherche, même icomplète, ou d iitiative, même o fructueuse, sera prise e compte das l évaluatio. Démotrer que le réel a est solutio de l équatio (x ) e x + = Partie C O cosidère la foctio φ défiie sur Y par φ(x) = (x ) e x + ) a) Calculer les limites de la foctio φ e et + b) Calculer la dérivée de la foctio φ, puis étudier so sige. c) Dresser le tableau de variatio de la foctio φ sur Y. Préciser la valeur de φ(). ) a) Démotrer que l équatio φ(x) = admet exactemet deux solutios das Y. b) O ote α la solutio égative de l équatio φ(x) = et β la solutio positive de cette équatio. A l aide d ue calculatrice, doer les valeurs de α et β arrodies au cetième. 3) Motrer que e α = α e α e x Page 4 sur 6

5 Partie D Das cette partie, o démotre l existece de ces tagetes commues, que l o a admise das la partie B. Das cette questio, toute trace de recherche, même icomplète, ou d iitiative, même o fructueuse, sera prise e compte das l évaluatio. O ote E le poit de la courbe c f d abscisse α et F le poit de la courbe c g d abscisse α (α est le réel défii das la partie C). ) Démotrer que la droite (EF) est tagete à la courbe c f au poit E (o pourra utiliser la répose à la questio 3) de la partie C) ) Démotrer que (EF) est tagete à c g au poit F. Aexe Δ c Aexe Déclaratio des variables : S et u sot des ombres réels k est u ombre etier Iitialisatio : u pred la valeur... S pred la valeur... raitemet : Pour k variat de à... u pred la valeur u S pred la valeur... Fi Pour Afficher... Page 5 sur 6 e u

6 Aexe 3 c f c g Page 6 sur 6

Terminales S BAC BLANC Mathématiques Sujet

Terminales S BAC BLANC Mathématiques Sujet Sujet Durée 4 heures. La calculatrice graphique est autorisée. Le barème est fouri à titre idicatif. Eercice 1 (commu) [5 poits] 3 Soit la foctio f défiie sur + par f ( ) =. O appelle C, la courbe représetative

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

LEÇON N 20 : Racines n-ièmes d un nombre complexe. Interprétation géométrique. Applications.

LEÇON N 20 : Racines n-ièmes d un nombre complexe. Interprétation géométrique. Applications. LEÇON N 20 : Racies -ièmes d u ombre complexe. Iterprétatio géométrique. Applicatios. Pré-requis : Représetatio d u ombre complexe das le pla R 2 mui d u repère orthoormé direct ; Formes trigoométrique

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

1 + ln x + 1 2. MA + MB + MC + MD. AMERIQUE DU SUD Novembre 2000

1 + ln x + 1 2. MA + MB + MC + MD. AMERIQUE DU SUD Novembre 2000 MERIQUE DU SUD Novembre 000 EXERIE U sac cotiet trois boules umérotées respectivemet 0, et, idiscerables au toucher. O tire ue boule du sac, o ote so uméro et o la remet das le sac ; puis o tire ue secode

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 5

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 5 Termiale S Exercices sur le chapitre 5 «Suites umériques» Page sur 5 Gééralités sur les suites ------------------------------------------------------------------------------------------------------ Exercice

Plus en détail

Juin 2014 MATHEMATIQUES

Juin 2014 MATHEMATIQUES Jui 014 1 ères S MATHEMATIQUES Voici ue série d exercices sur différets thèmes abordés e classe de première S. Ils vous permettrot de repredre cotact avec les mathématiques avat d aborder la classe de

Plus en détail

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 6

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 6 Termiale S Exercices sur le chapitre 5 «Suites umériques» Page sur 6 Gééralités sur les suites ------------------------------------------------------------------------------------------------------ Exercice

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

c) représentation graphique T est la tangente à C exp au point A d abscisse 0. Une équation de T est de la forme : y = x + 1.

c) représentation graphique T est la tangente à C exp au point A d abscisse 0. Une équation de T est de la forme : y = x + 1. Chapitre VI : Foctio expoetielle I. La foctio expoetielle a) Défiitio La foctio expoetielle, otée exp, est la foctio défiie sur! par exp(x) = e x, e x état l uique ombre réel strictemet positif dot le

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Fiace d Etreprise, Gestio des systèmes d iformatio. SESSION 2012 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et fiace d etreprise

Plus en détail

CHAPITRE 7 : DERIVATION DES FONCTIONS COMPOSEES - DERIVEE N-IEMES

CHAPITRE 7 : DERIVATION DES FONCTIONS COMPOSEES - DERIVEE N-IEMES Dérivatio des octios composées Cours CHAPITRE 7 : DERIVATION DES FONCTIONS COMPOSEES - DERIVEE N-IEMES. DERIVATION d ue FONCTION COMPOSEE.. Dérivée d ue octio composée Théorème Soit ue octio dérivable

