Ecole Centrale d Electronique VA «Réseaux haut débit et multimédia» Novembre 2009

Dimension: px
Commencer à balayer dès la page:

Download "Ecole Centrale d Electronique VA «Réseaux haut débit et multimédia» Novembre 2009"

Transcription

1 Ecole Centrale d Electronique VA «Réseaux haut débit et multimédia» Novembre Les fibres optiques : caractéristiques et fabrication 2 Les composants optoélectroniques 3 Les amplificateurs optiques 4 Les systèmes multiplexés en longueur d onde 5 Normalisation et perspectives d évolution Jean-Jacques BERNARD OPTEL Formation Tél. :

2 Ecole Centrale d Electronique VA «Réseaux haut débit et multimédia» Novembre 2009 Première partie Les fibres optiques : Propagation, caractéristiques et technologie de fabrication Jean-Jacques BERNARD OPTEL Formation Tél. :

3 Sommaire de la première partie Les fibres optiques Notions de base Qu est-ce que la lumière? Signal analogique et signal numérique Débit et quantité d informations transmises Pourquoi l optique? Intérêts des fibres comparées aux câbles de cuivre et aux liaisons satellites Les fibres optiques Structure d une fibre Fibres multimodes et fibres monomodes Principales caractéristiques Technologies de fabrication 3

4 Quelques notions de base LA LUMIERE La lumière est une onde électromagnétique Vitesse de propagation dans le vide c = km/s Vitesse de propagation dans un matériau transparent v = c / n (n = indice de réfraction du matériau) Verre : n ~ 1.5 soit v ~ km/s Fréquence et longueur d onde f = c / (f en Hz, c en m/s, en m) Gamme de longueurs d onde utilisées dans les fibres optiques entre 0.8 µm et 1.7 µm ---> Proche Infra-rouge Gamme de fréquences correspondantes f = 175 à 375 THz (1 THz = 1000 GHz) 4

5 Quelques unités très utiles Longueur d onde (représente la couleur émise) Exprimée soit en µm (micromètre ou micron) soit en nm (nanomètre) 1 µm = 1 millionième de mètre 1 nm = 1 milliardième de mètre 1 µm = 1000 nm Autre unité : le pm (picomètre) = 1 millième de nanomètre La longueur d onde de la lumière utilisée dans les fibres est de l ordre de 1 µm (ou 1000 nm) Fréquence Exprimée en hertz (Hz). 1 Hz = 1 cycle par seconde 1 khz (kilohertz) = 1000 Hz 1 MHz (mégahertz) = 1 million de Hz 1 GHz (gigahertz) = 1 milliard de Hz 1 THz (térahertz) = 1000 GHz = 1000 milliards de Hz La fréquence de la lumière utilisée dans les fibres est de l ordre de 200 THz (ou GHz) 5

6 Nature des signaux transmis Signal analogique Amplitude proportionnelle à la grandeur à transmettre Puissance optique Temps Signal numérique : suite aléatoire de «1» et de «0» (train binaire) Exemple : Généralisé à tous les systèmes de transmission Puissance optique Temps 6

7 Signal numérique Caractéristiques d un signal numérique Bit (Binary Digit) = élément d information (1 ou 0) Niveau «1» = puissance optique maximum Niveau «0» = puissance optique minimum Débit numérique = nombre de bits/seconde Exemples : Signal téléphonique = 64 kbit/s Signal son qualité CD = 800 kbit/s Multiplex haut débit = 2.5 Gbit/s Conforme aux normes internationales SDH (Synchronous Digital Hierarchy) -> Europe/Asie SONET (Synchronous Optical NETwork) -> USA 7

8 Numérisation d un signal analogique Exemple : signal téléphonique (4 khz) On prélève un échantillon toutes les 125 µs (8 khz) Son amplitude correspond à un niveau parmi 256 (nombre total de combinaisons d un octet = 8 bits) On lui affecte la valeur de l octet (8 bits) correspondant Débit numérique : 8 bits/125 µs = 64 kbit/s Echantillons niveaux (2 8 ) 1 octet (8 bits) par échantillon Signal analogique Signal numérique 8

9 Débits numériques définis par les normes SDH et SONET Ces normes définissent des structures de trames SDH : STM-N (Synchronous Transport Module) avec N = 1, 4, 16, 64 SONET : OC-n (Optical Carrier) avec n = 3, 12, 48, SDH SONET Débit (Mbit/s) Nombre de voies téléphoniques STM-1 OC STM-4 OC STM-16 OC (2.5 Gbit/s) STM-64 OC (10 Gbit/s) STM-256 OC (40 Gbit/s) STM-1024 OC (160 Gbit/s)

10 Pourquoi l optique (1)? Limitations des lignes téléphoniques actuelles en cuivre Limite en distance de transmission Quelques kilomètres entre répéteurs ou entre centraux Limite en capacité de transmission (débit) Limitation due aux liaisons cuivre et aux modems actuels : environ 30 kbit/s moyens avec modem V90 (56 kbit/s max) 1 à 20 Mbit/s avec lignes ADSL, dépendant de la distance au central local Conséquence sur la vitesse d accès au réseau Temps moyen de téléchargement d un film HD (1080p) de 3 Go : 100 heures (plus de 8 jours!) avec modem V90 5 heures à 20 minutes avec lignes ADSL de haut débit (1 Mbit/s à 20 Mbit/s) => Transmission en temps réel de films HD impossible avec la technologie cuivre 10

11 Pourquoi l optique (2)? Comparaison avec les liaisons satellites Les transmissions par satellite géostationnaire sont pénalisées par le temps de propagation aller-retour d environ 250 ms Très gênant pour les liaisons téléphoniques Sérieux handicap pour les transmissions de données bilatérales Les allocations de temps et de fréquence des satellites (domaine hyperfréquences) sont de plus en plus restreintes Durée de vie d une liaison satellite d environ 10 ans, contre plus de 25 ans pour un système à fibre optique (liaisons sous-marines) Les liaisons hyperfréquences sont perturbées par La pluie Le brouillard Les gradients de température 11

12 Pourquoi l optique (3)? Intérêts des fibres optiques Distance de transmission Quelques dizaines ou centaines de kilomètres entre répéteurs Capacité de transmission Infiniment plus élevée que les lignes ADSL actuelles en cuivre Jusqu à 10 Gbit/s par canal aujourd hui Jusqu à 100 canaux à 10 Gbit/s en multi-canaux WDM = 1 Tbit/s (terabit/s) La transmission de films HD en temps réel devient possible : 5 Mo par image 25 images/seconde Débit total = 125 Mo/s = 1 Gbit/s De plus, les algorithmes de compression permettent de réduire l encombrement des canaux (d un facteur 10 environ) 12

