Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques"

Transcription

1 Chapitre Rappels sur les suites arithmétiques et les suites géométriques Nous allos ici rappeler les différets résultats sur les suites de ombres réels qui sot des suites arithmétiques ou des suites géométriques Le chapitre 9 du cours de termiale S est cosacré à l étude des ombres complexes Toutes les formules doées das ce chapitre pour des suites réelles serot valables plus gééralemet pour des suites de ombres complexes I Suites arithmétiques ) Défiitio des suites arithmétiques Défiitio Soit(u ) N ue suite de ombre réels La suite(u ) N est arithmétique si et seulemet si il existe u réel r tel que pour tout etier aturel, u + u +r Le ombre r s appelle alors la raiso de la suite arithmétique(u ) N Remarque Le ombre r qui apparaît das la défiitio précédete e déped pas de ou ecore r est costat quad varie O peut doer ue défiitio équivalete : Défiitio Soit(u ) N ue suite de ombre réels La suite(u ) N est arithmétique si et seulemet si la suite(u + u ) N est costate Commetaire La valeur de cette costate est alors la raiso de la suite arithmétique(u ) N C est la défiitio qui le plus souvet est utilisée das la pratique pour motrer qu ue suite est arithmétique ou est pas arithmétique O ote à ce sujet que : la suite(u ) N est est pas arithmétique si et seulemet si la suite(u + u ) N est pas costate Exercice Soit(u ) N la suite défiie par : pour tout etier aturel, u +7 Motrer que la suite(u ) N est arithmétique Préciser sa raiso et so premier terme Solutio Soit u etier aturel aturel u + u ( (+)+7) ( +7)( +7) ( +7) Aisi, pour tout etier aturel, u + u O e déduit que la suite(u ) N est ue suite arithmétique de raiso So premier terme est u 0 7 Commetaire Pour motrer que la suite(u + u ) N est costate, o peut motrer que u + u e déped pas de C est ce que ous avos fait Mais suivat le type d exercice, o peut aussi chercher à motrer que pour tout etier aturel, u + u + u + u Exercice Soit(u ) N la suite défiie par : pour tout etier aturel, u + Motrer que la suite(u ) N est pas arithmétique Solutio u 0, u et u 7 puis u u 0 et u u 7 5 E particulier, u u u u 0 Aisi, la suite(u + u ) N est pas costate et doc la suite(u ) N est pas arithmétique Commetaire La suite(u + u ) N est costate si et seulemet si pour tout etier aturel, u + u + u + u Doc, la suite(u + u ) N est pas costate si et seulemet si il existe au mois u etier aturel tel que u + u + u + u Das l exercice précédet, pour motrer que la suite (u + u ) N est pas costate, ous avos fouri explicitemet u rag tel que u + u + u + u, à savoir 0 Jea-Louis Rouget, 05 Tous droits réservés http ://wwwmaths-fracefr

2 ) Calcul de u e foctio Ue suite arithmétique est défiie par ue relatio de récurrece : pour tout etier aturel, u + u +r Aisi, pour calculer u 7, o doit coaître u 6 et pour coaître u 6, o doit coaître u 5 U problème reste doc o résolu : exprimer directemet u e foctio de Ce problème est résolu par le théorème suivat Théorème Soit(u ) N ue suite arithmétique de raio r ) Pour tout etier aturel, u u 0 +r ) Pour tous etiers aturels et p, u u p +( p)r Démostratio Soit(u ) N ue suite arithmétique de raio r ) Motros par récurrece que pour tout etier aturel, u u 0 +r u 0 +0 ru 0 et doc la formule est vraie quad 0 Soit 0 Supposos que u u 0 +r et motros que u + u 0 +(+)r u + u +r(par défiitio d ue suite arithmétique de raisor) u 0 +r+r(par hypothèse de récurrece) u 0 +(+)r O a motré par récurrece que pour tout etier aturel, u u 0 +r ) Soiet et p deux etiers aturels u u 0 +r et u p u 0 +pr Doc u u p (u 0 +r) (u 0 +pr)r pr( p)r, puis u u p +( p)r Remarque Das le théorème précédet, l ordre das lequel sot les etiers et p est pas précisé et o a tout à fait le droit d appliquer la formule du ) quad p> Par exemple, o a u 9 u 6 +(9 6)ru 6 +r mais o a aussi u 7 u +(7 )ru 4r Théorème Soit(u ) N ue suite de ombres réels La suite(u ) N est arithmétique si et seulemet si il existe deux réels a et b tels que pour tout etier aturel, u a+b Démostratio Si la suite(u ) N est arithmétique, d après le théorème, pour tout etier aturel, u r+u 0 Par suite, si o pose ar et bu 0, alors pour tout etier aturel, u a+b Réciproquemet, soiet a et b deux ombres réels puis(u ) N la suite défiie par : pour tout etier aturel, u a+b Motros que la suite(u ) N est arithmétique Soit u etier aturel u + u (a(+)+b) (a+b)a+a+b a ba Aisi, la suite(u + u ) N est costate et doc la suite(u ) N est arithmétique Remarque La suite des etiers aturels (pour tout N, u ) est ue suite arithmétique C est la suite arithmétique de premier terme 0 et de raiso C est «la plus simple» de toutes les suites arithmétiques La suite des etiers pairs (pour tout N, u ) ou la suite des etiers impairs (pour tout N, u +) sot aussi des suites arithmétiques (de raiso ) Exercice Soit(u ) N ue suite arithmétique O sait que u 5 et u 9 4 Détermier u e foctio de Solutio Notos r la raiso de la suite arithmétique(u ) N O sait que u 9 u 5 +(9 5)ru 5 +4r et doc 4 +4r puis 4r 4+ ou ecore 4r ou efi r O sait alors que pour tout etier aturel, Jea-Louis Rouget, 05 Tous droits réservés http ://wwwmaths-fracefr