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

MATHÉMATIQUES Corrigé

MATHÉMATIQUES Corrigé Exame de ovembre 009 Exame du premier trimestre Le 30 ovembre 009 Classes de ère STG Durée 3 heures MATHÉMATIQUES Corrigé Note aux cadidats L emploi des calculatrices est autorisé (circulaire 99 86 du

Plus en détail

< p 2. b a a = bq et r = 0 r 0 bq < a < b(q+1)

< p 2. b a a = bq et r = 0 r 0 bq < a < b(q+1) DIVISIBILITE DANS Z - DIVISION DES ENTIERS - b divise a lorsqu il existe u etier k tel que a = kb O dit que a est multiple de b ; b est diviseur de a. Pour tout etier relatif (Z) a, b, c o a : -, a, -

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Racine nième Corrigés d exercices

Racine nième Corrigés d exercices Racie ième Corrigés d eercices Page 9 : N 8, 8, 8, 86, 88, 89, 9, 9, 9, 97 Page 6 : N, Page 6 : N Page 67 : N 8 Page 6 : N N 8 page 9 6 6 6 6 6 ( ) = = = = = = = = ( ) = = = = = = ( ) 8 = 8 = = = = = =

Plus en détail

BACCALAUREAT GENERAL. MATHEMATIQUES Série S

BACCALAUREAT GENERAL. MATHEMATIQUES Série S BACCALAUREAT GENERAL Sessio 2015 MATHEMATIQUES Série S ÉPREUVE DU LUNDI 22 JUIN 2015 Eseigemet Spécialité Coefficiet : 9 Durée de l épreuve : 4 heures Ce sujet comporte 8 pages umérotées de 1 à 8 Les calculatrices

Plus en détail

Préparation concours Sciences-Po

Préparation concours Sciences-Po Lycée Féelo Saite-Marie Préparatio cocours Scieces-Po Cocours blac de Mathéatiques Mai 0 Durée : 4 heures Tout docuet iterdit La calculatrice graphique type «lycée» est autorisée Toute répose doit être

Plus en détail

et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres.

et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres. Eo7 Foctios circulaires et hyperboliques iverses Correctios de Léa Blac-Ceti. Foctios circulaires iverses Eercice Vérifier arcsi + arccos π et arcta + arcta sgπ. Idicatio Correctio Vidéo [00075] Eercice

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

SUITES (Partie 1) Dans l'exemple, si on suppose qu'un domino (k) tombe alors le domino suivant (k+1) tombe également.

SUITES (Partie 1) Dans l'exemple, si on suppose qu'un domino (k) tombe alors le domino suivant (k+1) tombe également. SUITES (Partie ) I. Raisoemet par récurrece ) Le pricipe C'est au mathématicie italie Giuseppe Peao (858 ; 93), ci-cotre, que l'o attribue le pricipe du raisoemet par récurrece. Le om a probablemet été

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE

EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE Nombre de pages de l épreuve Durée de l épreuve 0 pages 3h00 Compte teu du fait qu il s agissait d u cocours d etraiemet, cette épreuve à été prise sur le

Plus en détail

Terminale S. 1. Divers

Terminale S. 1. Divers Termiale S 1 Divers Bézout 3 Quadratique 4 Divisibilité 5 Equatio diophatiee 6 Equatio diophatiee (, Caracas 01_04) 7 Base de umératio 8 Base de umératio 3 9 Somme des cubes 10 PGCD 11 Somme des diviseurs

Plus en détail

GRAPHES - EXERCICES CORRIGES Compilation réalisée à partir d exercices de BAC TES

GRAPHES - EXERCICES CORRIGES Compilation réalisée à partir d exercices de BAC TES GRAPHES - EXERCICES CORRIGES Compilatio réalisée à partir d exercices de BAC TES Exercice. U groupe d amis orgaise ue radoée das les Alpes. O a représeté par le graphe ci-dessous les sommets B, C, D, F,

Plus en détail

Chapitre 2 : Etudes de fonctions.

