Glossaire des nombres

Dimension: px
Commencer à balayer dès la page:

Download "Glossaire des nombres"

Transcription

1 Glossaire des nombres Numérisation et sens du nombre (4-6) Imprimeur de la Reine pour l'ontario, 008

2 Nombre : Objet mathématique qui représente une valeur numérique. Le chiffre est le symbole utilisé pour représenter la valeur numérique. Il est employé pour représenter les nombres. Les chiffres utilisés pour écrire les nombres dans notre système de base dix sont : {0, 1,,, 4, 5, 6, 7, 8, 9}. L'erreur la plus fréquente est de confondre le chiffre avec le nombre. Les chiffres qui servent à écrire le nombre «trois cent quarante-cinq» sont, 4 et 5. Le nombre n est pas une quantité; c est la représentation d une valeur numérique. Le numéro est une combinaison de chiffres qui sert d étiquette exempte de valeur numérique. Ensemble des nombres naturels : Ensemble de tous les nombres entiers supérieurs ou égaux à 0. On le = 0,1,,, 4,5.... note et on peut le décrire symboliquement comme ceci : { } Ensemble des nombres entiers relatifs : Ensemble de tous les nombres positifs (naturels) et négatifs. On =...,,, 1,0,1,,.... le note et on peut le décrire symboliquement comme ceci : { } L ensemble des nombres entiers relatifs comprend l ensemble des nombres naturels. Ensemble des nombres rationnels : Ensemble de tous les nombres entiers relatifs ainsi que des nombres décimaux et des fractions. On le note et on peut le décrire symboliquement comme ceci : 1 16 {...,,5,0,,4,...} = L ensemble des nombres rationnels comprend l ensemble des nombres entiers relatifs. Ensemble des nombres décimaux : Ensemble de tous les nombres qui ont une suite finie de chiffres dans leur partie décimale. On le note et on peut le décrire symboliquement comme ceci :...,,5,0,1 1,,1... ={ } 4 L ensemble des nombres décimaux comprend l ensemble des nombres rationnels. Ensemble des nombres irrationnels : Ensemble de tous les nombres décimaux illimités non périodiques. On le note et on peut le décrire symboliquement comme ceci : =..., π,, 5... { } Ensemble des nombres réels : Ensemble de tous les nombres dont l écriture décimale est finie ou non et périodique ou non. On le note et on peut le décrire symboliquement comme ceci : = {...-1,-1,-1,,-1, } -4 1,0, 9,0,5,1,,, π,79,10... L ensemble des nombres réels comprend les ensembles de nombres rationnels et irrationnels. Numérisation et sens du nombre (4-6) Imprimeur de la Reine pour l'ontario, 008

3 Nombre cardinal : Nombre qui exprime une valeur numérique (p. ex., un, deux, quatre, trois cent treize). Nombre ordinal : Nombre qui indique une position (p. ex., premier, treizième, centième). Nombre fractionnaire : Nombre rationnel dont l écriture symbolique comprend un entier et une fraction (p. ex., ). Nombre entier ou nombre entier relatif : Nombre positif ou négatif incluant 0 (p. ex., -5, 4, 1,00). Il y a une infinité de nombres entiers. Nombre naturel : Nombre entier positif incluant le 0 (p. ex., 0,, 17, 56, 14). Il y a une infinité de nombres naturels. Nombre pair : Nombre entier qui se divise par sans reste. L ensemble des nombres pairs est... 4,,0,, 4,6,8.... Ils prennent toujours la forme «n» où «n» est un nombre entier. Donc, les { } nombres décimaux ne sont pas des nombres pairs même s ils se terminent par 0,, 4, 6 ou 8. Il y a une infinité de nombres pairs. Nombre impair : Nombre entier qui donne 1 comme reste lorsqu on le divise par. L ensemble des... 5,, 1,1,,5,7.... Ils prennent toujours la forme «n + 1» ou «n 1», où nombres impairs est { } «n» est un nombre entier. Donc, les nombres décimaux ne sont pas des nombres impairs même s ils se terminent par 1,, 5, 7 ou 9. Il y a une infinité de nombres impairs. Nombre rationnel : Nombre qui peut être écrit sous forme d une fraction entiers et b 0. a où a et b sont des nombres b Il y a une infinité de nombres rationnels. Il existe sortes de nombres rationnels : 1. Les nombres rationnels dont la partie décimale est finie : 8 (0,75) Leur quotient est fini (le nombre de décimales après la virgule est limité). Ils sont non périodiques, car aucun motif ne se répète dans la partie décimale du nombre.. Les nombres rationnels dont la partie décimale est infinie périodique : 9 ( 0,... ou 0, ) Leur quotient est illimité (le nombre de décimales après la virgule est infini). On dit qu ils sont périodiques lorsqu une suite de chiffres se répète à l infini dans la partie décimale du nombre. Numérisation et sens du nombre (4-6) Imprimeur de la Reine pour l'ontario, 008