3 u u 5 +( 5)r ( 5) +5 + Pour tout etier aturel, u + Exercice 4 Soit(u ) N la suite défiie par : u 0 et pour tout etier aturel, u + 4 ) Motrer par récurrece que pour tout etier aturel, u existe et u < ) Pour tout etier aturel, o pose v u a) Motrer que la suite(v )) N est arithmétique Préciser so premier terme et sa raiso b) Détermier v e foctio de c) E déduire u e foctio de Solutio ) Motros par récurrece que pour tout etier aturel, u existe et u < Puisque u 0, la propriété est vraie quad 0 Soit 0 Supposos que u existe et u < et motros que u + existe et u + < Tout d abord, par hypothèse de récurrece, u < et e particulier u 4 O e déduit que u + existe Esuite, u < u 4< < < (car la foctio x est strictemet décroissate sur]0,+ [) x 4 4 < 4 4 u +< u + <(car 4 ) O a motré par récurrece que pour tout etier aturel, u existe et u < ) a) D après la questio ), pour tout etier aturel, u < et e particulier, pour tout etier aturel, u O e déduit que la suite(v ) N est bie défiie Soit u etier aturel puis v + u (4 u ) 4 8+u u 4 (u ) 4 ( ) 4 ( ) v + v (u ) u (u ) (u ) (u ) u (u ) (u ) (u ) Aisi, pour tout etier aturel, v + v O e déduit que la suite(v ) N est arithmétique de raiso So premier terme est v 0 u 0 b) La suite(v ) N est arithmétique de premier terme v 0 et de raiso r O sait que pour tout etier aturel, v v 0 +r +( ) + Jea-Louis Rouget, 05 Tous droits réservés http ://wwwmaths-fracefr

4 c) Soit u etier aturel u v u + u + u + u (+) + + u +4 u Pour tout etier aturel, u + + ) Ue propriété des suites arithmétiques Théorème Soit(u ) N ue suite arithmétique ) Pour tout etier aturel o ul, u +u + u ou ecore u u +u + ) Plus gééralemet, pour tout etier aturel p et tout etier aturel p, u p +u +p u ou ecore u u p+u +p Démostratio O ote r la raiso de la suite arithmétique(u ) N Soit p u etier aturel puis soit u etier aturel supérieur ou égal à p D après le théorème, Doc u +p u +((+p) )ru +pr et u p u +(( p) )ru pr u p +u +p u pr+u +pru, et doc aussi u u p+u +p Ceci démotre ) Le résultat de ) s obtiet alors e appliquat le résultat de ) avec p Commetaire Le théorème sigifie que chaque terme u d ue suite arithmétique est la moyee arithmétique du terme qui le précède et du terme qui le suit ou plus gééralemet de deux termes dot les uméros sot symétriques par rapport à Par exemple, les premiers termes de la suite(u ) N telle que pour tout etier aturel, u, sot Le ombre 5 est précédé du ombre et est suivi du ombre 8 La moyee arithmétique de et 8 est effectivemet De même, deux rags avat, o trouve 7 et deux rags après, o trouve 9 et la moyee arithmétique de 7 et 9 est effectivemet Exercice 5 a, b, c, d et e sot ciq etiers qui, das cet ordre, sot ciq termes cosécutifs d ue suite arithmétique O sait que a est le plus petit des ciq etiers O sait que la somme de ces ciq ombres est égale à 40 et le produit de ces ciq ombres est égal à 0 Détermier les ciq ombres a, b, c, d et e Solutio Notos r la raiso de la suite arithmétique O sait que a+b+c+d+e40 ou ecore(a+e)+(b+d)+c40 Mais a+ec et b+dc O obtiet c+c+c40 ou ecore 5c40 ou efi c Le produit a b c d e est ecore égal à(c r)(c r)c(c+r)(c+r) Par suite, abcde0 (8 r)(8 r)8(8+r)(8+r)0 (8 r)(8+r)(8 r)(8+r) 0 8 (64 r )(64 4r )540 4(64 r )(6 r )540 (64 r )(6 r ) (64 r )(6 r ) r 64r +r 4 85 r 4 80r +690 (r ) 80r +690 Jea-Louis Rouget, 05 Tous droits réservés 4 http ://wwwmaths-fracefr