13 Quantité d informations transmises à haut débit Explosion de la demande en débit Croissance du trafic généré par Internet : > 100% par an Autres applications en très forte croissance: Téléconférence, transmission de données, vidéo numérique, téléphone mobile Exemples de quantités d information transmissibles en fonction du débit 1 Gbit/s : un millier de livres par seconde 1 Tbit/s (1000 Gbit/s) : 20 millions de communications téléphoniques bi-directionnelles ou encore 300 ans de journaux quotidiens (soit ) par seconde 13

14 Evolution du trafic Internet mondial 14

15 Evolution du nombre d abonnés FTTH dans le monde A partir de 2010, l évolution de la demande est supérieure à 100% par an FTTH = Fiber to the Home 15

16 Structure d une fibre Composée d une gaine optique en silice (SiO 2 ) et d un cœur en silice dopée Diamètre 125 µm = 1/8 mm Gaine optique Coeur La lumière se propage dans le cœur par réflexions multiples sur la gaine optique seulement si l indice de réfraction du cœur n c est supérieur à l indice de réfraction de la gaine n g ( n c > n g ) Deux grandes classes de fibres Fibres multimodes Fibres monomodes 16

17 Fibres multimodes (1) Cœur de fort diamètre (> 50 µm) Gaine optique Coeur temps temps Problème majeur : DISPERSION MODALE Les rayons ayant des angles d incidence différents ne se propagent pas à la même vitesse CONSEQUENCE : DISTORSION IMPORTANTE DES SIGNAUX 17

18 Fibres multimodes (2) ng Profil d indice nc n a a = Angle d acceptance ng coeur gaine optique ng nc Fibre à saut d indice (SI) Profil d indice nc n a coeur gaine optique ng nc Fibre à gradient d indice (GI) 18

19 Fibres multimodes (3) Ouverture numérique ON = sin a Fréquence normalisée V = 2a ON = 2a nc2 - ng 2 a = rayon du cœur Nombre de modes de propagation Fibre à saut d indice : NSI = V 2 2 Fibre à gradient d indice : NGI = V

20 Régimes monomode et multimode Une fibre est monomode lorsque V < 2,405 Longueur d onde de coupure : c = 2a 2,405 nc2 - ng 2 20

21 Fibres monomodes (SMF = singlemode fiber) Cœur de faible diamètre (8 à 10 µm) Gaine optique Coeur temps temps Avantage majeur : DISPERSION MODALE NULLE Tous les rayons se propagent à la même vitesse, quel que soit leur angle d incidence CONSEQUENCE : TRES FAIBLE DISTORSION DES SIGNAUX 21

22 Principales caractéristiques des fibres Atténuation linéique Caractérise le degré d affaiblissement de la puissance optique se propageant dans la fibre Exprimée en décibel par kilomètre (db/km) Puissance Puissance Pin Pout Signal injecté dans la fibre Temps Pin Pout Fibre de longueur L et d atténuation (db/km) Temps Signal sortant de la fibre 22

23 Atténuation d une fibre optique L atténuation s exprime en db (décibel) C est le rapport entre Pin et Pout exprimé en logarithme décimal (db) = 10 log (Pout/Pin) Pout/Pin Atténuation 1 0 db 1/2 3 db 1/4 6 db 1/10 10 db 1/ db Facteur 2 + ou - 3 db Facteur 10 + ou - 10 db 23

24 Atténuation spectrale d une fibre de silice (SiO 2 ) Atténuation linéique 1ère fenêtre Pic de vapeur d eau (OH) 2 db/km 2ème fenêtre Limite ultime (diffusion Rayleigh) 0.5 db/km 3ème fenêtre 0.2 db/km 0.85 µm 1.3 µm 1.55 µm Longueur d onde Fenêtres de transparence de la silice 24

25 Dispersion chromatique d une fibre de silice (1) La silice est un matériau dispersif L indice de réfraction n dépend de la longueur d onde Vitesse de propagation : v = c/n La vitesse de propagation v dépend donc aussi de Gaine optique 1 2 Coeur 1 2 temps temps

26 Dispersion chromatique d une fibre de silice (1) Contribution du matériau La silice est un matériau dispersif : n dépend de n dn t --- d 1 t 1 d 2 n Dc = L d L d 2 ps/(nm.km) Dispersion matériau 26

27 Dispersion chromatique d une fibre de silice (1) Contribution du guide et dispersion totale Imperfections opto-géométriques de la fibre => contribution du guide Dispersion matériau Dispersion chromatique (ps/nm.km) 0 0 Dispersion totale Dispersion guide 27

28 Dispersion chromatique propre d une fibre monomode (Dc) Dispersion propre Dc ps/nm.km 0 20 ps/nm.km Fibre monomode standard SMF = Single Mode Fiber Fibre à dispersion décalée DSF = Dispersion Shifted Fiber Longueur d onde 1310 nm 1550 nm 28

29 Dispersion chromatique d une fibre de silice (2) Elargissement temporel d une impulsion sous l effet de la dispersion chromatique Pour un écart entre longueurs d onde (en nm) Pour une longueur L de fibre (en km) L élargissement temporel t (en ps) est : t = Dc x x L ps ps/nm.km nm km où Dc est la dispersion chromatique propre de la fibre, exprimée en ps/(nm.km) 29

30 Dispersion chromatique totale d une liaison optique Elargissement temporel d une impulsion sous l effet de la dispersion chromatique de la fibre Puissance optique Source laser de largeur spectrale Récepteur optique Spectre de la source P opt Fibre de longueur L et de dispersion Dc P opt t = Dc x x L t ps ps/nm.km nm km Impulsion émise t Impulsion reçue t 30

31 Calcul de la distance maximum de transmission connaissant : La caractéristique de dispersion de la source (t/en ps/nm) Le type de fibre (SMF ou DSF) La longueur d onde de la lumière (1310 ou 1550 nm) L (km) = t/(ps/nm) Dc (ps/nm.km) Exemple : source de dispersion 1600 ps/nm avec fibre SMF à 1550 nm (Dc = 20 ps/nm.km) L = 1600 ps/nm 20 ps/nm.km = 80 km 31

32 Technologies de fabrication : la PREFORME Réactions chimiques utilisées pour réaliser la silice Oxydation en phase vapeur : Source de chaleur externe SiCl 4 + O > SiO Cl 2 Oxydation en phase vapeur : Hydrolyse à la flamme SiCl 4 + O > SiO Cl 2 2 H 2 + O > 2 H 2 O CH O > 2 H 2 O + CO 2 2 H 2 O + 2 Cl 2 < > 4 HCl + O 2 32

