La problématique. La philosophie ' ) * )

Dimension: px
Commencer à balayer dès la page:

Download "La problématique. La philosophie ' ) * )"

Transcription

1 La problématique!" La philosophie #$ % La philosophie &'( ' ) * ) 1

2 La philosophie +, -) *. Mise en oeuvre Data warehouse ou Datamart /01-2, / ,$ / 5 23, 2

3 * $ #, 7 Datawarehouse Data warehouse #$ :33 (; 681 1( ' Data Warehouse 8 : 3 '3 ; ' (!"# $!" % $ 3

4 Modélisation des données dans un entrepôt < <2 9= '(> ' 1#4= ) (> ' ) Les différences d objectifs *=%' *= # 1 -(> )33 # %) % 3 %$ %, *1 # % % Objectif de la construction d un datawarehouse A ) 3 )', 4

5 Objectifs architecturaux des entrepôts de données #.4 A,(> ) *1 4' (#4/ Caractéristiques communes des entrepôts de données 9 *1( 4 Profil des utilisateurs et leurs besoins :B; <:CDB; <:EDB; / & ' ( ) $ & 5

6 Développement d un datawarehouse: les différentes phases du projet 11 * * 9 / 1 * #4 / / '. '9? Le modèle dimensionnel F G FG F G FG < 7 Le schéma en étoile 6

7 Le schéma en étoile Schéma en flocon de neige (snowflake) > $ Les tables de dimensions. 3 1( /11( * 81 :; 7

8 La dimension temps ) H$ * :'''' ; Les tables des faits /9 &33?? * 9 ( : ; Les tables de faits & $(1 * 4 *( * 8

9 Operational Data Store -: ; A '9 I : ) ; Le processus ETL -) #.4. 1 /J *1 2 -.K-)3 :-.K 8 ); Le processus ETL 4/ $93 1$,

10 Le processus ETL -) '9 <#/) $33 Transformation &:) ; 1:; ' A9 : ( 1; 3 $ Meta données fonctionnelles / A9 L1 / ( /(8 *+,-+* # 10

11 Meta données techniques '9 /9 4. ) / Normalisation par l OMG *J:* J1 ;8') M:M1;8 1 / 5 3$, 6'3#3<'3 Les objectifs de conception communs /1.(( 11 A8> 1 4) 4) 11

12 Quelle différence entre l ETL et l EAI? -8= A '9 * #A3 1( Quelle différence entre l ETL et l EAI? Quelle différence entre l ETL et l EAI? -.8 : -A4) ; '1 *2 # 1( ) 12

13 Quelle différence entre l ETL et l EAI? Le marché ETL en 2001 Le marché ETL en 2001 Other Torrent 0% Embarcadero 1% I-flex Flexcube ETL 1% Data Junction 1% Acta 1% Compuware Information Builders CA Teradata Microsoft ETI IBM Sagent Cognos Hummingbird Oracle SAS Ascential Informatica 2% 2%3% 4% 4% 4% 4% 4% 8% 6% 7% 8% 10% 12% 18% 0% 5% 10% 15% 20% 74 Source: Giga Information Group, Inc. Le marché de l ETL -.N 8 :0* 0*; :/; *7 * -.F :/.3F3 ; #J1 : #-3A. 03 #4; 13

14 Les outils de l informatique décisionnelle /) )8 '(,((. / ( +& 0 Les outils de l informatique décisionnelle * - :-) ' ; ) 5? -) 95, 8 *':, ); *':, ; Les applications analytiques (OLAP : On line Analytical Processing) ' *) : ; -) * O1( * 0 '

15 Les différentes types de modèles OLAP #4: #4; :) 6'*; A#4:#4; :) '; 6#4:6'#4; /#4:/#4; :) #$; (> La ligne de produits Business Objects Produits Utilisateurs BUSINESSOBJECTS Module Utilisateur Reporter Suite complète d outils d aide à la décision Explorer Webi Business Miner C/S Intranet Business Query Data mining Analyse multidimensionnelle Interrogation & Reporting Accès par Excel Interfaces Applicatifs Référentiel RDTs Designer Déploiement rapide Mise en oeuvre Supervisor Administration & sécurité Etats de production Administration Intranet Produits Informaticiens Broadcast Agent Server Webi Server Intégration Un enchaînement naturel des tâches Interrogation Analyse Pourquoi? Quoi? Reporting Tableaux, Graphes, Matrices Permutation d'axes, Analyse en cascade ' 4 Partage 15

16 Répondre à la question «Quoi?» Représentation métier Gestion Finance Ventes Données de l'entreprise Client Vendeur Utilisateurs finals Chiffre d Affaires Article Prix A Informaticien. 1( :1 (; Des objets vers le document Traitement sur le serveur SQL Partie prise en charge par BusinessObjects Résultats Représentation Métier CA Région Produit Partie visible par l'utilisateur autonomie par rapport à l'informatique Génération du document Choisir la source de données 16