5 Le ombre r est doc solutio de l équatio(e) : x 80x+690 Résolvos cette équatio So discrimiat est L équatio(e) admet deux solutios : x et x Esuite, le ombrer est solutio de(e) si et seulemet sir 9our 7 ce qui équivaut àr {,, 7, 7} Puisque ac r est le plus petit des ciq ombres, o a r 0 et doc r {, 7} Puisque a est u etier, il e reste plus que r et doc a, b5, c8, d et e4 Réciproquemet, ces ciq ombres sot ciq etiers qui sot ciq termes cosécutifs d ue suite arithmétique de raiso Leur somme est égale à 40 et leur produit à 0 a, b5, c8, d et e4 4) Sommes de termes cosécutifs d ue suite arithmétique Théorème Pour tout etier aturel o ul, +++ (+) Remarque La otatio +++0 est claire Elle sigifie Mais la otatio est pas claire pour les premières valeurs de e particulier quad ou ou +++ est la somme des premiers etiers à partir de Doc quad, cette somme est la somme des trois premiers etiers à partir de, somme qui commece à et fiit à c est-à-dire ++, quad, cette somme est la somme des deux premiers etiers à partir de qui commece à fiit à c est-à-dire + et quad, la «somme» e comporte qu u seul terme et est doc égale à Ue meilleure otatio pour désiger la somme des premiers etiers est mais est sas ambiguïté quad ou ou k k Cette otatio est plus abstraite Démostratio Motros par récurrece que pour tout etier aturel o ul, +++ (+) Puisque (+) Soit Supposos que +++ (+), la formule est vraie quad ++++(+)(+++)+(+) (+) (+)+(+) et motros que ++++(+) (+)((+)+) +( + )(par hypothèse de récurrece) (+)((+)+) (+)(+) O a motré par récurrece que pour tout etier aturel o ul, +++ (+) Démostratio Soit u etier aturel o ul +++ est le ombre de poits du triagle : Classiquemet, u triagle est ue moitié de rectagle : Jea-Louis Rouget, 05 Tous droits réservés 5 http ://wwwmaths-fracefr

6 + + Le ombre total de poits du rectagle est (+) et doc le ombre de poits du triagle est (+) Démostratio Soit u etier aturel o ul Posos S +++ O calcule S +S e regroupat itelligemmet les termes : O obtiet aisi k + + ( ) + + ( ) k (+) + (+) + + (+) + + (+) + (+) S S +S (+++)+(+++)(+)+(+ )+(+ )++(+) (+)+(+)++(+) (+) termes et doc ecore ue fois S (+) Commetaire Puisque les ombres (+), N, sot les ombres de poits à l itérieur d u triagle, ces ombres s appellet ombres triagulaires (de même que les ombres, N, s appellet les ombres carrés) Commetaire La démostratio est e fait la même démostratio que la démostratio Vous pouvez visualiser sur le dessi de la démostratio le fait que les sommes +, +( ), +( ), soiet toutes égales à + Théorème 4 Soiet et p deux etiers aturels tels que p Il y a p+ etiers aturels compris etre p et, p et compris Démostratio Soiet et p deux etiers aturels tels que p Il y a etiers k tels que k Comme +, le résultat est vrai quad p Puisqu il y a etiers etiers k tels que k, il y a + etiers k tels que 0 k Comme 0++, le résultat est égalemet vrai quad p0 Supposos maiteat p Il y a p etiers k tels que k p et etiers k tels que k Il reste doc (p ) p+ etiers k tels que p k p p p (p ) Par exemple, etre les etiers 7 et 4, (7 et 4 compris), il y a etiers Théorème 5 Soit(u k ) k N ue suite arithmétique Soiet et p deux etiers aturels tels que p (premier terme+derier terme) (ombre de termes) u k u p ++u kp (u p+u )( p+) Démostratio O gééralise la démostratio du théorème O calcule (u p ++u )(u p ++u )+(u ++u p ) Pour tout etier k tel que 0 k p, u p+k +u k u p +kr+u kru p +u Jea-Louis Rouget, 05 Tous droits réservés 6 http ://wwwmaths-fracefr

7 Aisi, toutes les sommes u p +u, u p+ +u,, u +u p sot égales u p +u premier terme+derier terme u p + u p+ + + u p+k + + u + u u + u + + u k + + u p+ + u p (u p +u ) + (u p +u ) + + (u p +u ) + + (u p +u ) + (u p +u ) O obtiet doc (u p ++u )(premier terme+derier terme) (ombre de termes) ce qui démotre le résultat Exercice 6 Calculer les sommes suivates : ) ) ) 67 k k k k0 (k )++5++ ( N ) (k+), ( N) Solutio ) (+67) (67 +) ) Soit N (+ ) ) Soit N k0 (k+) ( 0++ +) (+) 00 5 (+4)(+) 750 II Suites géométriques ) Défiitio des suites géométriques Défiitio Soit(u ) N ue suite de ombre réels La suite(u ) N est géométrique si et seulemet si il existe u réel q tel que pour tout etier aturel, u + q u Le ombre q s appelle alors la raiso de la suite géométrique(u ) N Remarque Le ombre q qui apparaît das la défiitio précédete e déped pas de ou ecore q est costat quad varie Commetaire A partir de cette défiitio, o voit qu ue partie du cours sur les suites géométriques sera obteu à partir du cours sur les suites arithmétiques e remplaçat mécaiquemet le symbole+par le symbole Dès la défiitio suivate, les choses s avèret plus compliquées que prévues La différece u + u utile pour caractériser les suites arithmétiques va se trasformer e le quotiet u + u das le cours sur les suites géométriques et il est pas questio que le terme u soit égal à 0 Il existe que deux possibilités pour que l u des termes de la suite géométrique(u ) N soit ul La première possibilité est que u 0 0 Das ce cas, tous les termes de la suite(u ) N sot uls La deuxième possibilité est que q0 Das ce cas, tous les termes de la suite(u ) N sot uls à partir du rag Si u 0 0 et q 0, il est clair par récurrece que tous les termes de la suite(u ) N sot o uls Défiitio 4 Soit(u ) N ue suite de ombre réels e s aulat pas La suite(u ) N est géométrique si et seulemet si la suite( u + est costate u ) N Commetaire La valeur de cette costate est alors la raiso de la suite géométrique(u ) N O ote que la suite(u ) N est pas géométrique si et seulemet si la suite( u + est pas costate u ) N Exercice 7 Soit(u ) N la suite défiie par : pour tout etier aturel, u Motrer que la suite(u ) N est géométrique Préciser sa raiso et so premier terme Jea-Louis Rouget, 05 Tous droits réservés 7 http ://wwwmaths-fracefr

