La problématique. La philosophie ' ) * )

Dimension: px
Commencer à balayer dès la page:

Download "La problématique. La philosophie ' ) * )"

Transcription

1 La problématique!" La philosophie #$ % La philosophie &'( ' ) * ) 1

2 La philosophie +, -) *. Mise en oeuvre Data warehouse ou Datamart /01-2, / ,$ / 5 23, 2

3 * $ #, 7 Datawarehouse Data warehouse #$ :33 (; 681 1( ' Data Warehouse 8 : 3 '3 ; ' (!"# $!" % $ 3

4 Modélisation des données dans un entrepôt < <2 9= '(> ' 1#4= ) (> ' ) Les différences d objectifs *=%' *= # 1 -(> )33 # %) % 3 %$ %, *1 # % % Objectif de la construction d un datawarehouse A ) 3 )', 4

5 Objectifs architecturaux des entrepôts de données #.4 A,(> ) *1 4' (#4/ Caractéristiques communes des entrepôts de données 9 *1( 4 Profil des utilisateurs et leurs besoins :B; <:CDB; <:EDB; / & ' ( ) $ & 5

6 Développement d un datawarehouse: les différentes phases du projet 11 * * 9 / 1 * #4 / / '. '9? Le modèle dimensionnel F G FG F G FG < 7 Le schéma en étoile 6

7 Le schéma en étoile Schéma en flocon de neige (snowflake) > $ Les tables de dimensions. 3 1( /11( * 81 :; 7

8 La dimension temps ) H$ * :'''' ; Les tables des faits /9 &33?? * 9 ( : ; Les tables de faits & $(1 * 4 *( * 8

9 Operational Data Store -: ; A '9 I : ) ; Le processus ETL -) #.4. 1 /J *1 2 -.K-)3 :-.K 8 ); Le processus ETL 4/ $93 1$,

10 Le processus ETL -) '9 <#/) $33 Transformation &:) ; 1:; ' A9 : ( 1; 3 $ Meta données fonctionnelles / A9 L1 / ( /(8 *+,-+* # 10

11 Meta données techniques '9 /9 4. ) / Normalisation par l OMG *J:* J1 ;8') M:M1;8 1 / 5 3$, 6'3#3<'3 Les objectifs de conception communs /1.(( 11 A8> 1 4) 4) 11

12 Quelle différence entre l ETL et l EAI? -8= A '9 * #A3 1( Quelle différence entre l ETL et l EAI? Quelle différence entre l ETL et l EAI? -.8 : -A4) ; '1 *2 # 1( ) 12

13 Quelle différence entre l ETL et l EAI? Le marché ETL en 2001 Le marché ETL en 2001 Other Torrent 0% Embarcadero 1% I-flex Flexcube ETL 1% Data Junction 1% Acta 1% Compuware Information Builders CA Teradata Microsoft ETI IBM Sagent Cognos Hummingbird Oracle SAS Ascential Informatica 2% 2%3% 4% 4% 4% 4% 4% 8% 6% 7% 8% 10% 12% 18% 0% 5% 10% 15% 20% 74 Source: Giga Information Group, Inc. Le marché de l ETL -.N 8 :0* 0*; :/; *7 * -.F :/.3F3 ; #J1 : #-3A. 03 #4; 13

14 Les outils de l informatique décisionnelle /) )8 '(,((. / ( +& 0 Les outils de l informatique décisionnelle * - :-) ' ; ) 5? -) 95, 8 *':, ); *':, ; Les applications analytiques (OLAP : On line Analytical Processing) ' *) : ; -) * O1( * 0 '

15 Les différentes types de modèles OLAP #4: #4; :) 6'*; A#4:#4; :) '; 6#4:6'#4; /#4:/#4; :) #$; (> La ligne de produits Business Objects Produits Utilisateurs BUSINESSOBJECTS Module Utilisateur Reporter Suite complète d outils d aide à la décision Explorer Webi Business Miner C/S Intranet Business Query Data mining Analyse multidimensionnelle Interrogation & Reporting Accès par Excel Interfaces Applicatifs Référentiel RDTs Designer Déploiement rapide Mise en oeuvre Supervisor Administration & sécurité Etats de production Administration Intranet Produits Informaticiens Broadcast Agent Server Webi Server Intégration Un enchaînement naturel des tâches Interrogation Analyse Pourquoi? Quoi? Reporting Tableaux, Graphes, Matrices Permutation d'axes, Analyse en cascade ' 4 Partage 15

16 Répondre à la question «Quoi?» Représentation métier Gestion Finance Ventes Données de l'entreprise Client Vendeur Utilisateurs finals Chiffre d Affaires Article Prix A Informaticien. 1( :1 (; Des objets vers le document Traitement sur le serveur SQL Partie prise en charge par BusinessObjects Résultats Représentation Métier CA Région Produit Partie visible par l'utilisateur autonomie par rapport à l'informatique Génération du document Choisir la source de données 16

17 Les objets de l univers 4' 3$ (!"!"!" #$%&%!" %% ' Exécuter une requête Interface de requête homogène Informations disponibles Informations demandées Conditions.1(( (8,: )1( ;? 85( )% % - Compréhension immédiate des requêtes. 17