4 Par exemple : o 5 ou ,45 = 0, o ou 4,467= 4, Notez bien : Les nombres qui ont un nombre infini de chiffres après la virgule sans qu une suite de chiffres ne se répète sont appelés des nombres irrationnels. a Nombre irrationnel : Nombre qui ne peut pas être écrit sous forme d une fraction où a et b sont des b nombres entiers (p. ex.,,π ). Tout nombre décimal dont la partie décimale est infinie et non périodique est un nombre irrationnel. Il y a une infinité de nombres irrationnels. π Par exemple :, (100 premières décimales de Pi) (mettre le symbole de Pi?) 1, Nombre décimal : Nombre rationnel qui a une suite finie de chiffres dans sa partie décimale. Par exemple : 5, 1,5, 95 % ( ), 5,58 Tout nombre décimal peut s écrire à la forme fractionnaire avec un dénominateur qui représente une puissance de 10 Forme décimale Forme fractionnaire P. ex., 1,45 = (1000 est 10 à la e puissance ou 10 ) -5,145 = ( est 10 à la 5 e 5 puissance ou 10 ) Les nombres rationnels sont des nombres décimaux lorsque leur partie décimale est finie. 5 P. ex., ou 1 s écrit,5 et sa partie décimale est finie. s écrit 0,75 et sa partie décimale est finie. 4 Les nombres rationnels ne sont pas des nombres décimaux lorsque leur partie décimale est infinie. P. ex., s écrit 0, ou 0, et sa partie décimale est infinie. 9 Plusieurs nombres décimaux sont équivalents, car ils représentent la même quantité. P. ex., 1 5 =,4 ou,40 ou 40 %. Numérisation et sens du nombre (4-6) Imprimeur de la Reine pour l'ontario, 008

5 Nombres opposés : Deux nombres dont la somme est 0 sont dits opposés. P. ex., et - sont opposés, car + (- ) = 0. Nombres inverses : Deux nombres dont le produit est -1 sont dits inverses. P. ex., et 1 sont inverses, car = ou 1 1 Nombre composé : Nombre naturel qui a plus de diviseurs entiers différents (1 n est pas un nombre composé, car ses deux seuls diviseurs entiers sont les mêmes 1 = 1 X 1). Nombre premier : Nombre naturel qui n a que diviseurs distincts, soit 1 et lui-même. P. ex., 1 est un nombre premier, car ses deux uniques diviseurs sont 1 et 1. 0 et 1 ne sont pas des nombres premiers. Nombre réel : Nombre dont l écriture décimale est finie, non finie et périodique ou non périodique. Tous les nombres étudiés aux cycles primaire, moyen et intermédiaire sont réels. Nombre périodique : Un nombre est périodique lorsque dans sa partie décimale, un motif se répète à l infini. On note cette caractéristique par un trait au-dessus du motif qui se répète. P. ex., 1, est un nombre ayant une partie décimale périodique et on le note comme ceci :1,. Sa période est. Numérisation et sens du nombre (4-6) Imprimeur de la Reine pour l'ontario, 008

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

Numération C.M.1. Ecole primaire de Provenchères sur Fave

Numération C.M.1. Ecole primaire de Provenchères sur Fave Numération C.M.1 Ecole primaire de Provenchères sur Fave Sommaire Les nombres entiers Chiffres et nombres p. 03 Le système de numération des nombres entiers p. 04 La lecture des nombres entiers p. 05 L

Plus en détail

2 30 402 457 1 est le plus grand nombre premier connu en 2005. Son ordre de grandeur est de :

2 30 402 457 1 est le plus grand nombre premier connu en 2005. Son ordre de grandeur est de : ARITHMETIQUE Emilien Suquet, suquet@automaths.com I Introduction aux différents ensembles de nombres L'ensemble de tous les nombres se nomme l'ensemble des réels. On le note IR (de real en allemand) On

Plus en détail

RÉVISION DE CALCUL NUMÉRIQUE

RÉVISION DE CALCUL NUMÉRIQUE RÉVISION DE CALCUL NUMÉRIQUE. Les ensembles numériques. Propriétés des nombres réels. Ordre des opérations. Nombres premiers. Opérations sur les fractions 7. Puissances entières 0.7 Notation scientifique.8