8 Solutio Soit u etier aturel aturel u 0 puis u + u Aisi, pour tout etier aturel, u + u O e déduit que la suite(u ) N est ue suite géométrique de raiso So premier terme est u 0 Exercice 8 Soit(u ) N la suite défiie par : pour tout etier aturel, u 7+6 Motrer que la suite(u ) N est pas géométrique Solutio u 0 6, u et u 4 puis u u 0 6 et u 4 E particulier, u u u u u 0 Aisi, la suite( u + est pas costate et doc la suite(u ) u N est pas géométrique ) N Commetaire La suite( u + est costate si et seulemet si pour tout etier aturel, u + u + u ) N u + u Doc, la suite( u + est pas costate si et seulemet si il existe au mois u etier aturel tel que u ) N u + u + Das l exercice précédet, pour motrer que la suite( u + est pas costate, ous avos u + u u ) N fouri explicitemet u rag tel que u + u +, à savoir 0 u + u ) Calcul de u e foctio de Théorème 6 Soit(u ) N ue suite géométrique de raiso q 0 ) Pour tout etier aturel, u u 0 q ) Pour tous etiers aturels et p, u u p q p Démostratio Soit(u ) N ue suite arithmétique de raiso o ulle q ) Motros par récurrece que pour tout etier aturel, u u 0 q Puisque q 0, q 0 puis u 0 q 0 u 0 et doc la formule est vraie quad 0 Soit 0 Supposos que u u 0 q et motros que u + u 0 q + u + u q(par défiitio d ue suite géométrique de raisoq) u 0 q q(par hypothèse de récurrece) u 0 q + O a motré par récurrece que pour tout etier aturel, u u 0 q ) Soiet et p deux etiers aturels u u 0 q et u p u 0 q p Si u 0 0, o a u u p 0 puis u u p q p Si u 0 0, alors u p 0 (car q 0) et o peut écrire puis u u p q p u u 0 q u p u 0 q p q q pq p, Jea-Louis Rouget, 05 Tous droits réservés 8 http ://wwwmaths-fracefr

9 Remarque Das le théorème 6, o a supposé q 0 Ce est pas uiquemet pour pouvoir écrire q C est aussi à cause de la otatio q qui a aucu ses quad q0 et 0 (0 0 e veut rie dire) Remarque Das le théorème précédet, l ordre das lequel sot les etiers et p est pas précisé et o a tout à fait le droit d appliquer la formule du ) quad p> (et q 0) Par exemple, o a u 9 u 6 q 9 6 u 6 q mais o a aussi u 7 u q 7 u q 4 Exercice 9 Soit(u ) N la suite défiie par : u 0 et pour tout etier aturel, u + u 4 Pour tout etier aturel, o pose v u ) Motrer que la suite(v ) N est géométrique Préciser so premier terme et sa raiso ) Détermier v e foctio de ) E déduire u e foctio de Solutio ) Soit u etier aturel v + u + u 4 u 6(u )v Aisi, pour tout etier aturel, v + v O e déduit que la suite(v ) N est géométrique de raiso So premier terme est v 0 u 0 ) La suite(v ) N est géométrique de premier terme v 0 et de raiso q O sait que pour tout etier aturel, ) Soit u etier aturel u v v v 0 q + Pour tout etier aturel, u + + Exercice 0 Soit(u ) N la suite défiie par : u 0 et pour tout etier aturel, u + ) Motrer par récurrece que pour tout etier aturel, u existe et <u < ) Pour tout etier aturel, o pose v u u a) Motrer que la suite(v ) N est géométrique Préciser so premier terme et sa raiso b) Détermier v e foctio de c) E déduire u e foctio de Solutio ) Motros par récurrece que pour tout etier aturel, u existe et <u < Puisque u 0, la propriété est vraie quad 0 Soit 0 Supposos que u existe et <u < et motros que u + existe et <u + < Tout d abord, par hypothèse de récurrece, u < et e particulier u 4 O e déduit que 0 puis que u + existe Esuite, et u + u + () 4+u u, () ( 4+u ) (u ) Jea-Louis Rouget, 05 Tous droits réservés 9 http ://wwwmaths-fracefr