33 Technologies de fabrication : effet des dopants dans la silice Types de dopants utilisés pour le dopge de la silice (généralement le cœur) : GeO 2, P 2 O 3, B 2 O 3, F, TiO 2, Al 2 O 3 Effets des dopants sur les caractéristiques de la silice 33

34 Technologies de fabrication : effet des dopants dans la silice Effets des dopants sur l indice de réfraction de la silice 34

35 Technologies de fabrication : la PREFORME 35

36 Technologies de fabrication : le FIBRAGE 36

37 Exercice d application On constitue la liaison suivante : Fibre monomode standard utilisée à 1550 nm Atténuation linéique 0,4 db/km Longueur 40 km Dispersion chromatique propre 20 ps/nm.km Source utilisée : diode laser Puissance émise 10 mw Quelle est l atténuation totale de la fibre? Quel pourcentage de la puissance émise sort de la fibre? Quelle puissance optique sort de la fibre? Quelle dispersion la source doit-elle pouvoir supporter? 37

38 Les réponses!! Eléments de calculs Atténuation totale (db) : atténuation linéique (db/km) x longueur (km) 0,4 db/km x 40 km = 16 db Pourcentage de puissance sortant de la fibre : convertir l atténuation totale des db en % 16 db = 10 db + 6 db soit 1/10 x 1/4 = 0,1 x 0,25 = 0,025 = 2,5 % Puissance optique sortant de la fibre : pourcentage trouvé (%) x puissance émise (mw) 2,5 % x 10 mw = 0,25 mw = 250 µw Dispersion supportée par la source (ps/nm) : dispersion propre (ps/nm.km) x longueur de la fibre (km) 20 ps/nm.km x 40 km = 800 ps/nm 38

Physique Transmission et stockage de l information Chap.22

Physique Transmission et stockage de l information Chap.22 TS Thème : Agir Activités Physique Transmission et stockage de l information Chap.22 I. Transmission de l information 1. Procédés physique de transmission Une chaîne de transmission peut se schématiser

Plus en détail

Communications Numériques par Fibre Optique

Communications Numériques par Fibre Optique Université Mohammed Premier École Nationale des Sciences Appliquées d Oujda Cours de la 5 ème Année : Cycle d Ingénieurs Module 5M4 Version 1.0 (Septembre 2009) Communications Numériques par Fibre Optique

Plus en détail

Technologies des réseaux tout optique

Technologies des réseaux tout optique École Nationale des Sciences Appliquées Tétouan- Génie des Systèmes de Télécommunications et Réseaux GSTR3 Module: Complément Télécoms Technologies des réseaux tout optique Pr. Mounir Arioua m.arioua@ieee.org

Plus en détail

Fibres Optiques. 1 Introduction. 2 Propagation de la lumière dans une fibre

Fibres Optiques. 1 Introduction. 2 Propagation de la lumière dans une fibre Fibres Optiques 1 Introduction Les fibres optiques permettent la propagation guidée de la lumière sur plusieurs milliers de kilomètres. Elles permettent actuellement une transmission d information rapide

Plus en détail

Types de modulation analogique

Types de modulation analogique Modulation analogique et porteuse. Les capacités de transport de l information augmente avec la fréquence de la porteuse de l onde électromagnétique: Modulation: T B : période de la modulation. T porteuse

Plus en détail

Présenté par Abdallah NOURDINE. Pourquoi la fibre optique est-elle en plein essor dans le Sud-Est

Présenté par Abdallah NOURDINE. Pourquoi la fibre optique est-elle en plein essor dans le Sud-Est Présenté par Abdallah NOURDINE Pourquoi la fibre optique est-elle en plein essor dans le Sud-Est 1 Qu est ce que la fibre optique? 2 Les réseaux d interconnexion 2.1 Le FDDI 2.2 Le SDH 3 Le FTTH 3.1 Objectif

Plus en détail

Séminaire communications numériques

Séminaire communications numériques Séminaire communications numériques Caractéristiques du canal optique de transmission Michel Morvan Sommaire Introduction : la fibre et la transmission sur fibre Atténuation et dispersion chromatique La

Plus en détail

Transmission de données. A) Principaux éléments intervenant dans la transmission

Transmission de données. A) Principaux éléments intervenant dans la transmission Page 1 / 7 A) Principaux éléments intervenant dans la transmission A.1 Equipement voisins Ordinateur ou terminal Ordinateur ou terminal Canal de transmission ETTD ETTD ETTD : Equipement Terminal de Traitement

Plus en détail

Documents de Physique-Chimie M. MORIN

Documents de Physique-Chimie M. MORIN 1 Thème : Défis du XXI ème siècle. Partie : Transmettre et stocker de l information. Cours 33 : Procédés physiques de transmission et de stockage optique I. Transmission de l information. 1. Procédés physiques

Plus en détail

QUELLE FIBRE UTILISER EN FONCTION DE MES APPLICATIONS. OM1, OM2 ou OM3, QUELLE EST LA FIBRE QU IL ME FAUT POUR MON INSTALLATION?

QUELLE FIBRE UTILISER EN FONCTION DE MES APPLICATIONS. OM1, OM2 ou OM3, QUELLE EST LA FIBRE QU IL ME FAUT POUR MON INSTALLATION? QUELLE FIBRE UTILISER EN FONCTION DE MES APPLICATIONS LE MATCH µm VS 62,5 µm Dans les années 70, les premières fibres optiques de télécommunications avaient un coeur de µm : ces dernières ont été remplacées

Plus en détail

Chapitre 22 : (Cours) Numérisation, transmission, et stockage de l information

Chapitre 22 : (Cours) Numérisation, transmission, et stockage de l information Chapitre 22 : (Cours) Numérisation, transmission, et stockage de l information I. Nature du signal I.1. Définition Un signal est la représentation physique d une information (température, pression, absorbance,

Plus en détail

La fibre optique CNAM

La fibre optique CNAM La fibre optique - Qu est-ce qu une fibre optique? - Principes de base - Monomode / Multimode - Atténuation, fenêtres de propagation - Principales caractéristiques - Transmission sur fibre optique - Boucle

Plus en détail

Les telecommunications optiques

Les telecommunications optiques Les telecommunications optiques AESS en physique Bruneel Michaël Un peu d'histoire... 1790 : Claude Chappe invente le télégraphe optique. 1820 : Premiers essais de transmission de signaux sur support électrique.