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

BASES DU RAISONNEMENT

BASES DU RAISONNEMENT BASES DU RAISONNEMENT P. Pansu 10 septembre 2006 Rappel du programme officiel Logique, différents types de raisonnement. Ensembles, éléments. Fonctions et applications. Produit, puissances. Union, intersection,

Plus en détail

Sommaire des leçons de numération

Sommaire des leçons de numération Sommaire des leçons de numération n Titre de la leçon NUM 1 NUM 2 NUM 3 NUM 4 NUM 5 NUM 6 NUM 7 NUM 8 NUM 9 NUM 10 NUM 11 NUM 12 NUM 13 Les nombres entiers Lire et écrire les nombres en chiffres Lire et

Plus en détail

Projet Prép. Préguidance Cours du professeur G. De Meur 2005. Système de numération : les principes de groupement et de position

Projet Prép. Préguidance Cours du professeur G. De Meur 2005. Système de numération : les principes de groupement et de position Ecriture formelle Système de numération : les principes de groupement et de position Ce qu est un système de numération Sur le plan de la REPRESENTATION des nombres, on s est vite rendu compte de la difficulté

Plus en détail

Chapitre n 1 : «Nombres entiers et décimaux. Comparaison»

Chapitre n 1 : «Nombres entiers et décimaux. Comparaison» Chapitre n 1 : «Nombres entiers et décimaux. Comparaison» I. Les nombres entiers Rappel Un nombre entier est un nombre que l'on peut écrire sans virgule. Par exemple 7,0 et 36 4 sont des nombres entiers

Plus en détail

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer

Plus en détail

Puissances d un nombre relatif

Puissances d un nombre relatif Puissances d un nombre relatif Activités 1. Puissances d un entier relatif 1. Diffusion d information (Activité avec un tableur) Stéphane vient d apprendre à 10h, la sortie d une nouvelle console de jeu.

Plus en détail

IPT : Cours 2. La représentation informatique des nombres

IPT : Cours 2. La représentation informatique des nombres IPT : Cours 2 La représentation informatique des nombres (3 ou 4 heures) MPSI-Schwarz : Prytanée National Militaire Pascal Delahaye 28 septembre 2015 1 Codage en base 2 Définition 1 : Tout nombre décimal

Plus en détail

Écriture des nombres entiers et décimaux

Écriture des nombres entiers et décimaux Chapitre 1 Écriture des nombres entiers et décimaux Activité QCMp9 (voir ce qui est su) A Chires et nombres On n'utilise que dix chires : 0, 1, 2, 3, 4, 5, 6, 7, 8 et 9. Avec les chires on écrit les nombres.

Plus en détail

CH VI) Fractions. - Le cercle ci dessous est partagé en 4, hachurer 1 des 4 parties. - Le cercle suivant est partagé en 8, hachurer 2 des 8 parties.

CH VI) Fractions. - Le cercle ci dessous est partagé en 4, hachurer 1 des 4 parties. - Le cercle suivant est partagé en 8, hachurer 2 des 8 parties. CH VI) Fractions I) Représentation dune fraction : Le cercle ci dessous est partagé en, hachurer 1 des parties. On écrit 1 du cercle est hachuré. Le cercle suivant est partagé en, hachurer des parties.

Plus en détail

Nombres entiers et décimaux

Nombres entiers et décimaux Nombres entiers et décimaux I- Lecture et écriture des nombres entiers : 1- Rappels sur l écriture et la lecture d un nombre entier : a- Vocabulaire : 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 sont les chiffres

Plus en détail

Ecriture décimale d un nombre : A/ Ecriture d un nombre en chiffres :

Ecriture décimale d un nombre : A/ Ecriture d un nombre en chiffres : Chapitre 1 Nombres entiers et décimaux 6 ème Ecriture décimale d un nombre : A/ Ecriture d un nombre en chiffres :. Définition : Dans un nombre décimal, on appelle : Exemple :.. Partie entière Partie décimale

Plus en détail

1 Préparation de la séance

1 Préparation de la séance 1 Préparation de la séance Notion Les nombres décimaux Niveau 6 e SEGPA Matériel Fiche élèves Fiches groupes Temps 2 x 50 mn ( 2 séances) Rubriques Objectifs : Transformer une écriture fractionnaire décimale

Plus en détail

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays.