10 Par hypothèse de récurrece, <u < Par suite, u >0 et >0 puis u >0 Ceci fourit u + >0 ou ecore u + > De même, u <0 et >0 puis (u ) <0 Ceci fourit u + <0 ou ecore u + < O a motré par récurrece que pour tout etier aturel, u existe et <u < ) a) D après la questio ), pour tout etier aturel, <u < et e particulier, pour tout etier aturel, u O e déduit que la suite(v ) N est bie défiie Soit u etier aturel v + u + u + ( ) ( ) u (u ) u (u ) u u v 4+u ( 4+u ) u (u ) Aisi, pour tout etier aturel, v + v O e déduit que la suite(v ) N est géométrique de raiso So premier terme est v 0 u 0 u 0 b) La suite(v ) N est géométrique de premier terme v 0 et de raiso q O sait que pour tout etier aturel, c) Soit u etier aturel v v 0 q ( ) u u v u v (u ) u u v v u u v v u ( v ) v D après la questio précédete, v E particulier, v ou ecore v 0 puis u ( v ) v u v + u v + u u + + u + + Pour tout etier aturel, u Commetaire Das la questio )a), ous avos calculé v + et ous sommes parveu à v C est bie meilleur que d avoir calculé le rapport v + qui obligeait à écrire des superpositios de fractios pour rie : v u + v + u + et qui accessoiremet ous obligeait à vérifier d abord que v v u 0 u Théorème 7 Soit(u ) N ue suite de ombres réels e s aulat pas La suite(u ) N est géométrique si et seulemet si il existe deux réels o uls a et q tels que pour tout etier aturel, u a q Démostratio Si la suite(u ) N est géométrique, d après le théorème 6, pour tout etier aturel, u u 0 q Par suite, si o pose au 0, alors pour tout etier aturel, Jea-Louis Rouget, 05 Tous droits réservés 0 http ://wwwmaths-fracefr

11 u a q De plus, puisque la suite(u ) N e s aule pas, les ombres a et q sot o uls Réciproquemet, soiet a et q deux réels o uls puis(u ) N la suite défiie par : pour tout etier aturel, u a q Motros que la suite(u ) N est géométrique Soit u etier aturel u + u a q+ a q q+ q Aisi, la suite( u + est costate et doc la suite(u ) u N est géométrique ) N ) Ue propriété des suites géométriques Théorème 8 Soit(u ) N ue suite géométrique ) Pour tout etier aturel o ul, u u + u Si de plus, la suite(u ) N est positive, o e déduit que u u u + ) Plus gééralemet, pour tout etier aturel o ul p et tout etier aturel p, u p u +p u Si de plus, la suite(u ) N est positive, o e déduit que u u p u +p Démostratio Notos q la raiso de la suite géométrique(u ) N ) Soit u etier aturel o ul Si q0, alors u u q0 et u + u q0 Doc u u + 0u Si q 0, u u + u q qu u ) Soiet p u etier aturel o ul puis u etier aturel supérieur ou égal à p Si q0, alors u u p q p 0 (car p ) et u +p u q p 0 Doc u p u +p 0u Si q 0, u p u +p u q p qp u u Exercice a, b et c sot trois etiers qui, das cet ordre, sot trois termes cosécutifs d ue suite géométrique O sait que a est le plus petit des trois etiers O sait que la somme de ces trois ombres est égale à 9 et le produit de ces trois ombres est égal à 79 Détermier les trois ombres a, b et c Solutio Notos q la raiso de la suite géométrique O sait que a b c79 ou ecore(a c) b79 Comme a cb, o obtiet b b79 ou ecore b 79 ou efi b9 La somme a+b+c est ecore égale à b q +b+bq ou ecore 9( ++q) Par suite, q a+b+c9 9( q ++q)9 (q++ 9 ) q q++ q q +q+q q 0q+0 Le discrimiat de l équatio(e) : x 0x+0 est ( 0) Jea-Louis Rouget, 05 Tous droits réservés http ://wwwmaths-fracefr

12 L équatio(e) admet deux solutios : x et x Si q, o obtiet a b q 97 et cqb 9 et si q, o obtiet a b q 9 et cqb 97 Comme a est le plus petit des trois etiers, o a écessairemet a, b9 et c7 Réciproquemet, ces trois ombres sot trois etiers qui sot trois termes cosécutifs d ue suite géométrique de raiso, a état le plus petit des trois etiers Leur somme est égale à 9 et leur produit à 79 a, b9 et c7 Commetaire Le résultat du théorème 8 ous suggérait de predre le ombre b comme référece e écrivat : a b q et cb q et o pas le ombre a e écrivat : ba q et ca q 4) Sommes de termes cosécutifs d ue suite géométrique Théorème 9 Pour tout ombre réel q et tout etier aturel o ul, q + siq +q++q q + siq q + q + siq siq Démostratio Soit u etier aturel Posos S+q++q Si q, S termes + termes Si q, S+q++q et qsq++q +q + et doc S qs q + S + q + + q qs q + + q + q + S qs q + Aisi, S( q) q + et fialemet S q+ car q Efi, e multipliat le umérateur et le q déomiateur de la fractio par, o obtiet aussi S q+ q Commetaire O a doé deux écritures de la somme quad q O préfèrera l écriture q+ q q est u réel strictemet plus grad que comme q ou q,7 quad Théorème 0 Soit(u ) N ue suite géométrique de raiso q Soiet et p deux etiers aturels tels que p de termes qombre u k u p ++u premier terme u p q p+ kp q q Démostratio Soiet et p deux etiers aturels tels que p Puisque q, u p ++u u p +u p q++u p q p (d après le théorème 6) u p (+q++q p ) u p q p+ q (d après le théorème 9) Exercice Calculer les sommes suivates : 0 ) k ) k0 k Solutio ) 5 k, ( N ) 0 k0 k Jea-Louis Rouget, 05 Tous droits réservés http ://wwwmaths-fracefr

13 ) Soit N Pour tout etier aturel o ul k, k 5 5 ( k ) k 5 k5 ( ) Doc 5 ( ( ) ) 5 ( ( ) ) Exercice (u ) N est la suite de l exercice 9, page 9 Calculer u 0 +u ++u, ( N) Solutio Das l exercice 9, o a obteu : pour tout etier aturel, u + + Soit u etier aturel u 0 +u ++u ( +)+( +)++( + +) ( ) termes + ++ (+ ) Jea-Louis Rouget, 05 Tous droits réservés http ://wwwmaths-fracefr

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

Solutions particulières d une équation différentielle...