Plus en détail

Table des matières. Câblage paire torsadée...2 Test de câble coaxial...3 Liaison fibre optique...4. Réseaux de terrain

Table des matières. Câblage paire torsadée...2 Test de câble coaxial...3 Liaison fibre optique...4. Réseaux de terrain Table des matières Câblage paire torsadée...2 Test de câble coaxial...3 Liaison fibre optique...4 Exercices II: couche physique 1/5 2008 tv Câblage paire torsadée Le câblage d une installation est réalisée

Plus en détail

Base Théorique. Transformation de Fourier : Réseaux Informatiques Alain Bouju (abouju@univ-lr.fr)

Base Théorique. Transformation de Fourier : Réseaux Informatiques Alain Bouju (abouju@univ-lr.fr) Base Théorique Transformation de Fourier : #" $! Nyquist Bande passante Limites Théoriques, sans bruit, niveaux, % &(' +* #" $! -, ) Shanon Bande passante, bruit blanc, &/.rapport signal sur bruit, % &('

Plus en détail

Les techniques de multiplexage

Les techniques de multiplexage Les techniques de multiplexage 1 Le multiplexage et démultiplexage En effet, à partir du moment où plusieurs utilisateurs se partagent un seul support de transmission, il est nécessaire de définir le principe

Plus en détail

RESEAUX. Supports de transmission Câble coaxial. Supports de transmission Fibre optique. Supports de transmission. Supports de transmission

RESEAUX. Supports de transmission Câble coaxial. Supports de transmission Fibre optique. Supports de transmission. Supports de transmission RESEAUX Câble coaxial Cœur de cuivre Isolant Tresse conductrice Gaine protectrice isolante Bonne résistance aux bruits Support encombrant. Télévision et téléphone. 1 Base 2 (1MHz sur 2m) 1 Base 5 (1MHz

Plus en détail

N.T. C Formatio ns 1

N.T. C Formatio ns 1 1 LA RETRODIFFUSION: La rétrodiffusion consiste à mesurer le temps mis par une impulsion lumineuse pour aller et revenir dans la liaison. L atténuation est le rapport entre la lumière envoyée et la lumière

Plus en détail

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION ) Caractéristiques techniques des supports. L infrastructure d un réseau, la qualité de service offerte,

Plus en détail

RESEAU NUMERIQUE SYNCHRONE

RESEAU NUMERIQUE SYNCHRONE POSITIONNEMENT DES OPERATEURS Internet FRAD X25 ATM 1 TELECOMS : QUELLES SOLUTIONS APPORTER? RESEAU ANALOGIQUE RESEAU NUMERIQUE PLESIOCHRONE RESEAU NUMERIQUE SYNCHRONE 2 1 COMPRENDRE L EXPLOITATION D UN

Plus en détail

Ludovic Grossard. Chapitre V Les bres optiques. Chapitre V. Département Mesures Physiques, IUT du Limousin Université de Limoges

Ludovic Grossard. Chapitre V Les bres optiques. Chapitre V. Département Mesures Physiques, IUT du Limousin Université de Limoges Chapitre V Les bres optiques Ludovic Grossard Département Mesures Physiques, IUT du Limousin Université de Limoges 1 Structure d'une bre 2 Prol d'indice 3 Principe de guidage 4 Caractéristiques d'une bre

Plus en détail

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd UE 503 L3 MIAGE Initiation Réseau et Programmation Web La couche physique A. Belaïd abelaid@loria.fr http://www.loria.fr/~abelaid/ Année Universitaire 2011/2012 2 Le Modèle OSI La couche physique ou le

Plus en détail

Module STOM : Examen du 28 mai 2003

Module STOM : Examen du 28 mai 2003 Module STM : Examen du 8 mai 3 Durée : 3 heures. Aucun document n'est autorisé. Les réponses aux questions doivent toujours être justifiées. Les parties A et B doivent être rendues sur des copies séparées.

Plus en détail

L évolution des réseaux de fibre optique

L évolution des réseaux de fibre optique L évolution des réseaux de fibre optique Présentateur : Conrad Bourgault CIMBCC ACI 2015-04-14 Contenu de la présentation Introduction- Définition fibre optique Qu est-ce qui a changé 1977-201x? Principe

Plus en détail

Guide de sélection des fibres

Guide de sélection des fibres Introduction: Le but de ce guide de sélection est de vous fournir l aide nécessaire pour vous permettre de choisir la fibre la mieux adaptée à vos besoins (En fonction du type d équipement actif utilisé

Plus en détail

La fibre optique. L'essentiel. L'Internet de demain

La fibre optique. L'essentiel. L'Internet de demain La fibre optique L'essentiel L'Internet de demain Alben21 - Tous droits réservés - Edition 2012 Constituée d'un cœur entouré d'une gaine réfléchissante, la fibre optique est un "tuyau" très fin dans lequel

Plus en détail

Les transmissions optiques

Les transmissions optiques Les transmissions optiques 18/06/2004 Technologies optiques - emilie.camisard@renater.fr 1 Plan Multiplexage temporel (TDM) Multiplexage par longueur d onde (WDM) Équipements réseau Techniques de routage

Plus en détail

LES FIBRES OPTIQUES. o 2.n 1.d

LES FIBRES OPTIQUES. o 2.n 1.d LES FIBRES OPTIQUES 1) Propagation des modes dans les fibres : Mode de propagation : cos = (m + ()) o 2.n 1.d A chaque valeur de m est associé un angle m solution de l équation ci dessus. A chaque m est

Plus en détail

Les mesures de dispersion chromatique ( DC )

Les mesures de dispersion chromatique ( DC ) Les mesures de dispersion chromatique ( DC ) Par Laurent COLOMER, PHOTON LINES Conférences Opto 2005-1 Qu est ce que la dispersion? La Dispersion au sens large est un étalement ou un élargissement des

Plus en détail

CORRECTION Chapitre 18 : Numérisation, transmission et stockage de l'information

CORRECTION Chapitre 18 : Numérisation, transmission et stockage de l'information CORRECTION Chapitre 18 : Numérisation, transmission et stockage de l'information Rendre la transmission d'informations rapide, simple et efficace est un enjeu crucial du XXI ème siècle. La physique joue

Plus en détail

La Fibre Optique J BLANC

La Fibre Optique J BLANC La Fibre Optique J BLANC Plan LES FONDAMENTAUX : LA FIBRE OPTIQUE : LES CARACTÉRISTIQUES D UNE FIBRE : TYPES DE FIBRES OPTIQUES: LES AVANTAGES ET INCONVÉNIENTS DE LA FIBRE : QUELQUES EXEMPLES DE CÂBLES

Plus en détail

TECHNOLOGIE DE L OPTIQUE GUIDEE

TECHNOLOGIE DE L OPTIQUE GUIDEE REPUBLIQUE DU CAMEROUN Paix - Travail Patrie --------------------- UNIVERSITE DE YAOUNDE I ---------------------- ECOLE NATIONALE SUPERIEURE POLYTECHNIQUE ---------------------- REPUBLIC OF CAMEROUN Peace