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays. Maquette de couverture : Graphir Maquette intérieure : Frédéric Jély Mise en page : CMB Graphic Dessins techniques : Gilles Poing Hachette Livre 008, 43, quai de Grenelle, 790 Paris Cedex ISBN : 978--0-8-

Plus en détail

2. Fractions et pourcentages

2. Fractions et pourcentages FRACTIONS ET POURCENTAGES. Fractions et pourcentages.. Définitions Certaines divisions tombent justes. C'est par exemple le cas de la division 4 8 qui donne.. D'autres ne s'arrêtent jamais. C'est ce qui

Plus en détail

Compter à Babylone. L écriture des nombres

Compter à Babylone. L écriture des nombres Compter à Babylone d après l article de Christine Proust «Le calcul sexagésimal en Mésopotamie : enseignement dans les écoles de scribes» disponible sur http://www.dma.ens.fr/culturemath/ Les mathématiciens

Plus en détail

ENSEMBLES DE NOMBRES

ENSEMBLES DE NOMBRES 1 sur 8 ENSEMBLES DE NOMBRES I. Définitions et notations Non exigible 1. Nombres entiers naturels Un nombre entier naturel est un nombre entier qui est positif. L'ensemble des nombres entiers naturels

Plus en détail

a)54 895 b) 21 542 c)103 984 d) 65 214 CM2

a)54 895 b) 21 542 c)103 984 d) 65 214 CM2 DISTINGUER CHIFFRE ET NOMBRES Num 1 Dans notre système de numération, il y a 10 chiffres : 0, 1, 2, 3, 4, 5, 6, 7, 8 et 9 Un nombre s écrit avec un ou plusieurs chiffres, qui ont chacun une valeur différente

Plus en détail

a)390 + 520 + 150 b)702 + 159 +100

a)390 + 520 + 150 b)702 + 159 +100 Ex 1 : Calcule un ordre de grandeur du résultat et indique s il sera supérieur à 1 000 L addition est une opération qui permet de calculer la somme de plusieurs nombres. On peut changer l ordre de ses

Plus en détail

CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES. S, L, M, GnivA NA 11.038.48

CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES. S, L, M, GnivA NA 11.038.48 1 CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES 9E S, L, M, GnivA NA DÉPARTEMENT DE L INSTRUCTION PUBLIQUE GENÈVE 1995 11.038.48 TABLE DES MATIÈRES 3 Table des matières 1 Les ensembles

Plus en détail

Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro.

Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro. Chapitre : Les nombres rationnels Programme officiel BO du 8/08/08 Connaissances : Diviseurs communs à deux entiers, PGCD. Fractions irréductibles. Opérations sur les nombres relatifs en écriture fractionnaire.

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

Le chiffre est le signe, le nombre est la valeur.

Le chiffre est le signe, le nombre est la valeur. Extrait de cours de maths de 6e Chapitre 1 : Les nombres et les opérations I) Chiffre et nombre 1.1 La numération décimale En mathématique, un chiffre est un signe utilisé pour l'écriture des nombres.

Plus en détail

Exemple. Il ne faudra pas confondre (101) 2 et (101) 10 Si a 0,a 1, a 2,, a n sont n+1 chiffres de 0 à 1, le

Exemple. Il ne faudra pas confondre (101) 2 et (101) 10 Si a 0,a 1, a 2,, a n sont n+1 chiffres de 0 à 1, le Chapitre I - arithmé La base décimale Quand on représente un nombre entier, positif, on utilise généralement la base 10. Cela signifie que, de la droite vers la gauche, chaque nombre indiqué compte 10

Plus en détail

Informatique? Numérique? L informatique est la science du traitement de l information.

Informatique? Numérique? L informatique est la science du traitement de l information. Informatique? Numérique? L informatique est la science du traitement de l information. L information est traitée par un ordinateur sous forme numérique : ce sont des valeurs discrètes. Cela signifie que,

Plus en détail

Chapitre 10 Arithmétique réelle

Chapitre 10 Arithmétique réelle Chapitre 10 Arithmétique réelle Jean Privat Université du Québec à Montréal INF2170 Organisation des ordinateurs et assembleur Automne 2013 Jean Privat (UQAM) 10 Arithmétique réelle INF2170 Automne 2013

Plus en détail

La Numération. Système binaire mathématique, Système binaire signé, Système en virgule flottante, Système en base b, Codage par DCB

La Numération. Système binaire mathématique, Système binaire signé, Système en virgule flottante, Système en base b, Codage par DCB La Numération Système binaire mathématique, Système binaire signé, Système en virgule flottante, Système en base b, Codage par DCB 1 I. Rappel sur le système décimal Définitions Chiffres décimaux : 0,1,2,3,4,5,6,7,8,9

Plus en détail

1) Quel est le PGCD de 36 et 28? (donner juste le résultat sans explication) (1 point) : 2) Ecrire la division euclidienne de 278 par 17.