Solutions particulières d une équation différentielle... Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3 1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil. Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das

Plus en détail

Des résultats d irrationalité pour deux fonctions particulières

Des résultats d irrationalité pour deux fonctions particulières Collect. Math. 5, 00, 0 c 00 Uiversitat de Barceloa Des résultats d irratioalité pour deux foctios particulières Richard Choulet 7, Rue du 4 Août, 40 Aveay, Frace E-mail: richardchoulet@waadoo.fr Received

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

Statistique descriptive bidimensionnelle

Statistique descriptive bidimensionnelle 1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation 1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus

Plus en détail

Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015

Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015 Uiversité de Bordeaux - Master MIMSE - 2ème aée Scorig Marie Chavet http://www.math.u-bordeaux.fr/ machave/ 2014-2015 1 Itroductio L idée géérale est d affecter ue ote (u score) global à u idividu à partir

Plus en détail

STATISTIQUE AVANCÉE : MÉTHODES

STATISTIQUE AVANCÉE : MÉTHODES STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................

Plus en détail

4 Approximation des fonctions

4 Approximation des fonctions 4 Approximatio des foctios Ue foctio f arbitraire défiie sur u itervalle I et à valeur das IR peut être représetée par so graphe, ou de maière équivalete par la doée de l esemble de ses valeurs f(t) pour

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

Probabilités et statistique pour le CAPES

Probabilités et statistique pour le CAPES Probabilités et statistique pour le CAPES Béatrice de Tilière Frédérique Petit 2 3 jui 205. Uiversité Pierre et Marie Curie 2. Uiversité Pierre et Marie Curie 2 Table des matières Modélisatio de phéomèes

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

Formation d un ester à partir d un acide et d un alcool

Formation d un ester à partir d un acide et d un alcool CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester

Plus en détail

DETERMINANTS. a b et a'

DETERMINANTS. a b et a' 2003 - Gérard Lavau - http://perso.waadoo.fr/lavau/idex.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitemet. Toute diffusio à titre oéreux ou utilisatio

Plus en détail

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe 1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios

Plus en détail

Exercices de mathématiques

Exercices de mathématiques MP MP* Thierry DugarDi Marc rezzouk Exercices de mathématiques Cetrale-Supélec, Mies-Pots, École Polytechique et ENS Coceptio et créatio de couverture : Atelier 3+ Duod, 205 5 rue Laromiguière, 75005 Paris

Plus en détail

Cours de Statistiques inférentielles

Cours de Statistiques inférentielles Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios

Plus en détail

Introduction : Mesures et espaces de probabilités

Introduction : Mesures et espaces de probabilités Itroductio : Mesures et espaces de probabilités Référeces : Poly cédric Berardi et Jea Michel Morel. J.-F. Le Gall, Itégratio, Probabilités et Processus Aléatoire J.-Y. Ouvrard, Probabilités 2, maîtrise-agrégatio,

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars

Plus en détail

Résolution numérique des équations aux dérivées partielles (PDE)

Résolution numérique des équations aux dérivées partielles (PDE) Résolutio umérique des équatios au dérivées partielles (PDE Sébastie Charoz & Adria Daerr iversité Paris 7 Deis Diderot CEA Saclay Référeces : Numerical Recipes i Fortra, Press. Et al. Cambridge iversity

Plus en détail

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C. 16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme

Plus en détail

55 - EXEMPLES D UTILISATION DU TABLEUR.

55 - EXEMPLES D UTILISATION DU TABLEUR. 55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique

Plus en détail

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 )

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) RAIRO Operatios Research RAIRO Oper. Res. 34 (2000) 99-129 TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) Commuiqué par Berard LEMAIRE Résumé. L étude

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

Chapitre 3 : Transistor bipolaire à jonction

Chapitre 3 : Transistor bipolaire à jonction Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats

Plus en détail

Module 3 : Inversion de matrices

Module 3 : Inversion de matrices Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

Gérer les applications

Gérer les applications Gérer les applicatios E parcourat les rayos du Widows Phoe Store, vous serez e mesure de compléter les services de base de votre smartphoe à travers plus de 10 000 applicatios. Gratuites ou payates, ces

Plus en détail

Séries numériques. Chap. 02 : cours complet.

Séries numériques. Chap. 02 : cours complet. Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm

Plus en détail

RECHERCHE DE CLIENTS simplifiée

RECHERCHE DE CLIENTS simplifiée RECHERCHE DE CLIENTS simplifiée Nous ous occupos d accroître votre clietèle avec le compte Avatage d etreprise Pour trouver des cliets potetiels grâce à u simple compte bacaire Vous cherchez des idées

Plus en détail

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales PROMENADE ALÉATOIRE : Chaîes de Markov et martigales Thierry Bodieau École Polytechique Paris Départemet de Mathématiques Appliquées thierry.bodieau@polytechique.edu Novembre 2013 2 Table des matières

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS

PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS ET APPROXIMATIONS DIOPHANTIENNES J. L. NICOLAS Cet article expose sup 3 e quelques iter'f~reces etre les pr'obl~res dloptimisatio e hombres etiers et la th~or-ie

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S Exercices. Rappels et exercices de base 3.. QCM (P. Egel) 3.. QCM, Atilles 005 4. 3. QCM, Liba 009, 3 poits 4. 4. QCM, C. étragers 007. 5. QCM, Frace 007 5 6. 6. QCM, N. Calédoie 007 7. 7. QCM

Plus en détail

Télé OPTIK. Plus spectaculaire que jamais.