17 Les objets de l univers 4' 3$ (!"!"!" #$%&%!" %% ' Exécuter une requête Interface de requête homogène Informations disponibles Informations demandées Conditions.1(( (8,: )1( ;? 85( )% % - Compréhension immédiate des requêtes. 17

18 Les types de blocs résultat!%& %!%+, %!% *+!% Créer un graphique à partir d un tableau % %!% Répondre à la question «Pourquoi» : le module Explorer de BO Analyse multidimensionnelle intégrée Explorer les données selon les axes d analyse Aller dans des niveaux de détail de plus en plus fins Analyse en cascade Toulouse Lyon Revenus / Région Ville Revenus / ville Marseille Nice 18

19 Analyse descendante Drill Down % % -!% %%!.+% Analyse ascendante Drill up % % -!%/% Ajouter une dimension à l analyse 19

20 La ligne de produits Business Objects Produits Utilisateurs BUSINESSOBJECTS Module Utilisateur Reporter Suite complète d outils d aide à la décision Explorer Webi Business Miner C/S Intranet Business Query Data mining Analyse multidimensionnelle Interrogation & Reporting Accès par Excel Interfaces Applicatifs Référentiel RDTs Designer Déploiement rapide Mise en oeuvre Supervisor Administration & sécurité Etats de production Administration Intranet Produits Informaticiens Broadcast Agent Server Webi Server Les nouveautés de la ligne de produits #$/1 *!%! %%.%0 & % #$/ :1-.; %0 %( %%. % 4%. % $% 6.%0.%% 178 % 8%8'3 Les nouveautés de la ligne de produits #$' 7% %# 9 %:% $ * % & %& 8 6.8!% % 8! 8 +;%. %&

21 Un SAD pour quel ROI? /9(PP3 A Q3 ' CB" <01 3 1($) 7 /R$ 1 1$) Exemples de bénéfices dans la grande distribution S ) S ) SA 9 SA (, 3 : (; Le DATA MINING /PP8 T& ( ( 1 2 U -) 33, : V01; 21

22 Le DATA MINING 1/(' 1 (? /',8 3= :3 4+"1 5667/ / 9 :3);.8 999/ DM ou KDD? F G W0/ /3/3 / G 3-) 3-) G Pourquoi le KDD ou le Data Mining? & : 3; Comment explorer des millions d enregistrements avec des milliers d attributs? Accroissement des réseaux (navigation sur le Web, catalogue on-line, commerce électronique...) seulement 5 à 10 % de données analysées Chaînes de supermarché >= 100 MB de données par jour 22

23 Data Mining, (1 ( ' //3 5 > &8/J6 /?*1 3? Data Mining 81(,,? > 91'193 (> (? Data Mining -) 98 : ;< =( " > ( 9? 23

24 Data Mining <9 ( V? 9( D (((,? '9 )(,,' Data Mining 4 93 )) 9 ), )? P+, 3 ) ) 31" Data Mining *8 :; 4 4, >, 1 81( 24

25 le Data Mining -) 8 & )! ) 3' 3,19 > G Types de connaissances *7) '?<!D C? 4,( 8C? Types de connaissances Quel client a répondu? Envoi du mailing Déterminer les caractéristiques des clients avec le Data Mining Sélection des clients sur la base Résultat : groupement avec une forte probabilité de réponse 25

26 Types de connaissances Population de Mailing 100 personnes Oui : 31%, Non : 69 % Prob : 97% Cadres 70 personnes Oui : 40 %, Non 60 % Prob : 95% Ouvrier 30 personnes Oui : 10 %, Non : 90 % Prob : 95 % Hommes 50 personnes Oui : 36 %, Non : 64 % Prob : 93 % Femmes 20 personnes Oui : 50 %, Non : 50 % Prob : 93 % Types de connaissances Population de mailing F 31*100-69*50 Cadres 700 F (70* 40%)*100 - (70*60%)*50 Ouvriers F 3 * * 50 Hommes 200 F 18 * * 50 Femmes 500 F 10 * * 50 2%. %0!% Data Mining 48 ( 93, 1'19 )$) ( ) 9 26

27 Le Data Mining A / 4 4 1(8 0%# 1!%!!% 3 0 ).%0 1+7<= 3! Exemples de data mining / 3 9 :(A B(A B( Exemples de data mining (suite) F1) 13(G &3 / ( / A1139 # 9(>

28 Comparaison des différentes méthodes Le marché du Data Mining 8 Z BD. : ; Le marché du data mining /) / #Z/ /) A1 ' 28

29 Les perspectives du décisionnel 1 G / 1L G 3' -A4 *A313 3 CDB$ /01 7 La Business Intelligence $17433* +, :W4; -) 8 ' '1( - 7. A1 - :) J 1 ; / De nouveaux besoins *4 4 I( : 1 9; 4,$ 9 -A4 29