18 Les types de blocs résultat!%& %!%+, %!% *+!% Créer un graphique à partir d un tableau % %!% Répondre à la question «Pourquoi» : le module Explorer de BO Analyse multidimensionnelle intégrée Explorer les données selon les axes d analyse Aller dans des niveaux de détail de plus en plus fins Analyse en cascade Toulouse Lyon Revenus / Région Ville Revenus / ville Marseille Nice 18

19 Analyse descendante Drill Down % % -!% %%!.+% Analyse ascendante Drill up % % -!%/% Ajouter une dimension à l analyse 19

20 La ligne de produits Business Objects Produits Utilisateurs BUSINESSOBJECTS Module Utilisateur Reporter Suite complète d outils d aide à la décision Explorer Webi Business Miner C/S Intranet Business Query Data mining Analyse multidimensionnelle Interrogation & Reporting Accès par Excel Interfaces Applicatifs Référentiel RDTs Designer Déploiement rapide Mise en oeuvre Supervisor Administration & sécurité Etats de production Administration Intranet Produits Informaticiens Broadcast Agent Server Webi Server Les nouveautés de la ligne de produits #$/1 *!%! %%.%0 & % #$/ :1-.; %0 %( %%. % 4%. % $% 6.%0.%% 178 % 8%8'3 Les nouveautés de la ligne de produits #$' 7% %# 9 %:% $ * % & %& 8 6.8!% % 8! 8 +;%. %&

21 Un SAD pour quel ROI? /9(PP3 A Q3 ' CB" <01 3 1($) 7 /R$ 1 1$) Exemples de bénéfices dans la grande distribution S ) S ) SA 9 SA (, 3 : (; Le DATA MINING /PP8 T& ( ( 1 2 U -) 33, : V01; 21

22 Le DATA MINING 1/(' 1 (? /',8 3= :3 4+"1 5667/ / 9 :3);.8 999/ DM ou KDD? F G W0/ /3/3 / G 3-) 3-) G Pourquoi le KDD ou le Data Mining? & : 3; Comment explorer des millions d enregistrements avec des milliers d attributs? Accroissement des réseaux (navigation sur le Web, catalogue on-line, commerce électronique...) seulement 5 à 10 % de données analysées Chaînes de supermarché >= 100 MB de données par jour 22

23 Data Mining, (1 ( ' //3 5 > &8/J6 /?*1 3? Data Mining 81(,,? > 91'193 (> (? Data Mining -) 98 : ;< =( " > ( 9? 23

24 Data Mining <9 ( V? 9( D (((,? '9 )(,,' Data Mining 4 93 )) 9 ), )? P+, 3 ) ) 31" Data Mining *8 :; 4 4, >, 1 81( 24

25 le Data Mining -) 8 & )! ) 3' 3,19 > G Types de connaissances *7) '?<!D C? 4,( 8C? Types de connaissances Quel client a répondu? Envoi du mailing Déterminer les caractéristiques des clients avec le Data Mining Sélection des clients sur la base Résultat : groupement avec une forte probabilité de réponse 25

26 Types de connaissances Population de Mailing 100 personnes Oui : 31%, Non : 69 % Prob : 97% Cadres 70 personnes Oui : 40 %, Non 60 % Prob : 95% Ouvrier 30 personnes Oui : 10 %, Non : 90 % Prob : 95 % Hommes 50 personnes Oui : 36 %, Non : 64 % Prob : 93 % Femmes 20 personnes Oui : 50 %, Non : 50 % Prob : 93 % Types de connaissances Population de mailing F 31*100-69*50 Cadres 700 F (70* 40%)*100 - (70*60%)*50 Ouvriers F 3 * * 50 Hommes 200 F 18 * * 50 Femmes 500 F 10 * * 50 2%. %0!% Data Mining 48 ( 93, 1'19 )$) ( ) 9 26

27 Le Data Mining A / 4 4 1(8 0%# 1!%!!% 3 0 ).%0 1+7<= 3! Exemples de data mining / 3 9 :(A B(A B( Exemples de data mining (suite) F1) 13(G &3 / ( / A1139 # 9(>

28 Comparaison des différentes méthodes Le marché du Data Mining 8 Z BD. : ; Le marché du data mining /) / #Z/ /) A1 ' 28

29 Les perspectives du décisionnel 1 G / 1L G 3' -A4 *A313 3 CDB$ /01 7 La Business Intelligence $17433* +, :W4; -) 8 ' '1( - 7. A1 - :) J 1 ; / De nouveaux besoins *4 4 I( : 1 9; 4,$ 9 -A4 29

30 Les éditeurs pionniers 84 6'84 *8*

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

Introduction à la B.I. Avec SQL Server 2008

Introduction à la B.I. Avec SQL Server 2008 Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide

Plus en détail

Chapitre 9 : Informatique décisionnelle

Chapitre 9 : Informatique décisionnelle Chapitre 9 : Informatique décisionnelle Sommaire Introduction... 3 Définition... 3 Les domaines d application de l informatique décisionnelle... 4 Architecture d un système décisionnel... 5 L outil Oracle

Plus en détail

SQL SERVER 2008, BUSINESS INTELLIGENCE

SQL SERVER 2008, BUSINESS INTELLIGENCE SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business