Plus en détail

La PMD dans la fibre Réalité ou pure spéculation? Grégory Liétaert Marketing Produit Division fibre Optique, Acterna Test & Mesures

La PMD dans la fibre Réalité ou pure spéculation? Grégory Liétaert Marketing Produit Division fibre Optique, Acterna Test & Mesures La PMD dans la fibre Réalité ou pure spéculation? Grégory Liétaert Marketing Produit Division fibre Optique, Acterna Test & Mesures La PMD dans la fibre - Réalité ou pure spéculation? La PMD en théorie

Plus en détail

Transmission et stockage de l information

Transmission et stockage de l information Transmission et stockage de l information La transmission d informations peut être libre, c est-à-dire assurée par des ondes électromagnétiques émises dans toutes les directions de l espace (Wi-Fi, radio,

Plus en détail

LA COUCHE PHYSIQUE EST LA COUCHE par laquelle l information est effectivemnt transmise.

LA COUCHE PHYSIQUE EST LA COUCHE par laquelle l information est effectivemnt transmise. M Informatique Réseaux Cours bis Couche Physique Notes de Cours LA COUCHE PHYSIQUE EST LA COUCHE par laquelle l information est effectivemnt transmise. Les technologies utilisées sont celles du traitement

Plus en détail

Chapitre 2 : communications numériques.

Chapitre 2 : communications numériques. Chapitre 2 : communications numériques. 1) généralités sur les communications numériques. A) production d'un signal numérique : transformation d'un signal analogique en une suite d'éléments binaires notés

Plus en détail

xdsl Digital Suscriber Line «Utiliser la totalité de la bande passante du cuivre»

xdsl Digital Suscriber Line «Utiliser la totalité de la bande passante du cuivre» xdsl Digital Suscriber Line «Utiliser la totalité de la bande passante du cuivre» Le marché en France ~ 9 millions d abonnés fin 2005 ~ 6 millions fin 2004 dont la moitié chez l opérateur historique et

Plus en détail

Bac Professionnel Systèmes Electroniques Numériques. La Fibre optique

Bac Professionnel Systèmes Electroniques Numériques. La Fibre optique La Fibre optique 1 Historique: L'idée d'utiliser la lumière comme support véhiculant des informations n'est pas récente. Dès la plus haute antiquité, les hommes ont utilisé des sources optiques (soleil,

Plus en détail

Centre Universitaire Ain Témouchent. Institut des Sciences et de la technologie

Centre Universitaire Ain Témouchent. Institut des Sciences et de la technologie Centre Universitaire Ain Témouchent Institut des Sciences et de la technologie 26/09/2007 CHIKHAOUI Abdelhak-Soutenance de thèse 1 La communication optique désigne les télécommunications utilisant des

Plus en détail

Chapitre 18 : Transmettre et stocker de l information

Chapitre 18 : Transmettre et stocker de l information Chapitre 18 : Transmettre et stocker de l information Connaissances et compétences : - Identifier les éléments d une chaîne de transmission d informations. - Recueillir et exploiter des informations concernant

Plus en détail

La fibre optique : le guide optique aux multiples facettes

La fibre optique : le guide optique aux multiples facettes La fibre optique : le guide optique aux multiples facettes Thierry Chartier Laboratoire CNRS Foton Université de Rennes 1, Enssat Lannion thierry.chartier@enssat.fr Les journées de l Optique 2012, 17-19

Plus en détail

Des lasers. Pourquoi transmettre l information dans le domaine optique?

Des lasers. Pourquoi transmettre l information dans le domaine optique? Des lasers pour les télécommunications optiques par fi bres : un luxe ou une nécessité? Mehdi Alouini (mehdi.alouini@univ-rennes1.fr) Institut de Physique de Rennes, UMR CNRS 6251, Université de Rennes

Plus en détail

Cours de physique appliqué Terminale STI électronique epix@fr.st. L optique (Chap 3)

Cours de physique appliqué Terminale STI électronique epix@fr.st. L optique (Chap 3) L optique (Chap 3)! Révisé et compris! Chapitre à retravaillé! Chapitre incompris 1. La lumière : La lumière est une onde électromagnétique, caractérisé par sa fréquence f. Les ondes électromagnétiques

Plus en détail

PARTIE III : AGIR. Chapitre 21

PARTIE III : AGIR. Chapitre 21 PARTIE III : AGIR Exploiter des informations pour comparer les différents types de transmission. Caractériser une transmission numérique par son débit binaire. Évaluer l affaiblissement d un signal à l

Plus en détail

ETUDE D'UNE FIBRE OPTIQUE ET D'UN CÂBLE À PAIRE TORSADÉE

ETUDE D'UNE FIBRE OPTIQUE ET D'UN CÂBLE À PAIRE TORSADÉE ETUDE D'UNE FIBRE OPTIQUE ET D'UN CÂBLE À PAIRE TORSADÉE Capacité(s) contextualisée(s) mise(s) en jeu durant l'activité : Evaluer l'affaiblissement d'un signal à l'aide du coefficient d'atténuation. Mettre

Plus en détail

2. Couche physique (Couche 1 OSI et TCP/IP)

2. Couche physique (Couche 1 OSI et TCP/IP) 2. Couche physique (Couche 1 OSI et TCP/IP) 2.1 Introduction 2.2 Signal 2.3 Support de transmission 2.4 Adaptation du signal aux supports de transmission 2.5 Accès WAN 2.1 Introduction Introduction Rôle

Plus en détail

WhitePaper Mars 2010. RéSEAUX OPTIQUES Classification des fibres optiques suivant l ISO 11801 et l EN 50173 : OP, OH, OM et OS

WhitePaper Mars 2010. RéSEAUX OPTIQUES Classification des fibres optiques suivant l ISO 11801 et l EN 50173 : OP, OH, OM et OS N 6 WhitePaper RéSEAUX OPTIQUES Classification des fibres optiques suivant l ISO 11801 et l EN 50173 : OP, OH, OM et OS Introduction L amendement 2.0 de la norme ISO 11801 est en cours de finalisation

Plus en détail

Cours MRIM: Etude des supports de transmission. la fibre optique

Cours MRIM: Etude des supports de transmission. la fibre optique Cours MRIM: Etude des supports de transmission la fibre optique Page 2/35 1 - Généralités La lumière est une onde électromagnétique, de longueur d onde λ, qui se propage dans un milieu transparent et isolant

Plus en détail

LES SUPPORTS PHYSIQUES

LES SUPPORTS PHYSIQUES LES SUPPORTS PHYSIQUES Dans le domaine des télécommunications et réseaux plusieurs types de supports physiques sont utilisés, les plus courants étant: 1. Le coaxial 2. La paire torsadée TP Twisted Pair

Plus en détail

Année 2010-2011. Transmission des données. Nicolas Baudru mél : nicolas.baudru@esil.univmed.fr page web : nicolas.baudru.perso.esil.univmed.