30 Les éditeurs pionniers 84 6'84 *8*

La Business Intelligence 01/05/2012. Les Nouvelles Technologies

La Business Intelligence 01/05/2012. Les Nouvelles Technologies 2 La Business Intelligence Les Nouvelles Technologies 3 Une expertise méthodologique pour une intervention optimale sur tous les niveaux du cycle de vie d un projet 4 5 Ils nous font confiance : L ambition

Plus en détail

SQL SERVER 2008, BUSINESS INTELLIGENCE

SQL SERVER 2008, BUSINESS INTELLIGENCE SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

Introduction à Business Objects. J. Akoka I. Wattiau

Introduction à Business Objects. J. Akoka I. Wattiau Introduction à Business Objects J. Akoka I. Wattiau Introduction Un outil d'aide à la décision accès aux informations stockées dans les bases de données et les progiciels interrogation génération d'états

Plus en détail

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la

Plus en détail

BUSINESS OBJECTS V5 / V6

BUSINESS OBJECTS V5 / V6 BUSINESS OBJECTS V5 / V6 Durée Objectif 2 jours L objectif de ce cours est de savoir utiliser le logiciel BUSINESS OBJECTS pour faire des interrogations multi - dimensionnelles sur les univers BO et de

Plus en détail

Action de formation: SQL Server Business Intelligence & Data Warehouse

Action de formation: SQL Server Business Intelligence & Data Warehouse Action de formation: SQL Server Business Intelligence & Data Warehouse Contenu : Integration Services Présentation de Management Studio - Présenter les différentes tâches de SSMS - Structure des serveurs

Plus en détail

Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel

Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel Avant-propos 1. À qui s'adresse ce livre? 9 2. Les pré-requis 10 3. Les objectifs du livre 10 Introduction 1. Présentation du décisionnel 15 1.1 La notion de décideur 15 1.2 Les facteurs d'amélioration

Plus en détail

Restitution. Antoine Lapostolle Ingénieur Avant-Vente Microsoft France

Restitution. Antoine Lapostolle Ingénieur Avant-Vente Microsoft France Restitution Antoine Lapostolle Ingénieur Avant-Vente Microsoft France Fgi was here Restitution: les problématiques Stocker ne suffit, il faut permettre de comprendre et d analyser ces données. Avec des

Plus en détail

Business Intelligence avec SQL Server 2014 Maîtrisez les concepts et réalisez un système décisionnel

Business Intelligence avec SQL Server 2014 Maîtrisez les concepts et réalisez un système décisionnel Avant-propos 1. À qui s'adresse ce livre? 9 2. Les pré-requis 10 3. Les objectifs du livre 11 Introduction 1. Présentation du décisionnel 13 1.1 La notion de décideur 14 1.2 Les facteurs d'amélioration

Plus en détail

La Geo-Business Intelligence selon GALIGEO avec 26/10/2005 1

La Geo-Business Intelligence selon GALIGEO avec 26/10/2005 1 La Geo-Business Intelligence selon GALIGEO avec ESRI 2005 session «Décisionnel» 26/10/2005 1 La Business Intelligence : Une Définition La Business intelligence permet l utilisation des données opérationnelles

Plus en détail

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Datawarehouse (DW) Le Datawarehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées

Plus en détail

Introduction à la B.I. Avec SQL Server 2008

Introduction à la B.I. Avec SQL Server 2008 Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide

Plus en détail

Entreposage, analyse en ligne et fouille de données

Entreposage, analyse en ligne et fouille de données Entreposage, analyse en ligne et fouille de données Houssem Jerbi IRIT - SIG/ED jerbi@irit.fr Journée COMPIL " Bases de Données" 14/12/2010 PLAN Introduction Bases de données Entrepôt de données Technologie

Plus en détail

Informatique décisionnelle (Première partie) Emmanuelle Cravoisier

Informatique décisionnelle (Première partie) Emmanuelle Cravoisier Informatique décisionnelle (Première partie) Emmanuelle Cravoisier Informatique décisionnelle Concepts Présentation de Business Objects Conception d un univers Business Objects Structure générale d une

Plus en détail

Chapitre 9 : Informatique décisionnelle

Chapitre 9 : Informatique décisionnelle Chapitre 9 : Informatique décisionnelle Sommaire Introduction... 3 Définition... 3 Les domaines d application de l informatique décisionnelle... 4 Architecture d un système décisionnel... 5 L outil Oracle

Plus en détail

Les entrepôts de données pour les nuls... ou pas!

Les entrepôts de données pour les nuls... ou pas! Atelier aideà la Décision à tous les Etages AIDE@EGC2013 Toulouse Mardi 29 janvier 2013 Cécile Favre Fadila Bentayeb Omar Boussaid Jérôme Darmont Gérald Gavin Nouria Harbi Nadia Kabachi Sabine Loudcher

Plus en détail

5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI

5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI 5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI Un SI : et pour faire quoi? Permet de stocker de manière définitive des informations volatiles provenant d autre BD.