Télé OPTIK. Plus spectaculaire que jamais. Télé OPTIK Plus spectaculaire que jamais. Vivez toute la puissace de la télévisio sur IP grâce au réseau OPTIK 1 de TELUS et découvrez-e l extraordiaire potetiel. Télé OPTIK MC vous doe la parfaite maîtrise

Plus en détail

Sommaire Chapitre 1 - L interface de Windows 7 9

Sommaire Chapitre 1 - L interface de Windows 7 9 Sommaire Chapitre 1 - L iterface de Widows 7 9 1.1. Utiliser le meu Démarrer et la barre des tâches de Widows 7...11 Démarrer et arrêter des programmes...15 Épigler u programme das la barre des tâches...18

Plus en détail

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions.

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions. 3 Réseau Le réseau costitue u aspect essetiel d u eviroemet virtuel ESX. Il est doc importat de compredre la techologie, y compris ses différets composats et leur coopératio. Das ce chapitre, ous étudios

Plus en détail

Principes et Méthodes Statistiques

Principes et Méthodes Statistiques Esimag - 2ème aée 0 1 2 3 4 5 6 7 0 5 10 15 x y Pricipes et Méthodes Statistiques Notes de cours Olivier Gaudoi 2 Table des matières 1 Itroductio 7 1.1 Défiitio et domaies d applicatio de la statistique............

Plus en détail

RESOLUTION PAR LA METHODE DE NORTON, MILLMAN ET KENNELY

RESOLUTION PAR LA METHODE DE NORTON, MILLMAN ET KENNELY LO 4 : SOLUTO P L MTHO OTO, MLLM T KLY SOLUTO P L MTHO OTO, MLLM T KLY MTHO OTO. toductio Le théoème de oto va ous pemette de éduie u cicuit complexe e gééateu de couat éel. e gééateu possède ue souce

Plus en détail

2 ième partie : MATHÉMATIQUES FINANCIÈRES

2 ième partie : MATHÉMATIQUES FINANCIÈRES 2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul

Plus en détail

UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. remy.garandel@utbm.fr ) page 1

UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. remy.garandel@utbm.fr ) page 1 UV SQ 0 Probabilités Statistiques UV SQ 0 Autome 006 Resposable d Rémy Garadel ( m.-el. remy.garadel@utbm.fr ) page SQ-0 Probabilités - Statistiques Bibliographie: Titre Auteur(s) Editios Localisatio Niveau

Plus en détail

POLITIQUE ECONOMIQUE ET DEVELOPPEMENT

POLITIQUE ECONOMIQUE ET DEVELOPPEMENT POLTQU ONOMQU T DVLOPPMNT TRUTUR DU MAR NATONAL DU AF-AAO T PR AU PRODUTUR MALAN Beïla Beoit osultat PD N 06/008 ellule d Aalyse de Politiques coomiques du R Aée de pulicatio : Avril 009 Résumé e papier

Plus en détail

Cours 5 : ESTIMATION PONCTUELLE

Cours 5 : ESTIMATION PONCTUELLE Cours 5 : ESTIMATION PONCTUELLE A- Gééralités B- Précisio d u estimateur C- Exhaustivité D- iformatio E-estimateur sas biais de variace miimale, estimateur efficace F- Quelques méthode s d estimatio A-

Plus en détail

Petit recueil d'énigmes

Petit recueil d'énigmes Petit recueil d'éigmes Patxi RITTER (*) facile (**) mois facile (***) pas facile (****) il faudra de l aide Solutios e rouge. 1) Cryptarithme (**) Trouvez la valeur de A, B et C satisfaisat l équatio suivate.

Plus en détail

Compte Sélect Banque Manuvie Guide du débutant

Compte Sélect Banque Manuvie Guide du débutant GUIDE DU DÉBUTANT Compte Sélect Baque Mauvie Guide du débutat Besoi d aide? Preez quelques miutes pour lire attetivemet votre Guide du cliet. Le préset Guide du débutat vous facilitera l utilisatio de

Plus en détail

Contribution à la théorie des entiers friables

Contribution à la théorie des entiers friables UFR STMIA École Doctorale IAE + M Uiversité Heri Poicaré - Nacy I DFD Mathématiques THÈSE présetée pour l obtetio du titre de Docteur de l Uiversité Heri Poicaré, Nacy-I e Mathématiques par Bruo MARTIN

Plus en détail

n tr tr tr tr tr tr tr tr tr tr n tr tr tr Nom:... Prénom :...

n tr tr tr tr tr tr tr tr tr tr n tr tr tr Nom:... Prénom :... Nom:... Préom :... Chaque répose peut valoir : c) 2 poits si le choix est totalemet exact + poit si le choix est partiellemet exact + 0 poit si le choix est erroé + -i poit si le choix est u coeses Ue

Plus en détail

SYSTEME FERME EN REACTION CHIMIQUE

SYSTEME FERME EN REACTION CHIMIQUE SYSTEME FERME EN REACTION CHIMIQUE I. DESCRIPTION D UN SYSTEME. Les dfférets types de système (ouvert, fermé, solé U système S est formé d u esemble de corps séparés du reste de l uvers (appelé mleu extéreur