1) Quel est le PGCD de 36 et 28? (donner juste le résultat sans explication) (1 point) : 2) Ecrire la division euclidienne de 278 par 17. Test 1 : RATTRAPAGE NOM : Note : Connaitre le sens de «diviseur commun» Déterminer le PGCD de deux nombres Compétences du socle commun Déterminer si deux entiers sont premiers entre eux. Effectuer la division

Plus en détail

6 eme Lire et écrire les nombres décimaux

6 eme Lire et écrire les nombres décimaux 6 eme Lire et écrire les nombres décimaux 1. Les positions des chiffres a. Ecriture de position Il existe dix CHIFFRES : 0, 1, 2, 3, 4, 5, 6, 7, 8 et 9. Un MOT s écrit avec des Un NOMBRE s écrit avec des

Plus en détail

Conversion d un entier. Méthode par soustraction

Conversion d un entier. Méthode par soustraction Conversion entre bases Pour passer d un nombre en base b à un nombre en base 10, on utilise l écriture polynomiale décrite précédemment. Pour passer d un nombre en base 10 à un nombre en base b, on peut

Plus en détail

IFT-1215 Introduction aux systèmes informatiques

IFT-1215 Introduction aux systèmes informatiques Systèmes de nombres Rappel Dans un système en base X, il faut X symboles différents pour représenter les chiffres de 0 à X-1 Base 2: 0, 1 Base 5: 0, 1, 2, 3, 4 Base 8: 0, 1, 2, 3, 4, 5, 6, 7 Base 10: 0,

Plus en détail

Les nombres entiers. Durée suggérée: 3 semaines

Les nombres entiers. Durée suggérée: 3 semaines Les nombres entiers Durée suggérée: 3 semaines Aperçu du module Orientation et contexte Pourquoi est-ce important? Dans le présent module, les élèves multiplieront et diviseront des nombres entiers concrètement,

Plus en détail

Cet ouvrage vous montre et vous explique tous les calculs rencontrés dans les différents concours paramédicaux et sociaux.

Cet ouvrage vous montre et vous explique tous les calculs rencontrés dans les différents concours paramédicaux et sociaux. - Cet ouvrage vous montre et vous explique tous les calculs rencontrés dans les différents concours paramédicaux et sociaux. Vous allez pouvoir apprendre ou réviser toutes les notions de calcul abordées

Plus en détail

Technique opératoire de la division (1)

Technique opératoire de la division (1) Unité 17 Technique opératoire de la division (1) Effectuer un calcul posé : division euclidienne de deux entiers. 1 Trois camarades jouent aux cartes. Manu fait la distribution en donnant à chaque joueur

Plus en détail

Compétence 2 : Comparer, ranger, encadrer des nombres, les placer sur une droite graduée

Compétence 2 : Comparer, ranger, encadrer des nombres, les placer sur une droite graduée 1/5 Compétence 2 : Comparer, ranger, encadrer des nombres, les placer sur une droite graduée Étape 1 : associer la droite graduée à deux objets du quotidien : la règle graduée ici, celle de l'enseignant

Plus en détail

Extrait de cours maths 3e. Multiples et diviseurs

Extrait de cours maths 3e. Multiples et diviseurs Extrait de cours maths 3e I) Multiples et diviseurs Multiples et diviseurs Un multiple d'un nombre est un produit dont un des facteurs est ce nombre. Un diviseur du produit est un facteur de ce produit.

Plus en détail

EXERCICES DE REVISIONS MATHEMATIQUES CM2

EXERCICES DE REVISIONS MATHEMATIQUES CM2 EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser

Plus en détail

Activité 1. Activité 2. M. Wissem Fligène Activités numériques II 1 A- Cours I. Opérations de base Calculs dans R : 1- Opérations dans R.