Plus en détail

Formation BusinessObjects v.6.5. Contenu des Formations

Formation BusinessObjects v.6.5. Contenu des Formations Formation BusinessObjects v.6.5 des Formations TABLE DES MATIERES I. UTILISATEUR BO V.6.5 NIVEAU 1 & 2... 3 DESCRIPTION... 3 PREALABLE... 3 CONTENU... 3 II. INFOVIEW & WEBINTELLIGENCE V.6.5... 4 DESCRIPTION...

Plus en détail

Informatique Décisionnelle pour l environnement

Informatique Décisionnelle pour l environnement Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Informatique Décisionnelle pour l environnement Principe, architecture informatique

Plus en détail

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012 CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE Edition 2012 AGENDA Qui sommes nous? Présentation de Keyrus Keyrus : Expert en formations BI Nos propositions de formation 3 modes de formations Liste des

Plus en détail

Business Intelligence avec Excel, Power BI et Office 365

Business Intelligence avec Excel, Power BI et Office 365 Avant-propos A. À qui s adresse ce livre? 9 1. Pourquoi à chaque manager? 9 2. Pourquoi à tout informaticien impliqué dans des projets «BI» 9 B. Obtention des données sources 10 C. Objectif du livre 10

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP BI = Business Intelligence Master Data-Science Cours 4 - OLAP UPMC 15 février 2015 Plan Vision générale ETL Datawarehouse OLAP Reporting Data Mining Entrepôt de données Les entrepôts de données (data warehouse)

Plus en détail

AXIAD Conseil pour décider en toute intelligence

AXIAD Conseil pour décider en toute intelligence AXIAD Conseil pour décider en toute intelligence Gestion de la Performance, Business Intelligence, Big Data Domaine d expertise «Business Intelligence» Un accompagnement adapté à votre métier dans toutes

Plus en détail

Présentation salon Linux Paris Janvier 2006 / FR / CSS6

Présentation salon Linux Paris Janvier 2006 / FR / CSS6 Présentation salon Linux Paris Janvier 2006 / FR / CSS6 Talend en bref Un éditeur leader technologique sur le marché de l intégration des données en entreprise 1 er acteur ETL Open Source 1 er acteur sur

Plus en détail

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...)

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

MyReport Le reporting sous excel. La solution de business intelligence pour la PME

MyReport Le reporting sous excel. La solution de business intelligence pour la PME La solution de business intelligence pour la PME Qu est que la business intelligence La Business intelligence, dénommée aussi par simplification "Informatique Décisionnelle", est vraisemblablement l'unique

Plus en détail

HERMES SYSTEM et BEWISE souhaitent vous offrir les meilleures compétences.

HERMES SYSTEM et BEWISE souhaitent vous offrir les meilleures compétences. Notre alliance, Votre atout. HERMES SYSTEM et BEWISE souhaitent vous offrir les meilleures compétences. C est de cette philosophie qu est née notre partenariat avec la société toulousaine (31) Bewise,

Plus en détail

Entrepôt de Données. Jean-François Desnos. Jean-Francois.Desnos@grenet.fr ED JFD 1

Entrepôt de Données. Jean-François Desnos. Jean-Francois.Desnos@grenet.fr ED JFD 1 Entrepôt de Données Jean-François Desnos Jean-Francois.Desnos@grenet.fr ED JFD 1 Définition (Bill Inmon 1990) Un entrepôt de données (data warehouse) est une collection de données thématiques, intégrées,

Plus en détail

Business Intelligence : Informatique Décisionnelle

Business Intelligence : Informatique Décisionnelle Business Intelligence : Informatique Décisionnelle On appelle «aide à la décision», «décisionnel», ou encore «business intelligence», un ensemble de solutions informatiques permettant l analyse des données

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 3 - Data

BI = Business Intelligence Master Data-ScienceCours 3 - Data BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage

Plus en détail

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Business Intelligence - Introduction

Business Intelligence - Introduction Le cours Business Intelligence - Introduction Olivier Schwander UPMC 1 / 45 Le cours Organisation du cours http://www-connex.lip6.fr/~schwander/enseignement/ 2015-2016/m2stat_bi/

Plus en détail

Urbanisation des SI-NFE107

Urbanisation des SI-NFE107 OLAP Urbanisation des SI-NFE107 Fiche de lecture Karim SEKRI 20/01/2009 OLAP 1 Introduction PLAN OLAP Les différentes technologies OLAP Plate formes et Outils 20/01/2009 OLAP 2 Informatique décisionnelle

Plus en détail

IBM System i. DB2 Web Query for System i : le successeur de Query/400? Oui, mais bien plus!!!