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

One Office Voice Pack Vos appels fixes et mobiles en un seul pack

One Office Voice Pack Vos appels fixes et mobiles en un seul pack Uique! Exteded Fleet Appels illimités vers les uméros Mobistar et les liges fixes! Oe Office Voice Pack Vos appels fixes et mobiles e u seul pack Commuiquez et travaillez e toute liberté Mobistar offre

Plus en détail

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME Uiversité Victor Segale Bordeaux Istitut de Saté Publique, d Épidémiologie et de Développemet (ISPED) Campus Numérique SEME MODULE Pricipaux outils e statistique Versio du 8 août 008 Écrit par : Relu par

Plus en détail

La tarification hospitalière : de l enveloppe globale à la concurrence par comparaison

La tarification hospitalière : de l enveloppe globale à la concurrence par comparaison ANNALES D ÉCONOMIE ET DE STATISTIQUE. N 58 2000 La tarificatio hospitalière : de l eveloppe globale à la cocurrece par comparaiso Michel MOUGEOT * RÉSUMÉ. Cet article cosidère différetes politiques de

Plus en détail

Dares Analyses. Plus d un tiers des CDI sont rompus avant un an

Dares Analyses. Plus d un tiers des CDI sont rompus avant un an Dares Aalyses javier 2015 N 005 publicatio de la directio de l'aimatio de la recherche, des études et des statistiques Plus d u tiers des CDI sot rompus avat u a Le cotrat de travail à durée idétermiée

Plus en détail

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets

Plus en détail

Coefficient de partage

Coefficient de partage Coeffcet de partage E chme aque, la sythèse d'u composé se fat e pluseurs étapes : la réacto propremet dte (utlsat par exemple u motage à reflux quad la réacto dot être actvée thermquemet), les extractos

Plus en détail

Université Pierre et Marie Curie. Biostatistique PACES - UE4 2013-2014

Université Pierre et Marie Curie. Biostatistique PACES - UE4 2013-2014 Uiversité Pierre et Marie Curie Biostatistique PACES - UE4 2013-2014 Resposables : F. Carrat et A. Mallet Auteurs : F. Carrat, A. Mallet, V. Morice Mise à jour : 21 octobre 2013 Relecture : V. Morice,

Plus en détail

Développement en Série de Fourier

Développement en Série de Fourier F-IRIS-5.ex Développeme e Série de Fourier Développer e série de Fourier les focios de période T défiies aisi : a b { f impaire T = f = si ] ; { f paire T = f = si ; ] Faire das chaque cas ue représeaio

Plus en détail

Initiation à l analyse factorielle des correspondances

Initiation à l analyse factorielle des correspondances Fiche TD avec le logiciel : tdr620b Iitiatio à l aalyse factorielle des correspodaces A.B. Dufour & M. Royer & J.R. Lobry Das cette fiche, o étudie l Aalyse Factorielle des Correspodaces. Cette techique

Plus en détail

UNIVERSITÉ DE SFAX École Supérieure de Commerce

UNIVERSITÉ DE SFAX École Supérieure de Commerce UNIVERSITÉ DE SFAX École Supérieure de Commerce Aée Uiversitaire 2003 / 2004 Auditoire : Troisième Aée Études Supérieures Commerciales & Scieces Comptables DÉCISIONS FINANCIÈRES Note de cours N 3 Première

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1 Aalyse des doées Statistiques appliquées à la gestio Cours d aalyse de doés Master F. SEYTE : Maître de coféreces HDR e scieces écoomiques Uiversité de Motpellier I M. TERRAZA : Professeur de scieces écoomiques

Plus en détail

Guide des logiciels de l ordinateur HP Media Center

Guide des logiciels de l ordinateur HP Media Center Guide des logiciels de l ordiateur HP Media Ceter Les garaties des produits et services HP sot exclusivemet présetées das les déclaratios expresses de garatie accompagat ces produits et services. Aucu

Plus en détail

Mobile Business. Communiquez efficacement avec vos relations commerciales 09/2012

Mobile Business. Communiquez efficacement avec vos relations commerciales 09/2012 Mobile Busiess Commuiquez efficacemet avec vos relatios commerciales 9040412 09/2012 U choix capital pour mes affaires Pour gérer efficacemet ses affaires, il y a pas de secret : il faut savoir predre

Plus en détail

Sommes de signaux : Décomposition de Fourier Spectre ondes stationnaires et résonance

Sommes de signaux : Décomposition de Fourier Spectre ondes stationnaires et résonance Sommes de sigaux : Décompositio de Fourier Spectre odes statioaires et résoace Das le cours précédet, o a étudié la propagatio des odes moochromatiques mais celles-ci e peuvet pas porter d iformatio ;

Plus en détail

MESURE DE L'INFORMATION

MESURE DE L'INFORMATION MESURE DE L'INFORMATION Marc URO TABLE DES MATIÈRES INTRODUCTION... 3 INCERTITUDE D'UN ÉVÉNEMENT (OU SELF-INFORMATION)... 7 INFORMATION MUTUELLE DE DEUX ÉVÉNEMENTS... 9 ENTROPIE D'UNE VARIABLE ALÉATOIRE

Plus en détail

?,i- ' ^/mmmmmm. CACU ^..""'V ii\teimmies EîiiEsmmii ''?A y? K 1^ 1 - r Par le Moyede Formules Algébriques ) v-^' ET A 'AIDE DES OGARITHMES.../v:?i.'?Xi:: F, X, BURQUE, Ptr. Professeur de MatJu'matiques,

Plus en détail