Année 2010-2011. Transmission des données. Nicolas Baudru mél : nicolas.baudru@esil.univmed.fr page web : nicolas.baudru.perso.esil.univmed. Année 2010-2011 Réseaux I Transmission des données Nicolas Baudru mél : nicolas.baudru@esil.univmed.fr page web : nicolas.baudru.perso.esil.univmed.fr 1 Plan 1 Notions de signaux 2 Caractéristiques communes

Plus en détail

Traitement du signal et Applications cours 6

Traitement du signal et Applications cours 6 Traitement du signal et Applications cours 6 Master Technologies et Handicaps 1 ère année Philippe Foucher 1 Introduction Potentialités du traitement du signal sont énormes Mais traitement du signal n

Plus en détail

S. CALVEZ. Travail réalisé au laboratoire GTL-CNRS Telecom / LOPMD Doctorat commun avec le Georgia Institute of Technology (Atlanta)

S. CALVEZ. Travail réalisé au laboratoire GTL-CNRS Telecom / LOPMD Doctorat commun avec le Georgia Institute of Technology (Atlanta) Laser à fibre pour les télécommunications multiplexées en longueur d onde : Etude de l accordabilité en longueur d onde et de la génération de trains d impulsions multi-longueurs d onde par voie électro-optique

Plus en détail

Exposé Technique : La Fibre Optique. LEFIEVRE Rodolphe Membre du Crew To The Point

Exposé Technique : La Fibre Optique. LEFIEVRE Rodolphe Membre du Crew To The Point Exposé Technique : La Fibre Optique LEFIEVRE Rodolphe Membre du Crew To The Point SOMMAIRE La fibre optique Le WDM Les connecteurs Glossaire I Introduction à la fibre optique II La Technologie du WDM III

Plus en détail

5)44 ' #ARACT RISTIQUES DES C BLES FIBRES OPTIQUES MONOMODES DISPERSION D CAL E NON NULLE

5)44 ' #ARACT RISTIQUES DES C BLES FIBRES OPTIQUES MONOMODES DISPERSION D CAL E NON NULLE UNION INTERNATIONALE DES TÉLÉCOMMUNICATIONS 5)44 ' SECTEUR DE LA NORMALISATION DES TÉLÉCOMMUNICATIONS DE L'UIT (10/96) SÉRIE G: SYSTÈMES ET SUPPORTS DE TRANSMISSION, SYSTÈMES ET RÉSEAUX NUMÉRIQUES Caractéristiques

Plus en détail

Technique. Fibre optique

Technique. Fibre optique Technique Fibre optique Je tiens à vous parler d un autre support que celui que vous avez en quantité industrielle chez vous ou au RC (je sais de quoi je parle). Mais avant cela, il faut que nous nous

Plus en détail

DEPARTEMENT SIGNAL ET TELECOMMUNICATION

DEPARTEMENT SIGNAL ET TELECOMMUNICATION DEPARTEMENT SIGNAL ET TELECOMMUNICATION Réseaux Hauts Débits Réseaux Optiques 5 ème Année B IRT 2008-2009 Laurence PIRIOU Alcatel-Lucent évolue dans le monde des télécoms Définition [télécoms] Ensemble

Plus en détail

Le câble coaxial. d diélectrique ou air. - Deux conducteurs concentriques - Diélectrique entre les 2 conducteurs

Le câble coaxial. d diélectrique ou air. - Deux conducteurs concentriques - Diélectrique entre les 2 conducteurs conducteur intérieur conducteur extérieur d diélectrique ou air D - Deux conducteurs concentriques - Diélectrique entre les 2 conducteurs - Deux impédances 50 Ω et 75 Ω 1 Les principaux types de câbles

Plus en détail

DEVOIR SURVEILLÉ - SCIENCES PHYSIQUES

DEVOIR SURVEILLÉ - SCIENCES PHYSIQUES DEVOIR SURVEILLÉ - SCIENCES PHYSIQUES Calculette autorisée Durée: 1h 50 min Exercice I : Transmission d'information par fibre optique (8 points) (Sujet Polynésie 2013) Les fibres optiques constituent un

Plus en détail

Fibres et télécommunications. La dispersion chromatique.

Fibres et télécommunications. La dispersion chromatique. TP A 1 Fibres et télécommunications. La dispersion chromatique. Version du 2 juillet 2013 Les questions P1 à P5 doivent être préparées avant la séance. Sommaire 1 Préparation de la séance de Travaux Pratiques........

Plus en détail

Transmission et stockage de l information

Transmission et stockage de l information Transmission et stockage de l information La transmission d informations peut être libre, c est-à-dire assurée par des ondes électromagnétiques émises dans toutes les directions de l espace (Wi-Fi, radio,

Plus en détail

Communication par fibre optique: des Romains a nos jours. Camille-Sophie Brès Section Génie Electrique et Electronique

Communication par fibre optique: des Romains a nos jours. Camille-Sophie Brès Section Génie Electrique et Electronique Communication par fibre optique: des Romains a nos jours Camille-Sophie Brès Section Génie Electrique et Electronique Incroyable mais vrai. la fibre optique! Aussi mince qu un cheveu mais tres resistante

Plus en détail

Chapitre I La fonction transmission

Chapitre I La fonction transmission Chapitre I La fonction transmission 1. Terminologies 1.1 Mode guidé / non guidé Le signal est le vecteur de l information à transmettre. La transmission s effectue entre un émetteur et un récepteur reliés

Plus en détail

Les technologies optiques. C. Pham RESO-LIP/INRIA Université Lyon 1 http://www.ens-lyon.fr/~cpham

Les technologies optiques. C. Pham RESO-LIP/INRIA Université Lyon 1 http://www.ens-lyon.fr/~cpham Les technologies optiques C. Pham RESO-LIP/INRIA Université Lyon http://www.ens-lyon.fr/~cpham Bref historique 958: Découverte du laser Mid-60s: Démonstration des guides optiques 970: Production de fibre

Plus en détail

Digital Subscriber Line

Digital Subscriber Line Digital Subscriber Line Bernard Cousin Présentation d'adsl But : Offrir l'accès à l'internet à partir d'un domicile personnel Le cout des réseaux d'accès est très important par rapport à celui du réseau

Plus en détail

TECHNOLOGIE DE L OPTIQUE GUIDEE

TECHNOLOGIE DE L OPTIQUE GUIDEE REPUBLIQUE DU CAMEROUN Paix - Travail Patrie --------------------- UNIVERSITE DE YAOUNDE I ---------------------- ECOLE NATIONALE SUPERIEURE POLYTECHNIQUE ---------------------- REPUBLIC OF CAMEROUN Peace

Plus en détail

Numérisation de l information

Numérisation de l information Numérisation de l Une est un élément de connaissance codé à l aide de règles communes à un ensemble d utilisateurs. Le langage, l écriture sont des exemples de ces règles. 1 Comment les s sont-elles transmises?