Chapitre 2 : Etudes de fonctions. PCSI Préparatio des Khôlles 0-04 Chapitre : Etudes de foctios. Eercice type Motrer que pour [0,], o a( ) 4. Edéduire que ( ) 4. Solutio : Si R, 4 ( ) 4 0. Preos alors ]0,[, alors {0,,}, (( )) ( ) 4, e

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

ANNALES BACCALAURÉAT 2014 MATHÉMATIQUES TERMINALE S 1

ANNALES BACCALAURÉAT 2014 MATHÉMATIQUES TERMINALE S 1 ANNALES BACCALAURÉAT 014 MATHÉMATIQUES TERMINALE S ANNALES BACCALAURÉAT 014 MATHÉMATIQUES TERMINALE S 1 1 Suites 1 Foctios 11 3 Probabilités 4 Géométrie 4 33 5 Spécialité 41 6 Cocours 53 1 Suites 1-1 :

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Mai 2016 2 heures et 30 minutes

Mai 2016 2 heures et 30 minutes Mai 6 heures et 3 miutes a) Défiir : matrice élémetaire Doer u exemple de matrice de IR 3x3 qui est élémetaire et expliquer pourquoi elle l est Commet utilise-t-o ue telle matrice pour effectuer ue opératio

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

MATHEMATIQUES Terminale Scientifique

MATHEMATIQUES Terminale Scientifique MATHEMATIQUES Termiale Scietifique Fiches PROGRAMME 22 (v24) Sylvie LAMY Agrégée de Mathématiques Dilômée de l École Polytechique Cours Pi e-mail : lescoursi@cours-icom site : htt://wwwcours-icom siège

Plus en détail

Quelques inégalités classiques

Quelques inégalités classiques Quelques iégalités classiques O se propose de motrer, sous forme d exercices, quelques iégalités classiques. Les preuves de ces iégalités e écessitet que quelques coaissaces élémetaires.. Exercices classiques

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

( ) soit vraie, et on démontre ( ) elle est vraie. ( ) est vraie pour tout entier naturel n n 0

( ) soit vraie, et on démontre ( ) elle est vraie. ( ) est vraie pour tout entier naturel n n 0 Chapitre 1 : Les suites umériques I. Le raisoemet par récurrece 1. Présetatio Soit P( ) la propriété : «7 + 2 est divisible par 3». O veut vérifier que cette propriété est vraie pour tout etier aturel.

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR INFORMATIQUE DE GESTION

BREVET DE TECHNICIEN SUPÉRIEUR INFORMATIQUE DE GESTION BREVET DE TECHNICIEN SUPÉRIEUR INFORMATIQUE DE GESTION Optios : - Développeur d applicatios - Admiistrateur de réseaux locaux d etreprise SESSION 2011 SUJET ÉPREUVE E2 MATHÉMATIQUES I Durée : 3 heures

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Féelo aite-marie Préparatio ciece-po/prépa HEC Foctios Versio du juillet 05 Eercice d degré : racies et coefficiets O rappelle que si l équatio a + b + c = 0 ( a 0 ) adet deu racies α et β (évetuelleet

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

CORRECTION DU BAC BLANC 2

CORRECTION DU BAC BLANC 2 CORRCTION DU BAC BLANC 2 XRCIC 1 (6 poits) Baccalauréat ST Mercatique Podichéry - 2010 Deux tableaux sot doés e aexe : le premier doe l évolutio du prix du mètre carré das l immobilier résidetiel acie

Plus en détail

Septembre 2011 CPI 317. Exercices. Agnès Bachelot

Septembre 2011 CPI 317. Exercices. Agnès Bachelot Septembre 2 CPI 37 Exercices Agès Bachelot Table des matières - Séries Numériques.......................................... 3 - Séries à termes positifs.................................... 3-2 Séries quelcoques......................................

Plus en détail

Devoir de révision vacances de printemps. Durée : 2 heures nom et prénom : Exercice 2 :

Devoir de révision vacances de printemps. Durée : 2 heures nom et prénom : Exercice 2 : Termiale sts Devoir de révisio vacaces de pritemps Durée : heures om et préom : Exercice 1 : U laboratoire pharmaceutique fabrique u médicamet. Le test de cotrôle de qualité de ce médicamet porte sur deux

Plus en détail

Suites numériques : définition générale.

Suites numériques : définition générale. 1 Suites arithmétiques Suites umériques : défiitio géérale.... Le pricipe de récurrece... 3 Suites arithmétiques... 4 Formule 1 des suites arithmétiques... 5 Appreos à compter... 6 Formule des suites arithmétiques...