Plus en détail

Introduction à Business Objects. J. Akoka I. Wattiau

Introduction à Business Objects. J. Akoka I. Wattiau Introduction à Business Objects J. Akoka I. Wattiau Introduction Un outil d'aide à la décision accès aux informations stockées dans les bases de données et les progiciels interrogation génération d'états

Plus en détail

LES ENTREPOTS DE DONNEES

LES ENTREPOTS DE DONNEES Module B4 : Projet des Systèmes d information Lille, le 25 mars 2002 LES ENTREPOTS DE DONNEES Problématique : Pour capitaliser ses informations, une entreprise doit-elle commencer par mettre en œuvre des

Plus en détail

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Datawarehouse (DW) Le Datawarehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées

Plus en détail

Business Intelligence : Informatique Décisionnelle

Business Intelligence : Informatique Décisionnelle Business Intelligence : Informatique Décisionnelle On appelle «aide à la décision», «décisionnel», ou encore «business intelligence», un ensemble de solutions informatiques permettant l analyse des données

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 3 - Data

BI = Business Intelligence Master Data-ScienceCours 3 - Data BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage

Plus en détail

Urbanisation des SI-NFE107

Urbanisation des SI-NFE107 OLAP Urbanisation des SI-NFE107 Fiche de lecture Karim SEKRI 20/01/2009 OLAP 1 Introduction PLAN OLAP Les différentes technologies OLAP Plate formes et Outils 20/01/2009 OLAP 2 Informatique décisionnelle

Plus en détail

Business Intelligence avec Excel, Power BI et Office 365

Business Intelligence avec Excel, Power BI et Office 365 Avant-propos A. À qui s adresse ce livre? 9 1. Pourquoi à chaque manager? 9 2. Pourquoi à tout informaticien impliqué dans des projets «BI» 9 B. Obtention des données sources 10 C. Objectif du livre 10

Plus en détail

La Geo-Business Intelligence selon GALIGEO avec 26/10/2005 1

La Geo-Business Intelligence selon GALIGEO avec 26/10/2005 1 La Geo-Business Intelligence selon GALIGEO avec ESRI 2005 session «Décisionnel» 26/10/2005 1 La Business Intelligence : Une Définition La Business intelligence permet l utilisation des données opérationnelles

Plus en détail

Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel

Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel Avant-propos 1. À qui s'adresse ce livre? 9 2. Les pré-requis 10 3. Les objectifs du livre 10 Introduction 1. Présentation du décisionnel 15 1.1 La notion de décideur 15 1.2 Les facteurs d'amélioration

Plus en détail

TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 03/11/2014 Plan du TP 2 Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Présentation de la suite Microsoft BI Présentation

Plus en détail

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012 CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE Edition 2012 AGENDA Qui sommes nous? Présentation de Keyrus Keyrus : Expert en formations BI Nos propositions de formation 3 modes de formations Liste des

Plus en détail

BUSINESS INTELLIGENCE

BUSINESS INTELLIGENCE GUIDE COMPARATIF BUSINESS INTELLIGENCE www.viseo.com Table des matières Business Intelligence :... 2 Contexte et objectifs... 2 Une architecture spécifique... 2 Les outils de Business intelligence... 3

Plus en détail

Business Intelligence avec SQL Server 2014 Maîtrisez les concepts et réalisez un système décisionnel

Business Intelligence avec SQL Server 2014 Maîtrisez les concepts et réalisez un système décisionnel Avant-propos 1. À qui s'adresse ce livre? 9 2. Les pré-requis 10 3. Les objectifs du livre 11 Introduction 1. Présentation du décisionnel 13 1.1 La notion de décideur 14 1.2 Les facteurs d'amélioration

Plus en détail

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani Datawarehouse: Cubes OLAP Marlyse Dieungang Khaoula Ghilani Table des matières 1 Data Warehouse 3 1.1 Introduction............................ 3 1.1.1 Définition......................... 3 1.1.2 Architecture........................

Plus en détail

Domaines d intervention

Domaines d intervention MANAGEMENT INFORMATIQUE 1 PLACE DE L EGALITE 78280 GUYANCOURT TELEPHONE + 33 1 30 48 54 34 TELECOPIE + 33 1 30 48 54 34 INFOS mailto:contact@managementinformatique.com Société Présentation Société Notre

Plus en détail

Un datawarehouse est un entrepôt de données (une base de données) qui se caractérise par des données :

Un datawarehouse est un entrepôt de données (une base de données) qui se caractérise par des données : Page 1 of 6 Entrepôt de données Un article de Wikipédia, l'encyclopédie libre. L'entrepôt de données, ou datawarehouse, est un concept spécifique de l'informatique décisionnelle, issu du constat suivant

Plus en détail

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours Information du cours Informatique décisionnelle et data mining www.lia.univ-avignon.fr/chercheurs/torres/cours/dm Juan-Manuel Torres juan-manuel.torres@univ-avignon.fr LIA/Université d Avignon Cours/TP

Plus en détail

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation 2 Présentation Besoin: prise de décisions

Plus en détail

BI = Business Intelligence Master Data-Science

BI = Business Intelligence Master Data-Science BI = Business Intelligence Master Data-Science UPMC 25 janvier 2015 Organisation Horaire Cours : Lundi de 13h30 à 15h30 TP : Vendredi de 13h30 à 17h45 Intervenants : Divers industriels (en cours de construction)