Plus en détail

Les chaînes et procédés physiques de transmission d informations

Les chaînes et procédés physiques de transmission d informations Les chaînes et procédés physiques de transmission d informations 1. Vocabulaire et technologies pouvant intervenir dans les études documentaires. Le débit de données Il s agit du nombre de bits (c'est-à-dire

Plus en détail

TP6 multiplexage en longueur d onde S4 - Module M4209C / PC2

TP6 multiplexage en longueur d onde S4 - Module M4209C / PC2 RESEAUX & TELECOMMUNICATIONS TP6 multiplexage en longueur d onde S4 - Module M4209C / PC2 RT2A 2014-15 Le but de ce TP est d introduire les propriétés du WDM. Avant les années 90, les systèmes de transmission

Plus en détail

ÉPREUVE COMMUNE DE TIPE - PARTIE D. Mesures sur les fibres optiques

ÉPREUVE COMMUNE DE TIPE - PARTIE D. Mesures sur les fibres optiques ÉPREUVE COMMUNE DE TIPE - PARTIE D TITRE : Mesures sur les fibres optiques 0 Temps de préparation :... h 5 minutes Temps de présentation devant le jury :.0 minutes Entretien avec le jury :..0 minutes GUIDE

Plus en détail

COMMUNIQUER OU SIMULER DES VAGUES AVEC UN LASER DANS UNE FIBRE OPTIQUE. Guy MILLOT

COMMUNIQUER OU SIMULER DES VAGUES AVEC UN LASER DANS UNE FIBRE OPTIQUE. Guy MILLOT COMMUNIQUER OU SIMULER DES VAGUES AVEC UN LASER DANS UNE FIBRE OPTIQUE Guy MILLOT Solitons - Lasers Communications Optiques - SLCO CNRS / Université de Bourgogne Franche-Comté http://icb.u-bourgogne.fr/

Plus en détail

Transmission de l information. Le long des fils et fibres, et dans l espace.

Transmission de l information. Le long des fils et fibres, et dans l espace. Transmission de l information Le long des fils et fibres, et dans l espace. Dans le manuel 10 p 293, 11, 13 Essentiel p 290 Essentiel p 294 24 p 296 Plan Introduction Types de supports La paire de cuivre

Plus en détail

ARCHITECTURES NUMÉRIQUES D'INFORMATION: USAGES, CONTENUS ET TECHNOLOGIES

ARCHITECTURES NUMÉRIQUES D'INFORMATION: USAGES, CONTENUS ET TECHNOLOGIES ARCHITECTURES NUMÉRIQUES D'INFORMATION: USAGES, CONTENUS ET TECHNOLOGIES Architectures numériques à très haut débit Réseaux de fibres optiques :services, usages innovants et interrogations Journée d'étude

Plus en détail

Fonctions de la couche physique

Fonctions de la couche physique La Couche physique 01010110 01010110 Couche physique Signal Médium Alain AUBERT alain.aubert@telecom-st-etienne.r 0 Fonctions de la couche physique 1 1 Services assurés par la couche physique Transmettre

Plus en détail

cpgedupuydelome.fr -PC Lorient

cpgedupuydelome.fr -PC Lorient Première partie Modèle scalaire des ondes lumineuses On se place dans le cadre de l optique géométrique 1 Modèle de propagation 1.1 Aspect ondulatoire Notion d onde électromagnétique On considère une onde

Plus en détail

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner

Plus en détail

Architecture de liaisons optiques à 10 Gbit/s

Architecture de liaisons optiques à 10 Gbit/s Architecture de liaisons optiques à 10 Gbit/s Émilie Camisard Cas à traiter 2 NR distants de 150 km Équipements gamme métro ou intermédiaire 2 NR distants de 500 km Utiliser plusieurs fois la solution

Plus en détail

Tout savoir sur. la fibre optique. Livret didactique

Tout savoir sur. la fibre optique. Livret didactique Tout savoir sur Livret didactique la fibre optique EXPERIDE 10 place Charles Béraudier, Lyon Part-Dieu, 69428 LYON CEDEX 3, France Tel. +33 (0)4 26 68 70 24 Fax. +33(0)4 26 68 70 99 contact@experide-consulting.com

Plus en détail

Thèse pour obtenir le grade de

Thèse pour obtenir le grade de UNIVERSITE DE LIMOGES ECOLE DOCTORALE Science Technologie Santé FACULTE des Sciences Année : 005 Thèse N 8 005 Thèse pour obtenir le grade de DOCTEUR DE L UNIVERSITÉ DE LIMOGES Discipline: Electronique

Plus en détail

La fibre optique dans le bâtiment

La fibre optique dans le bâtiment La fibre optique dans le bâtiment Pierre LECOY, Professeur Centrale-Supélec (Paris) Chercheur au laboratoire ETIS (Université de Cergy Pontoise) Casablanca, 20 octobre 2015 Qu est-ce que la fibre optique?

Plus en détail

Source Canal Récepteur

Source Canal Récepteur Cours n 18 : Traitement, transmission et stockage de l information Introduction Suivre en direct à la télévision une compétition sportive qui se déroule à l autre bout du monde, envoyer un mail à un ami,

Plus en détail

FIBRE OPTIQUE : EVT-250 & EVR-250

FIBRE OPTIQUE : EVT-250 & EVR-250 Introduction La gamme 250 est conçue pour transmettre des signaux vidéo composite couleur et monochromes via un câble à fibre optique multi-mode. La distance maximale de transfert atteint 3000 mètres.