Plus en détail

ANNALES BACCALAURÉAT 2013 MATHÉMATIQUES TERMINALE S. 1. Suites

ANNALES BACCALAURÉAT 2013 MATHÉMATIQUES TERMINALE S. 1. Suites ANNALES BACCALAURÉAT 03 MATHÉMATIQUES TERMINALE S ANNALES 03 TERMINALE S Suites Foctios 9 3 Probabilités 4 Géométrie 9 8 5 Spécialité 34 6 Cocours 44 Suites - : Amérique du Nord 03, 5 poits, o spécialistes

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S exercices 1 Exercices de base 1 1 Divisio Euclidiee - 1 (c) 1 Divisio Euclidiee- 1 3 Divisio Euclidiee-3 (c) 1 4 Multiples - 1 1 5 PGCD - 1 (c) 3 1 6 PPCM et PGCD - 1 7 PPCM et PGCD - 3 3 3

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

Soit f une fonction dérivable sur R dont le tableau de variations est donné ci-dessous où a et b désignent deux réels.

Soit f une fonction dérivable sur R dont le tableau de variations est donné ci-dessous où a et b désignent deux réels. Métropole septembre 0 EXECICE 5 poits Comm à tos les cadidats Soit f e foctio dérivable sr dot le tablea de variatios est doé ci-dessos où a et b désiget de réels a + b f () Détermier le sige de f () selo

Plus en détail

TD n 3 : quelques exercices sur la récurrence

TD n 3 : quelques exercices sur la récurrence Éocé TD 3 : quelques exercices sur la récurrece Exercice 1 Soit (a ) 0 ue suite de ombres réels ou complexes. O pose b 0 = 1 et b = (1 a k ) pour 1. Motrer que b +1 = 1 Exercice O défiit ue suite (u )

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

EXERCICES SUR LA FONCTION LOGARITHME Site MathsTICE de Adama Traoré Lycée Technique Bamako EXERCICE 1 :

EXERCICES SUR LA FONCTION LOGARITHME Site MathsTICE de Adama Traoré Lycée Technique Bamako EXERCICE 1 : EXERCICES SUR LA FONCTION LOGARITHME Site MathsTICE de Adaa Traoré Lycée Techique Baako EXERCICE : ) Résoudre das R les équatios suivates : a) l( ) + l( + ) l (3 5) l ( 5) 0 b) l( ) + l (3 + ) l l( + )

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6 Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier

Plus en détail

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski Dossier : Actualité de l Aalyse e Lycée 447 Qu est-ce qu u bo éocé de bac? Aalyse de l exercice de spécialité de TS de Podichéry 2013 Jacques Lubczaski «Podichéry est tombé!» : cela ressemble à l aoce

Plus en détail

Séquence 8. Suites arithmétiques et géométriques. Sommaire

Séquence 8. Suites arithmétiques et géométriques. Sommaire Séquece 8 Suites arithmétiques et géométriques Sommaire Pré-requis Suites arithmétiques Suites géométriques Sythèse du cours Exercices d approfodissemet Séquece 8 MA Ced - Académie e lige Pré-requis A

Plus en détail

Notion d équation différentielle : Équations du 1 er ordre

Notion d équation différentielle : Équations du 1 er ordre IUT Orsa Mesures Phsiques Notio d équatio différetielle : Équatios du er ordre Cours du er semestre A. De quoi s agit-il? A-I. Eemples tirés de la géométrie a. Avec tagete et abscisse O suppose que f est

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

SAINT-CYR. MATHEMATIQUES 1 - Epreuve commune Options M, P, T, TA

SAINT-CYR. MATHEMATIQUES 1 - Epreuve commune Options M, P, T, TA SESSION 993 SAINT-CYR MATHEMATIQUES - Epreuve commue Optios M, P, T, TA PREMIÉRE PARTIE ) Les polyômes L 0,, L sot + polyômes de R [X] qui est de dimesio + Pour vérifier que la famille (L i ) 0 i est ue

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Problème 1 : continuité uniforme

Problème 1 : continuité uniforme SESSION 0 CAPES EXTERNE MATHÉMATIQUES Problème : cotiuité uiforme f est pas uiformémet cotiue sur I si et seulemet si ε > 0/ η > 0, x,y I / x y η et fx fy > ε Soit f ue foctio -lipschitziee sur I avec

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH R O Y A U M E D U M A R O C Miistère de l Educatio Natioale et de la Formatio Professioelle Cetre Régioal des Métiers de l Éducatio et de la Formatio Académie Régioale de l Éducatio et de la Formatio Marrakech-Tesift

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

Concours Communs Polytechniques - Session 2011 Corrigé de l épreuve d analyse- Filière MP

Concours Communs Polytechniques - Session 2011 Corrigé de l épreuve d analyse- Filière MP Cocours Commus Polytechiques - Sessio 11 Corrigé de l épreuve d aalyse- Filière MP Séries etières, équatios différetielles et trasformée de Laplace Corrigé par M.TRQI http://alkedy.1.m Eercice 1 1. La