Plus en détail

Entrepôt de données 1. Introduction

Entrepôt de données 1. Introduction Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de

Plus en détail

Entrepôt de Données. Jean-François Desnos. Jean-Francois.Desnos@grenet.fr ED JFD 1

Entrepôt de Données. Jean-François Desnos. Jean-Francois.Desnos@grenet.fr ED JFD 1 Entrepôt de Données Jean-François Desnos Jean-Francois.Desnos@grenet.fr ED JFD 1 Définition (Bill Inmon 1990) Un entrepôt de données (data warehouse) est une collection de données thématiques, intégrées,

Plus en détail

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles)

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles) SGBDR Systèmes de Gestion de Bases de Données (Relationnelles) Plan Approches Les tâches du SGBD Les transactions Approche 1 Systèmes traditionnels basés sur des fichiers Application 1 Gestion clients

Plus en détail

AXIAD Conseil pour décider en toute intelligence

AXIAD Conseil pour décider en toute intelligence AXIAD Conseil pour décider en toute intelligence Gestion de la Performance, Business Intelligence, Big Data Domaine d expertise «Business Intelligence» Un accompagnement adapté à votre métier dans toutes

Plus en détail

L information et la technologie de l informationl

L information et la technologie de l informationl L information et la technologie de l informationl CRM & informatique décisionnelled CRM CRM & informatique décisionnelle. d 1 2 3 Les Les fondements managériaux managériaux du du CRM. CRM. Les Les fondements

Plus en détail

Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc.

Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc. Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc.fr Plan Motivations Débouchés Formation UVs spécifiques UVs connexes Enseignants

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,

Plus en détail

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Les entrepôts de données

Les entrepôts de données Les entrepôts de données Lydie Soler Janvier 2008 U.F.R. d informatique Document diffusé sous licence Creative Commons by-nc-nd (http://creativecommons.org/licenses/by-nc-nd/2.0/fr/) 1 Plan Introduction

Plus en détail

La Business Intelligence pour les Institutions Financières. Jean-Michel JURBERT Resp Marketing Produit

La Business Intelligence pour les Institutions Financières. Jean-Michel JURBERT Resp Marketing Produit La Business Intelligence pour les Institutions Financières Jean-Michel JURBERT Resp Marketing Produit Agenda Enjeux des Projets Financiers Valeur de Business Objects Références Clients Slide 2 Des Projets

Plus en détail

HERMES SYSTEM et BEWISE souhaitent vous offrir les meilleures compétences.

HERMES SYSTEM et BEWISE souhaitent vous offrir les meilleures compétences. Notre alliance, Votre atout. HERMES SYSTEM et BEWISE souhaitent vous offrir les meilleures compétences. C est de cette philosophie qu est née notre partenariat avec la société toulousaine (31) Bewise,

Plus en détail

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2014

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2014 CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE Edition 2014 SOMMAIRE Présentation de Keyrus Les modes de formation Liste des formations, Plan de cours & Pré-requis IBM Cognos QlikView Microsoft Talend Oracle

Plus en détail

IBM System i. DB2 Web Query for System i : le successeur de Query/400? Oui, mais bien plus!!!

IBM System i. DB2 Web Query for System i : le successeur de Query/400? Oui, mais bien plus!!! DB2 Web Query for System i : le successeur de Query/400? Oui, mais bien plus!!! Stéphane MICHAUX Philippe BOURGEOIS Christian GRIERE stephane_michaux@ibi.com pbourgeois@fr.ibm.com cgriere@fr.ibm.com Les

Plus en détail

TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 30/11/2011 Plan du TP 2 Rappel sur la chaine de BI Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Rappel sur la chaine de

Plus en détail

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement Introduction Phases du projet Les principales phases du projet sont les suivantes : La mise à disposition des sources Des fichiers Excel sont utilisés pour récolter nos informations L extraction des données

Plus en détail

MyReport Le reporting sous excel. La solution de business intelligence pour la PME

MyReport Le reporting sous excel. La solution de business intelligence pour la PME La solution de business intelligence pour la PME Qu est que la business intelligence La Business intelligence, dénommée aussi par simplification "Informatique Décisionnelle", est vraisemblablement l'unique

Plus en détail

Petit Déjeuner Pépinière du Logiciel Libre. 25 juin 2008

Petit Déjeuner Pépinière du Logiciel Libre. 25 juin 2008 Petit Déjeuner Pépinière du Logiciel Libre 25 juin 2008 1 / 37 Agenda Définition & Principes Les différents outils & composants Les Solutions intégrés Open-Source Vos Questions 2 / 37 Agenda Définition

Plus en détail

Les Entrepôts de Données

Les Entrepôts de Données Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations

Plus en détail

Didier MOUNIEN Samantha MOINEAUX

Didier MOUNIEN Samantha MOINEAUX Didier MOUNIEN Samantha MOINEAUX 08/01/2008 1 Généralisation des ERP ERP génère une importante masse de données Comment mesurer l impact réel d une décision? Comment choisir entre plusieurs décisions?