IBM System i. DB2 Web Query for System i : le successeur de Query/400? Oui, mais bien plus!!! DB2 Web Query for System i : le successeur de Query/400? Oui, mais bien plus!!! Stéphane MICHAUX Philippe BOURGEOIS Christian GRIERE stephane_michaux@ibi.com pbourgeois@fr.ibm.com cgriere@fr.ibm.com Les

Plus en détail

IMPLEMENTATION D UN SYSTEME D INFORMATION DECISIONNEL

IMPLEMENTATION D UN SYSTEME D INFORMATION DECISIONNEL IMPLEMENTATION D UN SYSTEME D INFORMATION DECISIONNEL Proposé par BUMA Feinance Master en management e projets informatiques Consultant en système écisionnel I. COMPREHENSION DU CONTEXTE «L informatique

Plus en détail

Petit Déjeuner Pépinière du Logiciel Libre. 25 juin 2008

Petit Déjeuner Pépinière du Logiciel Libre. 25 juin 2008 Petit Déjeuner Pépinière du Logiciel Libre 25 juin 2008 1 / 37 Agenda Définition & Principes Les différents outils & composants Les Solutions intégrés Open-Source Vos Questions 2 / 37 Agenda Définition

Plus en détail

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement Introduction Phases du projet Les principales phases du projet sont les suivantes : La mise à disposition des sources Des fichiers Excel sont utilisés pour récolter nos informations L extraction des données

Plus en détail

Pierre-Adrien Forestier Partner Technical Advisor pafore@microsoft.com

Pierre-Adrien Forestier Partner Technical Advisor pafore@microsoft.com Pierre-Adrien Forestier Partner Technical Advisor pafore@microsoft.com Agenda Vision de la BI par Microsoft SQL Server 2008 R2 Démo PowerPivot Démo Reporting Services Questions / Réponses Une plateforme

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,

Plus en détail

PLAN. Les systèmes d'information analytiques. Exemples de décisions

PLAN. Les systèmes d'information analytiques. Exemples de décisions Les systèmes d'information analytiques Dr A.R. Baba-ali Maitre de conferences USTHB PLAN Le cycle de decision Les composants analytiques ETL (Extract, Transform and Load) Entrepot de (Data warehouse) Traitement

Plus en détail

Business Intelligence (BI) Stratégie de création d un outil BI

Business Intelligence (BI) Stratégie de création d un outil BI Business Intelligence (BI) La Business intelligence est un outil décisionnel incontournable à la gestion stratégique et quotidienne des entités. Il fournit de l information indispensable, sous plusieurs

Plus en détail

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours Information du cours Informatique décisionnelle et data mining www.lia.univ-avignon.fr/chercheurs/torres/cours/dm Juan-Manuel Torres juan-manuel.torres@univ-avignon.fr LIA/Université d Avignon Cours/TP

Plus en détail

Introduction. d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation

Introduction. d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation 2 Présentation Besoin: prise de décisions

Plus en détail

Domaines d intervention

Domaines d intervention MANAGEMENT INFORMATIQUE 1 PLACE DE L EGALITE 78280 GUYANCOURT TELEPHONE + 33 1 30 48 54 34 TELECOPIE + 33 1 30 48 54 34 INFOS mailto:contact@managementinformatique.com Société Présentation Société Notre

Plus en détail

Business Intelligence L avantage. géographique. Emanuele Gennai Global Affairs ESRI Nyon, Switzerland

Business Intelligence L avantage. géographique. Emanuele Gennai Global Affairs ESRI Nyon, Switzerland Business Intelligence L avantage géographique Emanuele Gennai Global Affairs ESRI Nyon, Switzerland Qu est ce que le SIG pour ESRI? Aider à mieux gérer g nos ressources Communiquer nos géographies Notre

Plus en détail

Le parcours pédagogique Sage Business Intelligence. Utilisateur Niv I BO XI 3.0 WebI pour Sage 1000 2 jours

Le parcours pédagogique Sage Business Intelligence. Utilisateur Niv I BO XI 3.0 WebI pour Sage 1000 2 jours Vous êtes Consultant, Chef de Projets, Directeur des Systèmes d Information, Directeur Administratif et Financier, Optez pour les «formations Produits» Nous vous proposons des formations vous permettant

Plus en détail

PANORAMA DES SYSTEMES D INFORMATION. Business Intelligence. Kevinconsulting.org - MOUCKOUMBI Herbert Kevin

PANORAMA DES SYSTEMES D INFORMATION. Business Intelligence. Kevinconsulting.org - MOUCKOUMBI Herbert Kevin PANORAMA DES SYSTEMES D INFORMATION Business Intelligence Kevinconsulting.org - MOUCKOUMBI Herbert Kevin SOMMAIRE Sommaire 1. 2. Investigation sur le marché de la Business Intelligence 3. de Business Intelligence

Plus en détail

LES ENTREPOTS DE DONNEES

LES ENTREPOTS DE DONNEES Module B4 : Projet des Systèmes d information Lille, le 25 mars 2002 LES ENTREPOTS DE DONNEES Problématique : Pour capitaliser ses informations, une entreprise doit-elle commencer par mettre en œuvre des

Plus en détail

Plateforme SAS. Data & Information System

Plateforme SAS. Data & Information System Data & Information System SOMMAIRE Rédacteur : Ref: F.Barthelemy AXIO_1111_V1 PLATEFORME SAS PREREQUIS SAS GUIDE SAS WRS SAS PORTAL SAS MINER Une plateforme unique et modulable capable d exploiter l architecture