Activité 1. Activité 2. M. Wissem Fligène Activités numériques II 1 A- Cours I. Opérations de base Calculs dans R : 1- Opérations dans R. I. Opérations de base Calculs dans R : 1- Opérations dans R Activité 1 Compléter : 3 1 1) + =... 2 4 3 On dit que est la. de 2 et 1 4 (3 2 et 1 sont les de cette ) 4 3 2 3 2) =... ; On dit que est la de

Plus en détail

Nombres fractionnaires en BINAIRE

Nombres fractionnaires en BINAIRE Nomres Fractionnaires inaires Nomres fractionnaires en BINAIRE Nomres fractionnaires en virgule fixe. Généralités Un nomre fractionnaire comporte deux parties :!"Une valeur entière,!"suivie d une valeur

Plus en détail

Division de Polynômes

Division de Polynômes LGL Cours de Mathématiques 00 Division de Polynômes A INTRODUCTION Motivations: * Résoudre des équations d un degré supérieur à * Représenter des fonctions algébriques en se basant et sur des fonctions

Plus en détail

INITIATION INFORMATIQUE I (Système de numération) (1 GIM)

INITIATION INFORMATIQUE I (Système de numération) (1 GIM) UNIVERSITE SIDI MOHAMMED BEN ABDELLAH Ecole Supérieure de Technologie de Fès Filière Génie Industriel et Maintenance Mr KHATORY INITIATION INFORMATIQUE I (Système de numération) (1 GIM) TABLE DES MATIÈRES

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

CODAGE D UN NOMBRE SYSTEME DE NUMERATION

CODAGE D UN NOMBRE SYSTEME DE NUMERATION 1. Base d un système de numération 1.1 Système décimal. C est le système de base 10 que nous utilisons tous les jours. Il comprend dix symboles différents :... Exemple du nombre 2356 de ce système : nous

Plus en détail

2 bits... 2^2 = 4 combinaisons 8 bits... 2^8 = 256 combinaisons

2 bits... 2^2 = 4 combinaisons 8 bits... 2^8 = 256 combinaisons Chapitre II DÉFINITION DES SYSTÈMES LOGIQUES 2.1 LES NOMBRES DANS LES SYSTÈMES LOGIQUES Les humains comptent en DÉCIMAL 2.1.1 DÉCIMAL: o Base 10 o 10 chiffres: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 o M C D U o

Plus en détail

Cahier de leçons de Mathématiques

Cahier de leçons de Mathématiques 12345678901234567890123456789 01234567890123456789012345678 90123456789012345678901234567 89012345678901234567890123456 89012456789012345678901234567 78901234567890123456789012345 89012345678901234567890123456

Plus en détail

Vous revisiterez tous les nombres rencontrés au collège, en commençant par les nombres entiers pour finir par les nombres réels.

Vous revisiterez tous les nombres rencontrés au collège, en commençant par les nombres entiers pour finir par les nombres réels. Cette partie est consacrée aux nombres. Vous revisiterez tous les nombres rencontrés au collège, en commençant par les nombres entiers pour finir par les nombres réels. L aperçu historique vous permettra

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Fractions et décimaux

Fractions et décimaux Fractions et décimaux Scénario : le pliage des bandes de papier Cette fiche n est pas un programme pédagogique. Elle a pour but de faire apercevoir la portée de l approche «pliage de bandes» et les conséquences

Plus en détail

Chapitre 2 : Représentation des nombres en machine

Chapitre 2 : Représentation des nombres en machine Chapitre 2 : Représentation des nombres en machine Introduction La mémoire des ordinateurs est constituée d une multitude de petits circuits électroniques qui ne peuvent être que dans deux états : sous

Plus en détail

Calcul numérique et activités

Calcul numérique et activités Classe de Seconde Calcul numérique et activités. Mettre de l ordre. Interro (c). Interro 4. Interro (c). Interro 4 (c) 6. Interro (c) 7. Interro 6 8. Interro 7 9. Interro 8 0. Comparer a, a², a et /a.

Plus en détail

l'arithmétique simple et utile

l'arithmétique simple et utile Présentation de l'arithmétique simple et utile premier livrél de la collection S & U 41 pages 101 tests lequel s'acquiert sur le site des Publications de Georges Alain au prix de 2,30 euros In librelo

Plus en détail

La théorie des mouvements dans les formules Jean-François Nicaud Version initiale de Février 2013 jeanfrancois.nicaud@laposte.net

La théorie des mouvements dans les formules Jean-François Nicaud Version initiale de Février 2013 jeanfrancois.nicaud@laposte.net La théorie des mouvements dans les formules Jean-François Nicaud Version initiale de Février 2013 jeanfrancois.nicaud@laposte.net Article rédigé avec epsilonwriter puis copié dans Word La théorie des mouvements

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Systèmes de numérations et codages. Présenté par A.Khalid