Plus en détail

2 Serveurs OLAP et introduction au Data Mining

2 Serveurs OLAP et introduction au Data Mining 2-1 2 Serveurs OLAP et introduction au Data Mining 2-2 Création et consultation des cubes en mode client-serveur Serveur OLAP Clients OLAP Clients OLAP 2-3 Intérêt Systèmes serveurs et clients Fonctionnalité

Plus en détail

Business Intelligence Reporting

Business Intelligence Reporting Maître de stage : Claude Bordanave Sirinya ON-AT Année 2011 / 2012 Master1 Informatique Université Bordeaux 1 SOMMAIRE REMERCIEMENTS...4 INTRODUCTION...4 I) PRESENTATION DE L ENTREPRISE... 5 1) Raison

Plus en détail

Evry - M2 MIAGE Entrepôt de données

Evry - M2 MIAGE Entrepôt de données Evry - M2 MIAGE Entrepôt de données Introduction D. Ploix - M2 Miage - EDD - Introduction 1 Plan Positionnement du BI dans l entreprise Déclinaison fonctionnelle du décisionnel dans l entreprise Intégration

Plus en détail

Business Intelligence avec SQL Server 2012

Business Intelligence avec SQL Server 2012 Editions ENI Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel Collection Solutions Informatiques Table des matières Les éléments à télécharger sont disponibles

Plus en détail

Département Génie Informatique

Département Génie Informatique Département Génie Informatique BD51 : Business Intelligence & Data Warehouse Projet Rédacteur : Christian FISCHER Automne 2011 Sujet : Développer un système décisionnel pour la gestion des ventes par magasin

Plus en détail

Les Entrepôts de Données. (Data Warehouses)

Les Entrepôts de Données. (Data Warehouses) Les Entrepôts de Données (Data Warehouses) Pr. Omar Boussaid Département d'informatique et de Sta5s5que Université Lyon2 - France Les Entrepôts de Données 1. Généralités, sur le décisionnel 2. L'entreposage

Plus en détail

Business Intelligence

Business Intelligence avec Excel, Power BI et Office 365 Téléchargement www.editions-eni.fr.fr Jean-Pierre GIRARDOT Table des matières 1 Avant-propos A. À qui s adresse ce livre?..................................................

Plus en détail

MANAGEMENT DES SERVICES INFORMATIQUES

MANAGEMENT DES SERVICES INFORMATIQUES MANAGEMENT DES SERVICES SOMMAIRE SAP BO DASHBOARDS 4.0 3 Nouveautés SAP BO Web Intelligence BI 4 3 SAP BO Web Intelligence 4 Niveau 1 4 SAP BO Web Intelligence 4 Niveau 2 4 SAP BO Web Intelligence XI3

Plus en détail

L INTÉGRATION ENTRE BUSINESS INTELLIGENCE ET WEB ANALYTICS

L INTÉGRATION ENTRE BUSINESS INTELLIGENCE ET WEB ANALYTICS L INTÉGRATION ENTRE BUSINESS INTELLIGENCE ET WEB ANALYTICS Julien Coquet Consultant Sénior Hub Sales Philippe Nieuwbourg Analyste Decideo.fr Notre partenaire : Naissance du terme «Business Intelligence»

Plus en détail

Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification

Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification Séminaire national Alger 12 Mars 2008 «L Entreprise algérienne face au défi du numérique : État et perspectives» CRM et ERP Impact(s) sur l entreprise en tant qu outils de gestion Historique des ERP Le

Plus en détail

IMPLEMENTATION D UN SYSTEME D INFORMATION DECISIONNEL

IMPLEMENTATION D UN SYSTEME D INFORMATION DECISIONNEL IMPLEMENTATION D UN SYSTEME D INFORMATION DECISIONNEL Proposé par BUMA Feinance Master en management e projets informatiques Consultant en système écisionnel I. COMPREHENSION DU CONTEXTE «L informatique

Plus en détail

Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé

Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé ESNE Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé I.Cirillo 2010-2011 Introduction Le laboratoire de base de données de l ESNE a mis en place, il y a quelques années,

Plus en détail

BI Open Source Octobre 2012. Alioune Dia, Consultant BI alioune.dia@openbridge.fr

BI Open Source Octobre 2012. Alioune Dia, Consultant BI alioune.dia@openbridge.fr BI Open Source Octobre 2012 Alioune Dia, Consultant BI alioune.dia@openbridge.fr 1 Le groupe, en bref 2004 Date de création +7M * Chiffre d affaires 2012 +80 Collaborateurs au 06/2011 35% Croissance chiffre

Plus en détail

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Plan Objectifs Débouchés Formation UVs spécifiques UVs connexes Enseignants et partenaires Structure générale des études à l UTC Règlement

Plus en détail

Conseil et Ingénierie des Systèmes d Information d Entreprise

Conseil et Ingénierie des Systèmes d Information d Entreprise Conseil et Ingénierie des Systèmes d Information d Entreprise Le Groupe Khiplus SAS KHIPLUS Management Société holding animatrice du groupe SAS KHIPLUS Advance Conseil et ingénierie de Systèmes d Information

Plus en détail

Technologie data distribution Cas d usage. www.gamma-soft.com

Technologie data distribution Cas d usage. www.gamma-soft.com Technologie data distribution Cas d usage www.gamma-soft.com Applications stratégiques (ETL, EAI, extranet) Il s agit d une entreprise industrielle, leader français dans son domaine. Cette entreprise est