Plus en détail

Transport optique à 40G / 100G FRNOG 16

Transport optique à 40G / 100G FRNOG 16 Transport optique à 40G / 100G FRNOG 16 Où trouvera t on du transport 40/100G? Dans le datacenter Portée ~ 100 m 100G Entre les datacenters (métro) Portée 10 à 40 km 100G Entre les datacenters (longue

Plus en détail

MICROSENS. Multiplexeur CWDM Modulaire 8 canaux. Introduction

MICROSENS. Multiplexeur CWDM Modulaire 8 canaux. Introduction Multiplexeur CWDM Modulaire 8 canaux MICROSENS Introduction Le besoin toujours croissant en largeur de bande passante du fait de l augmentation des données à transmettre oblige à accroître constamment

Plus en détail

Réseaux publics de télécommunication

Réseaux publics de télécommunication Réseaux publics de télécommunication Réseau à autonomie d'acheminement CTI = Centre de Transport International CL = Centre Local NRA = Nœud de Raccordement de l'abonné URA = Unité de Raccordement de l'abonné

Plus en détail

Câble optique et connectique. Appareils existants pour la caractérisation des systèmes optiques (Contrôle, dépannage et mesures)

Câble optique et connectique. Appareils existants pour la caractérisation des systèmes optiques (Contrôle, dépannage et mesures) Appareils existants pour la caractérisation des systèmes optiques (Contrôle, dépannage et mesures) Câble optique et connectique Connection fibre à fibre ou connecteur à ferrule: Exemples de connecteurs

Plus en détail

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE Exercice en classe EXERCICE 1 : La fibre à gradient d indice On considère la propagation d une onde électromagnétique dans un milieu diélectrique

Plus en détail

Applications de Ia diffusion Brillouin stimulée dans les fibres optiques monomodes

Applications de Ia diffusion Brillouin stimulée dans les fibres optiques monomodes Applications de Ia diffusion Brillouin stimulée dans les fibres optiques monomodes Luc Thévenaz, Marc Niklès, Jacques Boschung, Philippe Robert Ecole Polytechnique Fédérale de Lausarine Laboratore de Métrologie

Plus en détail

CULTe Le samedi 9 février2008 à 15h. Conf 1 : WIFI, les bases

CULTe Le samedi 9 février2008 à 15h. Conf 1 : WIFI, les bases CULTe Le samedi 9 février2008 à 15h Conf 1 : WIFI, les bases 1) Principes de fonctionnement (antennes, fréquences, emetteurs/recepteurs, point d'accés) a) Les grandes classes de fréquences HF, 300 Khz

Plus en détail

Réseau fibre optique étendu - MAN-WAN Guide de réalisation

Réseau fibre optique étendu - MAN-WAN Guide de réalisation Réseau fibre optique étendu - MAN-WAN Guide de réalisation Guide MAN WAN Réf 12/00-006 FR SOMMAIRE 1. PREAMBULE 2 2. LES APPLICATIONS DES RESEAUX LONGUES DISTANCES 3 3. LES APPLICATIONS METROPOLITAINES

Plus en détail

TP fibres optiques. Laser, Matériaux, Milieux Biologiques. Sécurité laser. Précautions à prendre

TP fibres optiques. Laser, Matériaux, Milieux Biologiques. Sécurité laser. Précautions à prendre TP fibres optiques Laser, Matériaux, Milieux Biologiques Sécurité laser ATTENTION : la diode laser à 810 nm est puissante (50 mw). Pour des raisons de sécurité et de sauvegarde de la santé des yeux, vous

Plus en détail

CORRECTİON DES EXERCİCES - P14

CORRECTİON DES EXERCİCES - P14 CORRECTİON DES EXERCİCES - P14 n 3 p528 Le signal a est numérique : il n y a que deux valeurs possibles pour la tension. Le signal b n est pas numérique : il y a alternance entre des signaux divers et

Plus en détail

SOMMAIRE : I) PRESENTATION... 1) Introduction.. 2) Descriptif.. II) PRINCIPES PHYSIQUES...3 III) LES DIFFERENTES SORTES DE FIBRES OPTIQUES...

SOMMAIRE : I) PRESENTATION... 1) Introduction.. 2) Descriptif.. II) PRINCIPES PHYSIQUES...3 III) LES DIFFERENTES SORTES DE FIBRES OPTIQUES... SOMMAIRE : PARTIE THEORIQUE..2 I) PRESENTATION.... 1) Introduction.. 2) Descriptif.. II) PRINCIPES PHYSIQUES....3 III) LES DIFFERENTES SORTES DE FIBRES OPTIQUES.......4 1) Les fibres optiques multimodes...

Plus en détail

principales caractéristiques Codage physique des bits CAN Le réseau CAN Codage des informations Structure détaillée de la trame Trace d une trame CAN

principales caractéristiques Codage physique des bits CAN Le réseau CAN Codage des informations Structure détaillée de la trame Trace d une trame CAN Le bus CAN Le protocole CAN principales caractéristiques Codage physique des bits CAN Le réseau CAN Codage des informations Structure détaillée de la trame Trace d une trame CAN à l oscilloscope Réception

Plus en détail

COMPOSANTS ET COUCHES

COMPOSANTS ET COUCHES COMPOSANTS ET COUCHES Dans ce chapitre nous nous intéressons d'une part aux composants des réseaux - physiques, - logiques, ainsi qu'à l'architecture des réseaux, essentiellement la - topologie, - conception

Plus en détail

Principes et potentialités. des technologies optiques

Principes et potentialités. des technologies optiques Principes et potentialités des technologies optiques Tutoriel du 2 décembre 28 Philippe GALLION, Professeur à TELECOM ParisTech Principes et potentialités des technologies optiques Les fibres optiques

Plus en détail

5 Système de lentilles et fibres optiques

5 Système de lentilles et fibres optiques Optique 1 5 Système de lentilles et fibres optiques Dans cette epérience, vous étudierez (i) les propriétés de focalisation d un système de deu lentilles et (ii) vous utiliserez ce système pour focaliser

Plus en détail

RESEAUX D ENTREPRISE QUELLE FIBRE DANS VOTRE INFRASTRUCTURE?

RESEAUX D ENTREPRISE QUELLE FIBRE DANS VOTRE INFRASTRUCTURE? RESEAUX D ENTREPRISE QUELLE FIBRE DANS VOTRE INFRASTRUCTURE? 1. L EVOLUTION DES RESEAUX LAN Si les années 80 et 90 furent une période d explosion des débits, la généralisation des applications Gigabit

Plus en détail

Étude théorique et expérimentale des lasers solides bi-fréquences dans les domaines GHz à THz,

Étude théorique et expérimentale des lasers solides bi-fréquences dans les domaines GHz à THz, Étude théorique et expérimentale des lasers solides bi-fréquences dans les domaines GHz à THz, en régime continu ou impulsionnel. Applications opto-microondes. NGOC DIEPLAI Laboratoire d Electronique Quantique

Plus en détail

LES CAPTEURS OPTIQUES

LES CAPTEURS OPTIQUES Page 1 LES CAPTEURS OPTIQUES I/ INTRODUCTION Un capteur optique est un dispositif capable de détecter l'intensité ou la longueur d'onde des photons. On les utilise pour détecter un grand nombre de phénomène

Plus en détail