Systèmes de numérations et codages. Présenté par A.Khalid Systèmes de numérations et codages Présenté par A.Khalid 2 Plan de la présentation 1. Introduction 2. Nombres binaires Conversion Binaire Décimal Conversion Entier Décimal Binaire Arithmétique Binaire

Plus en détail

Cours Info - 12. Représentation des nombres en machine. D.Malka MPSI 2014-2015. D.Malka Cours Info - 12 MPSI 2014-2015 1 / 45

Cours Info - 12. Représentation des nombres en machine. D.Malka MPSI 2014-2015. D.Malka Cours Info - 12 MPSI 2014-2015 1 / 45 Cours Info - 12 Représentation des nombres en machine D.Malka MPSI 2014-2015 D.Malka Cours Info - 12 MPSI 2014-2015 1 / 45 Sommaire Sommaire 1 Bases de numération par position 2 Représentation des entiers

Plus en détail

La question est : dans 450 combien de fois 23. L opération est donc la division. Le diviseur. Le quotient

La question est : dans 450 combien de fois 23. L opération est donc la division. Le diviseur. Le quotient par un nombre entier I La division euclidienne : le quotient est entier Faire l activité division. Exemple Sur une étagère de 4mm de large, combien peut on ranger de livres de mm d épaisseur? La question

Plus en détail

SYSTEMES DE NUMERATIONS ET CODAGES

SYSTEMES DE NUMERATIONS ET CODAGES SYSTEMES DE NUMERATIONS ET CODAGES - Introduction En binaire, on distingue trois principaux systèmes de codage : Binaire pur, Binaire DCB (Décimal Codé Binaire), Binaire réfléchi (code Gray). En informatique

Plus en détail

Présentation du binaire

Présentation du binaire Présentation du binaire Vers la fin des années 30, Claude Shannon démontra qu'à l'aide de "contacteurs" (interrupteurs) fermés pour "vrai" et ouverts pour "faux" on pouvait effectuer des opérations logiques

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

LES NOMBRES DECIMAUX. I. Les programmes

LES NOMBRES DECIMAUX. I. Les programmes LES NOMBRES DECIMAUX I. Les programmes Au cycle des approfondissements (Cours Moyen), une toute première approche des fractions est entreprise, dans le but d aider à la compréhension des nombres décimaux.

Plus en détail

I Exercices. 1 Définition de suites. 2 Sens de variation d une suite

I Exercices. 1 Définition de suites. 2 Sens de variation d une suite I Exercices 1 Définition de suites Pour toutes les suites (u n ) définies ci-dessous, on demande de calculer u 1, u, u 3 et u 6 1 u n = 7n n + { u0 = u n+1 = u n + 3 3 u n est le n ième nombre premier

Plus en détail

Introduction à l algorithmique et à la programmation 2013-2014. Cyril Nicaud Cyril.Nicaud@univ-mlv.fr. Cours 1 / 5

Introduction à l algorithmique et à la programmation 2013-2014. Cyril Nicaud Cyril.Nicaud@univ-mlv.fr. Cours 1 / 5 Introduction à l algorithmique et à la programmation IUT 1ère année 2013-2014 Cyril Nicaud Cyril.Nicaud@univ-mlv.fr Cours 1 / 5 Déroulement du cours Organisation : 5 séances de 2h de cours 10 séances de

Plus en détail

Numération et sens du nombre Maternelle à la 3 e année

Numération et sens du nombre Maternelle à la 3 e année Numération et sens du nombre Maternelle à la 3 e année Grande idée : Dénombrement ACTIVITÉS Régularités dans la grille de nombres Demander aux élèves d observer et de repérer des régularités dans une grille

Plus en détail

Question 1 : Sur votre compte-rendu, indiquer les réponses pour les positions a et b des interrupteurs.

Question 1 : Sur votre compte-rendu, indiquer les réponses pour les positions a et b des interrupteurs. 2 nde MPI Le Binaire 1 / 8 I) Le codage 1) Présentation du L informatique utilise des courants électriques, des aimantations, des rayons lumineux... Chacun de ces phénomènes met en jeu deux états possibles

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

8 Arithmétique. Pour démarrer Des bouquets de fleurs. 1 Tiges à partager. Approfondissement. Bien comprendre Mieux rédiger.