Plus en détail

_L'engagement qui fait la différence BUSINESS INTELLIGENCE DATA WAREHOUSING PILOTAGE DE LA PERFORMANCE

_L'engagement qui fait la différence BUSINESS INTELLIGENCE DATA WAREHOUSING PILOTAGE DE LA PERFORMANCE BUSINESS INTELLIGENCE DATA WAREHOUSING PILOTAGE DE LA PERFORMANCE _L'engagement qui fait la différence AMOA Stratégique Intégration Offshoring Learning A Propos de DECIZIA Decizia offre ses services aux

Plus en détail

CATALOGUE DE FORMATIONS SAP BUSINESS OBJECTS. Edition 2012

CATALOGUE DE FORMATIONS SAP BUSINESS OBJECTS. Edition 2012 CATALOGUE DE FORMATIONS SAP BUSINESS OBJECTS Edition 2012 SOMMAIRE Qui sommes nous? Présentation de Keyrus Notre partenariat SAP Business Objects Nos engagements Formations Nos propositions de formation

Plus en détail

Méthodologie de conceptualisation BI

Méthodologie de conceptualisation BI Méthodologie de conceptualisation BI Business Intelligence (BI) La Business intelligence est un outil décisionnel incontournable à la gestion stratégique et quotidienne des entités. Il fournit de l information

Plus en détail

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation Base de données S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Présentation du module Contenu général Notion de bases de données Fondements / Conception Utilisation :

Plus en détail

Solutions IT pour libérer le potentiel de votre Business

Solutions IT pour libérer le potentiel de votre Business Solutions IT pour libérer le potentiel de votre Business Stop Guessing Décisionnel & Pilotage Get the Attitude Gestion de la Relation Client Go Paperless Gestion Electronique de Documents DECIZIA, Déjà

Plus en détail

Introduction à l Informatique Décisionnelle - Business Intelligence (7)

Introduction à l Informatique Décisionnelle - Business Intelligence (7) Introduction à l Informatique Décisionnelle - Business Intelligence (7) Bernard ESPINASSE Professeur à Aix-Marseille Université (AMU) Ecole Polytechnique Universitaire de Marseille Septembre 2013 Emergence

Plus en détail

Offre Décisionnel - 2014/2015 - CONSEIL, SOLUTIONS DE TRANSFORMATION ET SERVICES IT. Offre Décisionnel

Offre Décisionnel - 2014/2015 - CONSEIL, SOLUTIONS DE TRANSFORMATION ET SERVICES IT. Offre Décisionnel Offre Décisionnel - 2014/2015-1/39 SODIFRANCE INSTITUT VOTRE PARTENAIRE FORMATION Sodifrance Institut, filiale du Groupe Informatique Sodifrance, est spécialisé dans les formations techniques. Grâce aux

Plus en détail

Workflow/DataWarehouse/DataMining. 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1

Workflow/DataWarehouse/DataMining. 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1 Workflow/DataWarehouse/DataMining 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1 plan Workflow DataWarehouse Aide à la décision DataMinig Conclusion 14-09-98 LORIA

Plus en détail

6 MARS : EVOLUTION DES ACTEURS, DES OUTILS ET DES MÉTIERS DE LA BI

6 MARS : EVOLUTION DES ACTEURS, DES OUTILS ET DES MÉTIERS DE LA BI Journée Toulousaine du Décisionnel - édition 2009-6 MARS : EVOLUTION DES ACTEURS, DES OUTILS ET DES MÉTIERS DE LA BI 1 Journée Toulousaine du Décisionnel- édition 2009-6 mars : Evolution des acteurs, des

Plus en détail

L informatique décisionnelle

L informatique décisionnelle L informatique décisionnelle Thèse Professionnelle. Ce document est une thèse professionnelle dont la problématique est : Quelles sont les bonnes pratiques dans la mise en place d une solution décisionnelle

Plus en détail

Curriculum Vitae. GISBERT Aurélien Ingénieur Informatique INSA Senior Business & Data Analyst Business Intelligence 11 ans d expérience

Curriculum Vitae. GISBERT Aurélien Ingénieur Informatique INSA Senior Business & Data Analyst Business Intelligence 11 ans d expérience GISBERT Aurélien Ingénieur Informatique INSA Senior Business & Data Analyst Business Intelligence 11 ans d expérience RENSEIGNEMENTS GENERAUX FORMATION Nationalité : Française Permis : G Frontalier Date

Plus en détail

PROGICIELS DE GESTION INTÉGRÉS SOLUTIONS DE REPORTING

PROGICIELS DE GESTION INTÉGRÉS SOLUTIONS DE REPORTING PROGICIELS DE GESTION INTÉGRÉS SOLUTIONS DE REPORTING 8 rue de Prague 75012 Paris contact@predixia.com DES SOLUTIONS SIMPLES ET INNOVANTES POUR LA GESTION ET LE PILOTAGE DE VOTRE ACTIVITÉ CONCEVOIR TRÉSORERIE

Plus en détail

Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016

Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016 Entrepôts de données NEGRE Elsa Université Paris-Dauphine 2015-2016 Contexte et problématique Le processus de prise de décision L entrepôt de données Définition Différence avec un SGBD Caractéristiques

Plus en détail

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise.