Plus en détail

Evry - M2 MIAGE Entrepôt de données

Evry - M2 MIAGE Entrepôt de données Evry - M2 MIAGE Entrepôt de données Introduction D. Ploix - M2 Miage - EDD - Introduction 1 Plan Positionnement du BI dans l entreprise Déclinaison fonctionnelle du décisionnel dans l entreprise Intégration

Plus en détail

2 Serveurs OLAP et introduction au Data Mining

2 Serveurs OLAP et introduction au Data Mining 2-1 2 Serveurs OLAP et introduction au Data Mining 2-2 Création et consultation des cubes en mode client-serveur Serveur OLAP Clients OLAP Clients OLAP 2-3 Intérêt Systèmes serveurs et clients Fonctionnalité

Plus en détail

Département Génie Informatique

Département Génie Informatique Département Génie Informatique BD51 : Business Intelligence & Data Warehouse Projet Rédacteur : Christian FISCHER Automne 2011 Sujet : Développer un système décisionnel pour la gestion des ventes par magasin

Plus en détail

TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 03/11/2014 Plan du TP 2 Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Présentation de la suite Microsoft BI Présentation

Plus en détail

Business Intelligence

Business Intelligence Business Intelligence Enjeux, Projets, Données, Indicateurs Gilles FONTANINI g.fontanini@decision-network.eu +33 (0)6 11 21 24 53 2? Gilles Fontanini Consultant et Administrateur d un GIE d experts en

Plus en détail

Didier MOUNIEN Samantha MOINEAUX

Didier MOUNIEN Samantha MOINEAUX Didier MOUNIEN Samantha MOINEAUX 08/01/2008 1 Généralisation des ERP ERP génère une importante masse de données Comment mesurer l impact réel d une décision? Comment choisir entre plusieurs décisions?

Plus en détail

Présentation de l offre produit de Business Objects XI

Présentation de l offre produit de Business Objects XI Conseil National des Assurances Séminaire - Atelier L information au service de tous Le 09 Novembre 2005 Présentation de l offre produit de XI Amar AMROUCHE Consultant Avant Vente aamrouche@aacom-algerie.com

Plus en détail

Intégration de systèmes client - serveur Des approches client-serveur à l urbanisation Quelques transparents introductifs

Intégration de systèmes client - serveur Des approches client-serveur à l urbanisation Quelques transparents introductifs Intégration de systèmes client - serveur Des approches client-serveur à l urbanisation Quelques transparents introductifs Jean-Pierre Meinadier Professeur du CNAM, meinadier@cnam.fr Révolution CS : l utilisateur

Plus en détail

ERP & Processus. lacreuse@unistra.fr

ERP & Processus. lacreuse@unistra.fr ERP & Processus Métiers lacreuse@unistra.fr Processus : «Système d activités qui utilise des ressources pour transformer des éléments d entrée en résultat» Iso9000 Approche par processus Axes de modélisation

Plus en détail

Solutions IT pour libérer le potentiel de votre Business

Solutions IT pour libérer le potentiel de votre Business Solutions IT pour libérer le potentiel de votre Business Stop Guessing Décisionnel & Pilotage Get the Attitude Gestion de la Relation Client Go Paperless Gestion Electronique de Documents DECIZIA, Déjà

Plus en détail

Datawarehouse. C. Vangenot

Datawarehouse. C. Vangenot Datawarehouse C. Vangenot Plan Partie 1 : Introduction 1. Objectifs 2. Qu'est ce qu'un datawarehouse? 3. Pourquoi ne pas réutiliser les BD? Partie 2 : Implémentation d'un datawarehouse ROLAP MOLAP HOLAP

Plus en détail

TP2_2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2_2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2_2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 03/11/2014 Plan du TP 2 Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Présentation de la suite Microsoft BI Présentation

Plus en détail

Architecture technique

Architecture technique OPUS DRAC Architecture technique Projet OPUS DRAC Auteur Mathilde GUILLARME Chef de projet Klee Group «Créateurs de solutions e business» Centre d affaires de la Boursidière BP 5-92357 Le Plessis Robinson

Plus en détail

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles)

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles) SGBDR Systèmes de Gestion de Bases de Données (Relationnelles) Plan Approches Les tâches du SGBD Les transactions Approche 1 Systèmes traditionnels basés sur des fichiers Application 1 Gestion clients

Plus en détail

CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2. Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP...

CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2. Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP... Table des matières CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2 Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP...6 OPÉRATIONS SUR LES CUBES...7 Exemple

Plus en détail

Business Intelligence avec SQL Server 2012

Business Intelligence avec SQL Server 2012 Editions ENI Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel Collection Solutions Informatiques Table des matières Les éléments à télécharger sont disponibles

Plus en détail

TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 30/11/2011 Plan du TP 2 Rappel sur la chaine de BI Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Rappel sur la chaine de

Plus en détail

Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification

Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification Séminaire national Alger 12 Mars 2008 «L Entreprise algérienne face au défi du numérique : État et perspectives» CRM et ERP Impact(s) sur l entreprise en tant qu outils de gestion Historique des ERP Le

Plus en détail

Les Entrepôts de Données

Les Entrepôts de Données Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations

Plus en détail

Choix de l outil PENTAHO

Choix de l outil PENTAHO Choix de l outil PENTAHO GROUPES : Encadrant : IDRISSI BADSSI abd al moughit Mme LEMRINI loubna HALIM hamza LARHROUCH mustapha Table des matières Business intelligence... 2 Les Outils Open source de Business

Plus en détail

BI Managed by Business

BI Managed by Business BI Managed by Business Introduction Après avoir enregistré une forte croissance au cours de ces dernières années, la Business Intelligence se popularise dans les entreprises pour devenir un élément stratégique

Plus en détail

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani Datawarehouse: Cubes OLAP Marlyse Dieungang Khaoula Ghilani Table des matières 1 Data Warehouse 3 1.1 Introduction............................ 3 1.1.1 Définition......................... 3 1.1.2 Architecture........................

Plus en détail

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012 CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE Edition 2012 AGENDA Qui sommes nous? Présentation de Keyrus Keyrus : Expert en formations BI Nos propositions de formation 3 modes de formations Liste des

Plus en détail

Entrepôt de données 1. Introduction

Entrepôt de données 1. Introduction Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de

Plus en détail

Le Data Mining, Outil d aide à la prise de décision dans l action commerciale

Le Data Mining, Outil d aide à la prise de décision dans l action commerciale Université Ibn Zohr Faculté des Sciences Juridiques, Économiques et Sociales Exposé sous le thème : Le Data Mining, Outil d aide à la prise de décision dans l action commerciale Plan : Introduction : L

Plus en détail

Les PGI. A l origine, un progiciel était un logiciel adapté aux besoins d un client.

Les PGI. A l origine, un progiciel était un logiciel adapté aux besoins d un client. Les PGI Les Progiciels de Gestion Intégrés sont devenus en quelques années une des pierres angulaire du SI de l organisation. Le Système d Information (SI) est composé de 3 domaines : - Organisationnel

Plus en détail

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation 2 Présentation Besoin: prise de décisions

Plus en détail

Méthodologie de conceptualisation BI

Méthodologie de conceptualisation BI Méthodologie de conceptualisation BI Business Intelligence (BI) La Business intelligence est un outil décisionnel incontournable à la gestion stratégique et quotidienne des entités. Il fournit de l information

Plus en détail

JASPERSOFT ET LE PAYSAGE ANALYTIQUE. Jaspersoft et le paysage analytique 1

JASPERSOFT ET LE PAYSAGE ANALYTIQUE. Jaspersoft et le paysage analytique 1 JASPERSOFT ET LE PAYSAGE ANALYTIQUE Jaspersoft et le paysage analytique 1 Ce texte est un résumé du Livre Blanc complet. N hésitez pas à vous inscrire sur Jaspersoft (http://www.jaspersoft.com/fr/analyticslandscape-jaspersoft)

Plus en détail

L information et la technologie de l informationl

L information et la technologie de l informationl L information et la technologie de l informationl CRM & informatique décisionnelled CRM CRM & informatique décisionnelle. d 1 2 3 Les Les fondements managériaux managériaux du du CRM. CRM. Les Les fondements

Plus en détail

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Plan Objectifs Débouchés Formation UVs spécifiques UVs connexes Enseignants et partenaires Structure générale des études à l UTC Règlement

Plus en détail

BI Open Source Octobre 2012. Alioune Dia, Consultant BI alioune.dia@openbridge.fr

BI Open Source Octobre 2012. Alioune Dia, Consultant BI alioune.dia@openbridge.fr BI Open Source Octobre 2012 Alioune Dia, Consultant BI alioune.dia@openbridge.fr 1 Le groupe, en bref 2004 Date de création +7M * Chiffre d affaires 2012 +80 Collaborateurs au 06/2011 35% Croissance chiffre

Plus en détail

Introduction. Division Moyennes et Grandes Entreprises - Direction Produits Page 2 / 7. Communiqué de lancement Sage HR Management V5.