Plus en détail

1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ

1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ Pla du cours 3 RFIDEC cours 3 : Itervalles de cofiace, tests d hypothèses, loi du χ Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Itervalles de cofiace Tests d hypothèses 3 La loi du χ Itervalles

Plus en détail

Chapitre 3 RÉGRESSION CORRÉLATION

Chapitre 3 RÉGRESSION CORRÉLATION Chapitre 3 RÉGRESSION CORRÉLATION Les doées se présetet sous la forme d ue suite de couples de valeurs umériques(x i, y i ), umérotés de à i =. O ote m x, s x ², m y, s y ² les moyees et les variaces des

Plus en détail

MATHÉMATIQUES. Aux futurs étudiants de SUP du lycée naval.

MATHÉMATIQUES. Aux futurs étudiants de SUP du lycée naval. LYCÉE NAVAL 5-6 SUP MPSI / PCSI MATHÉMATIQUES Au futurs étudiats de SUP du lycée aval Vous veez d être admis au lycée aval e classe de SUP, PCSI ou MPSI, et ous vous e félicitos Pour bie préparer votre

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

Une définition de la fonction exponentielle dans l esprit des nouveaux programmes

Une définition de la fonction exponentielle dans l esprit des nouveaux programmes 1 Ue défiitio de la foctio expoetielle das l esprit des ouveaux programmes 0. Itroductio. Les ouveaux programmes de mathématiques de termiale S qui sot etrés e vigueur à la retrée 2002 icitet fortemet

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

Feuille d exercices n o 1 Révisions de topologie et d analyse fonctionnelle

Feuille d exercices n o 1 Révisions de topologie et d analyse fonctionnelle Distributios-Aalyse foctioelle 1 Maîtrise de Mathématiques Feuille d exercices o 1 Révisios de topologie et d aalyse foctioelle 1. Quelle est la différece etre C(Ω), C(Ω) et C(Ω)? 2. Soit H u espace préhilbertie

Plus en détail

Le plus grand de ces diviseurs communs est 26 : 26 est le plus grand commun diviseur de 78 et de. Le P.G.C.D. de 78 et de 208 est égal à 26

Le plus grand de ces diviseurs communs est 26 : 26 est le plus grand commun diviseur de 78 et de. Le P.G.C.D. de 78 et de 208 est égal à 26 ) Vocabulaire : a) Divisible / Multiple : Plus Grad Diviseur Commu. Soit a et b deux ombres etiers aturels différets de zéro : dire que a est divisible par b sigifie que a k b =, avec k ombre etier aturel.

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

Seconde année - Semestre 3 PROBABILITÉS

Seconde année - Semestre 3 PROBABILITÉS 1 UNIVERSITÉ DE CERGY Aée 2012-2013 LICENCE d ÉCONOMIE et GESTION Secode aée - Semestre 3 PROBABILITÉS Feuille d exercices N 3 : Variables aléatoires - Lois discrètes 1. Calculez 3 2 + 2 5 Exercice I (

Plus en détail

CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE

CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE J. 3 398 CONCOURS EXTERNE POUR l ACCÈS AU GRADE D INSPECTEUR DES FINANCES PUBLIQUES AFFECTÉ AU TRAITEMENT DE L INFORMATION EN QUALITÉ D ANALYSTE ANNÉE 04 ÉPREUVE ÉCRITE D ADMISSIBILITÉ N 3 Durée : 3 heures

Plus en détail

Promenades aléatoires : vers les chaînes de Markov

Promenades aléatoires : vers les chaînes de Markov AME Dossier : Matrices et suites 545 romeades aléatoires : vers les chaîes de Markov ierre Griho (*) Cet article propose ue mise e perspective de la otio de promeade ou de marche aléatoire itroduite das

Plus en détail

AVANT PROPOS. Cet ouvrage pourra intéresser également les enseignants de ce niveau.

AVANT PROPOS. Cet ouvrage pourra intéresser également les enseignants de ce niveau. AVANT PROPOS Cet ouvrage propose aux élèves de classes termiales (fraçais) S (spécialité math) des rappels et des complémets de cours assez complet, aisi que des problèmes et des exercices corrigés. Les

Plus en détail

On admet que l ensemble des nombres des réels est inclus dans un ensemble plus grand constitué de nombres complexes.

On admet que l ensemble des nombres des réels est inclus dans un ensemble plus grand constitué de nombres complexes. Chapitre 1 Nombres complexes Le buts du chapitres sot : Cosolider les aquis de termiale, Savoir maipuler les ombres complexes, e particulier la factorisatio par l agle de moitié. Avoir des otios sur le

Plus en détail