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Solutions PME VIPDev Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Cette offre est basée sur la mise à disposition de l ensemble de nos compétences techniques et créatives au service

Plus en détail

Théories de la Business Intelligence

Théories de la Business Intelligence 25 Chapitre 2 Théories de la Business Intelligence 1. Architectures des systèmes décisionnels Théories de la Business Intelligence Depuis les premières requêtes sur les sources de données OLTP consolidées

Plus en détail

Gestion des Donnés Métier de Référence

Gestion des Donnés Métier de Référence Gestion des Donnés Métier de Référence (Master Data Management - MDM) Michel Bruley Directeur Marketing Teradata Western Europe Définitions Données Métier de Référence elles permettent d identifier et

Plus en détail

Catalogue Formations 2014. Offre «DECISIONNEL»

Catalogue Formations 2014. Offre «DECISIONNEL» Catalogue Formations 2014 Offre «DECISIONNEL» SODIFRANCE INSTITUT VOTRE PARTENAIRE FORMATION SODIFRANCE Institut, filiale du Groupe Informatique SODIFRANCE, est spécialisé dans les formations techniques.

Plus en détail

Intégration de systèmes client - serveur Des approches client-serveur à l urbanisation Quelques transparents introductifs

Intégration de systèmes client - serveur Des approches client-serveur à l urbanisation Quelques transparents introductifs Intégration de systèmes client - serveur Des approches client-serveur à l urbanisation Quelques transparents introductifs Jean-Pierre Meinadier Professeur du CNAM, meinadier@cnam.fr Révolution CS : l utilisateur

Plus en détail

Le Data Warehouse. Fait Vente. temps produit promotion. magasin. revenu ... Produit réf. libellé volume catégorie poids. Temps jour semaine date ...

Le Data Warehouse. Fait Vente. temps produit promotion. magasin. revenu ... Produit réf. libellé volume catégorie poids. Temps jour semaine date ... Le Data Warehouse Temps jour semaine date magasin nom ville m 2 région manager... Fait Vente temps produit promotion magasin revenu... Produit réf. libellé volume catégorie poids... Promo nom budget média

Plus en détail

CATALOGUE DE FORMATIONS SAP BUSINESS OBJECTS. Edition 2013

CATALOGUE DE FORMATIONS SAP BUSINESS OBJECTS. Edition 2013 CATALOGUE DE FORMATIONS SAP BUSINESS OBJECTS Edition 2013 SOMMAIRE AGENDA Qui sommes nous? Présentation de Keyrus Notre partenariat SAP Business Objects Nos engagements Formations Nos propositions de formation

Plus en détail

Ici, le titre de la. Tableaux de bords de conférence

Ici, le titre de la. Tableaux de bords de conférence Ici, le titre de la Tableaux de bords de conférence pilotage d entreprise, indicateurs de performance reporting et BI quels outils seront incontournables à l horizon 2010? Les intervenants Editeur/Intégrateur

Plus en détail

SAP BusinessObjects Web Intelligence (WebI) BI 4

SAP BusinessObjects Web Intelligence (WebI) BI 4 Présentation de la Business Intelligence 1. Outils de Business Intelligence 15 2. Historique des logiciels décisionnels 16 3. La suite de logiciels SAP BusinessObjects Business Intelligence Platform 18

Plus en détail

ANTICIPEZ ET PRENEZ LES BONNES DÉCISIONS POUR VOTRE ENTREPRISE

ANTICIPEZ ET PRENEZ LES BONNES DÉCISIONS POUR VOTRE ENTREPRISE ANTICIPEZ ET PRENEZ LES BONNES DÉCISIONS POUR VOTRE ENTREPRISE Editeur - Intégrateur de solutions de gestion Notre stratégie d édition et d intégration : un niveau élevé de Recherche & Développement au

Plus en détail

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Data warehouse (DW) Le Data warehouse (entrepôt de données) est une collection de données orientées sujet, intégrées, non volatiles

Plus en détail

ANNEXE 2 DESCRIPTION DU CONTENU DE L OFFRE BUSINESS INFORMATION AND ANALYSIS PACKAGE

ANNEXE 2 DESCRIPTION DU CONTENU DE L OFFRE BUSINESS INFORMATION AND ANALYSIS PACKAGE ANNEXE 2 DESCRIPTION DU CONTENU DE L OFFRE BUSINESS INFORMATION AND ANALYSIS PACKAGE (BUSINESS INTELLIGENCE PACKAGE) Ce document propose une présentation générale des fonctions de Business Intelligence

Plus en détail

Programme scientifique Majeure ARCHITECTURE DES SYSTEMES D INFORMATION. Mentions Ingénierie des Systèmes d Information Business Intelligence

Programme scientifique Majeure ARCHITECTURE DES SYSTEMES D INFORMATION. Mentions Ingénierie des Systèmes d Information Business Intelligence É C O L E D I N G É N I E U R D E S T E C H N O L O G I E S D E L I N F O R M A T I O N E T D E L A C O M M U N I C A T I O N Programme scientifique Majeure ARCHITECTURE DES SYSTEMES D INFORMATION Mentions

Plus en détail

Notre Catalogue des Formations IT / 2015

Notre Catalogue des Formations IT / 2015 Notre Catalogue des Formations IT / 2015 Id Intitulé Durée Gestion de projets et méthodes I1101 I1102 I1103 I1104 I1105 I1106 I1107 I1108 I1109 I1110 I1111 I1112 I1113 I1114 I1115 I1116 I1117 I1118 I1119

Plus en détail

Introduction : présentation de la Business Intelligence

Introduction : présentation de la Business Intelligence Les exemples cités tout au long de cet ouvrage sont téléchargeables à l'adresse suivante : http://www.editions-eni.fr Saisissez la référence ENI de l'ouvrage RI3WXIBUSO dans la zone de recherche et validez.