Introduction. Division Moyennes et Grandes Entreprises - Direction Produits Page 2 / 7. Communiqué de lancement Sage HR Management V5. Division Moyennes et Grandes Entreprises Direction Produits Communiqué de lancement Sage HR Management Version 5.10 Nouveau module Décisionnel Bases de données Sage HR Management Version 5.10 MS SQL Server

Plus en détail

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2014

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2014 CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE Edition 2014 SOMMAIRE Présentation de Keyrus Les modes de formation Liste des formations, Plan de cours & Pré-requis IBM Cognos QlikView Microsoft Talend Oracle

Plus en détail

Brice DAVOLEAU Consultant Décisionnel Junior 2 ans d expérience

Brice DAVOLEAU Consultant Décisionnel Junior 2 ans d expérience Brice DAVOLEAU Consultant Décisionnel Junior 2 ans d expérience 3 bis bd Waldeck Rousseau, 22000 Saint Brieuc Permis B 25 ans Mail : brice.davoleau@gmail.com Blog : http://www.cogoobi.com/ Tel : 06.24.98.12.02

Plus en détail

W4 - Workflow La base des applications agiles

W4 - Workflow La base des applications agiles W4 - Workflow La base des applications agiles, W4 philippe.betschart@w4global.com Vous avez dit «workflow»? Processus : Enchaînement ordonné de faits ou de phénomènes, répondant à un certain schéma et

Plus en détail

Les solutions SAS pour les Petites et Moyennes Entreprises

Les solutions SAS pour les Petites et Moyennes Entreprises BROCHURE SOLUTION Les solutions SAS pour les Petites et Moyennes Entreprises Sur un marché aussi compétitif que celui des Petites et Moyennes Entreprises, le temps et l efficacité sont deux valeurs prioritaires

Plus en détail

L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence

L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence L offre décisionnel IBM Patrick COOLS Spécialiste Business Intelligence Le marché du Business Intelligence L enjeux actuel des entreprises : devenir plus «agiles» Elargir les marchés tout en maintenant

Plus en détail

Vanilla. Open Source Business Intelligence. Présentation de la plateforme

Vanilla. Open Source Business Intelligence. Présentation de la plateforme Vanilla Open Source Business Intelligence Présentation de la plateforme Novembre 2008 Patrick Beaucamp BPM Conseil Contact : patrick.beaucamp@bpm-conseil.com Table des matières Introduction...3 Portail

Plus en détail

L INTÉGRATION ENTRE BUSINESS INTELLIGENCE ET WEB ANALYTICS

L INTÉGRATION ENTRE BUSINESS INTELLIGENCE ET WEB ANALYTICS L INTÉGRATION ENTRE BUSINESS INTELLIGENCE ET WEB ANALYTICS Julien Coquet Consultant Sénior Hub Sales Philippe Nieuwbourg Analyste Decideo.fr Notre partenaire : Naissance du terme «Business Intelligence»

Plus en détail

Performance de la réplication de données Avril 2008. IBM InfoSphere Change Data Capture : Réplication de données hautement performante

Performance de la réplication de données Avril 2008. IBM InfoSphere Change Data Capture : Réplication de données hautement performante Avril 2008 IBM Change Data Capture : Réplication de données hautement performante Page 2 Le saviez-vous? Plus de 500 clients utilisent IBM Change Data Capture pour résoudre de multiples problématiques

Plus en détail

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing Bases de données multidimensionnelles OLAP OnLine Analytical Processing OLAP OLAP (On Line Analytical Processing): Ensemble des outils nécessaires pour la mise en place d'un Système d'information décisionnel

Plus en détail

Offre Décisionnel - 2014/2015 - CONSEIL, SOLUTIONS DE TRANSFORMATION ET SERVICES IT. Offre Décisionnel

Offre Décisionnel - 2014/2015 - CONSEIL, SOLUTIONS DE TRANSFORMATION ET SERVICES IT. Offre Décisionnel Offre Décisionnel - 2014/2015-1/39 SODIFRANCE INSTITUT VOTRE PARTENAIRE FORMATION Sodifrance Institut, filiale du Groupe Informatique Sodifrance, est spécialisé dans les formations techniques. Grâce aux

Plus en détail

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Plan Motivations Débouchés Formation UVs spécifiques UVs connexes Enseignants et partenaires Motivations de la filière fouille de données

Plus en détail

Créer le modèle multidimensionnel

Créer le modèle multidimensionnel 231 Chapitre 6 Créer le modèle multidimensionnel 1. Présentation de SSAS multidimensionnel Créer le modèle multidimensionnel SSAS (SQL Server Analysis Services) multidimensionnel est un serveur de bases

Plus en détail

MyReport, une gamme complète. La Business Intelligence en toute simplicité : Concevez, partagez, actualisez! pour piloter votre activité au quotidien.

MyReport, une gamme complète. La Business Intelligence en toute simplicité : Concevez, partagez, actualisez! pour piloter votre activité au quotidien. MyReportle reporting sous excel La Business Intelligence en toute simplicité : Concevez, partagez, actualisez! MyReport, une gamme complète pour piloter votre activité au quotidien. En rendant les données

Plus en détail

Cybermarché et analyse comportementale

Cybermarché et analyse comportementale Cybermarché et analyse comportementale Antoine-Eric Sammartino aesammartino@e-laser.fr Séminaire Data Mining - Educasoft Formations 18 juin 2001-1- MENU Le Groupe LaSer Le processus Data Mining L industrialisation

Plus en détail

Conception de systèmes d'information et d'entrepôts de données

Conception de systèmes d'information et d'entrepôts de données Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Conception de systèmes d'information et d'entrepôts de données Vers des structures

Plus en détail