Plus en détail

ATELIER. QUASAR OBILOG BI (Décisionnel) ATELIER > PROJET BI

ATELIER. QUASAR OBILOG BI (Décisionnel) ATELIER > PROJET BI ATELIER QUASAR OBILOG BI (Décisionnel) Sommaire Définitions Objectifs du projet Notre démarche Notre partenaire (TIBCO) Présentation indicateurs Production et Qualité Création indicateur (TRS) Disponibilité

Plus en détail

SQL Server 2014. SQL Server 2014. Implémentation d une solution. Implémentation d une solution de Business Intelligence.

SQL Server 2014. SQL Server 2014. Implémentation d une solution. Implémentation d une solution de Business Intelligence. Ce livre sur s adresse à toutes les personnes désireuses de mettre en œuvre les techniques de l informatique décisionnelle (ou BI, Business Intelligence) à l aide des composants de la suite Microsoft :

Plus en détail

BI : GESTION GESTION, PRODUCTION STRATEGIE DE BI. Un livre blanc d Hyperion

BI : GESTION GESTION, PRODUCTION STRATEGIE DE BI. Un livre blanc d Hyperion Un livre blanc d Hyperion LES TROIS PILIERS DE LA REUSSITE D UNE D STRATEGIE DE BI ET DIFFUSION DE L INFORMATIONL BI : GESTION GESTION, PRODUCTION Si votre société est comme la plupart des moyennes et

Plus en détail

Infrastructure informatique virtuelle dans un environnement hospitalier.

Infrastructure informatique virtuelle dans un environnement hospitalier. Benjamin FORTE Université de la Méditerranée INSTITUT UNIVERSITAIRE DE TECHNOLOGIE Réseaux et Télécommunications ANNEXES 1 & 2 Les logiciels métiers du Centre Hospitalier d Aubagne. Création d un master

Plus en détail

Objectif. Participant. Prérequis. Oracle BI Suite EE 10g R3 - Développer des référentiels. 5 Jours [35 Heures]

Objectif. Participant. Prérequis. Oracle BI Suite EE 10g R3 - Développer des référentiels. 5 Jours [35 Heures] Objectif Utiliser les techniques de gestion de la mise en cache pour contrôler et améliorer les performances des requêtes Définir des mesures simples et des mesures calculées pour une table de faits Créer

Plus en détail

Solutions SAP Crystal

Solutions SAP Crystal Solutions SAP Crystal Solutions SAP Crystal NOUVEAUTÉS 2011 SOMMAIRE ^ 4 Nouveautés de SAP Crystal Server 2011 4 Exploration contextuelle des données 5 Expérience utilisateur attrayante 5 Panneau d interrogation

Plus en détail

Accélérateur de votre RÉUSSITE

Accélérateur de votre RÉUSSITE Accélérateur de votre RÉUSSITE SAP Business Objects est une suite décisionnelle unifiée et complète qui connecte ses utilisateurs en éliminant les difficultés d accès à l information. Mobile Devices Browsers

Plus en détail

ETL Extract - Transform - Load

ETL Extract - Transform - Load ETL Extract - Transform - Load Concept général d analyse en ligne (rappels) Rémy Choquet - Université Lyon 2 - Master 2 IIDEE - 2006-2007 Plan Définitions La place d OLAP dans une entreprise OLAP versus

Plus en détail

Business Intelligence

Business Intelligence Pour aller plus loin Tous les détails de l offre Microsoft Business Intelligence : www.microsoft.com/france/decisionnel Contact Microsoft France : msfrance@microsoft.com Business Intelligence Votre Infrastructure

Plus en détail

Business Intelligence avec SQL Server 2012

Business Intelligence avec SQL Server 2012 Editions ENI Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel Collection Solutions Informatiques Extrait Alimenter l'entrepôt de données avec SSIS Business

Plus en détail

BUSINESS INTELLIGENCE

BUSINESS INTELLIGENCE BUSINESS SYSTÈME D INFORMATION DÉCISIONNEL CENTRE DE RESSOURCES INFORMATIQUES PÔLE INFORMATIQUE DE GESTION & SI DÉFINITION L INFORMATIQUE DÉCISIONNELLE DÉSIGNE L ENSEMBLE DES TECHNOLOGIES UTILISÉES DANS

Plus en détail

Bases de Données OLAP

Bases de Données OLAP Bases de Données OLAP Hiver 2013/2014 Melanie Herschel melanie.herschel@lri.fr Université Paris Sud, LRI Chapitre 1 Introduction Détails administratifs Entrepôts de Données Perspective sur le semestre

Plus en détail

L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence

L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence L offre décisionnel IBM Patrick COOLS Spécialiste Business Intelligence Le marché du Business Intelligence L enjeux actuel des entreprises : devenir plus «agiles» Elargir les marchés tout en maintenant

Plus en détail