8 Arithmétique. Pour démarrer Des bouquets de fleurs. 1 Tiges à partager. Approfondissement. Bien comprendre Mieux rédiger. 8 Arithmétique Activités de découverte Cours Méthodes et savoir-faire Application Bien comprendre Mieux rédiger Approfondissement Divisibilité d un nombre entier [ p 9],,,, 8, 9, 0, PDCD de deux nombres

Plus en détail

THEME : CLES DE CONTROLE. Division euclidienne

THEME : CLES DE CONTROLE. Division euclidienne THEME : CLES DE CONTROLE Division euclidienne Soit à diviser 12 par 3. Nous pouvons écrire : 12 12 : 3 = 4 ou 12 3 = 4 ou = 4 3 Si par contre, il est demandé de calculer le quotient de 12 par 7, la division

Plus en détail

Jouons binaire : je devine ce que tu penses!

Jouons binaire : je devine ce que tu penses! Jouons binaire : je devine ce que tu penses! Aziz El Kacimi Université de Valenciennes Cité des Géométries - Gare numérique de Jeumont Atelier mathématique Collège Pablo Neruda - Wattrelos le 21 mai 2012

Plus en détail

Puissances de 10 Exercices corrigés

Puissances de 10 Exercices corrigés Puissances de 10 Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : produit de deux puissances de : Exercice 2 : inverse d une puissance de : et Exercice 3 : quotient de deux puissances de

Plus en détail

TAGE 2 FICHE DE COURS N 1 MÉMO MATHÉMATIQUE

TAGE 2 FICHE DE COURS N 1 MÉMO MATHÉMATIQUE TAGE FICHE DE COURS N MÉMO MATHÉMATIQUE Tous droits réservés Page Ce mémo mathématique balaye le champ des connaissances requises pour les sous-tests de calcul, conditions minimales, logique et raisonnement

Plus en détail

EVALUATIONS MI-PARCOURS CM2

EVALUATIONS MI-PARCOURS CM2 Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice

Plus en détail

Codage des données en machine.

Codage des données en machine. Codage des données en machine. 1 Entiers naturels Changements de base Codage en machine 2 Entiers relatifs : codage en complément à 2 Dénition Addition et calcul de l'opposé en complément à 2 3 Représentation

Plus en détail

Cours de Numération. Il utilise exclusivement les deux symboles 0 et 1.

Cours de Numération. Il utilise exclusivement les deux symboles 0 et 1. Cours de Numération A). Introduction : I ). Généralités : Le système binaire (Base 2) a été conçu au 17 ème siècle par le mathématicien LEIBNITZ. Il présente l'avantage de ne comporter que deux symboles

Plus en détail

Module 1 - Arithmétique Chapitre 1 - Numération

Module 1 - Arithmétique Chapitre 1 - Numération Lycée Maximilien Sorre Année 2015-2016 BTS SIO 1 Module 1 - Arithmétique Chapitre 1 - Numération 1 Introduction : que signifie 2014? Dans de nombreuses situations, il est nécessaire de pouvoir exprimer

Plus en détail

ÉVALUATION NON-VERBALE EN MATHÉMATIQUES POUR ÉLÈVES ALLOPHONES

ÉVALUATION NON-VERBALE EN MATHÉMATIQUES POUR ÉLÈVES ALLOPHONES 5 Nouveaux programmes école et collège Évaluation diagnostique (5 tests de la Grande section à la Seconde). Présentation Il s agit d une évaluation non-verale, qui peut-être utilisée avec tout élève nouvellement

Plus en détail

Priorités de calcul :

Priorités de calcul : EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant

Plus en détail

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» Corrigé Cours de Mr JULES v3.3 Classe de Quatrième Contrat 1 Page 1 sur 13 CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» «Correction en rouge et italique.» I. Les nombres décimaux relatifs.

Plus en détail

5½ À partir de 1475$ /MOIS

5½ À partir de 1475$ /MOIS 5½ 1475$ TYPE A : 1500 pi 2 TYPE B : 1250 pi 2 4½ 1350$ TYPE C : 1230 pi 2 4½ 1350$ TYPE D : 1200 pi 2 4½ 1350$ TYPE E : 1500 pi 2 5½ 1475$ 3½ 1100$ TYPE F : 800 pi 2 3½ 1100$ TYPE G : 850 pi 2 TYPE H

Plus en détail

CODAGE DES NOMBRES. I-Codage des entiers naturels. I) Codage des entiers naturels

CODAGE DES NOMBRES. I-Codage des entiers naturels. I) Codage des entiers naturels I) Codage des entiers naturels I) Codage des entiers naturels Ouvrir la calculatrice Windows dans le menu Programmes/accessoires/ Ouvrir la calculatrice Windows dans le menu Programmes/accessoires/ cliquer

Plus en détail

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Table des matières. Introduction....3 Mesures et incertitudes en sciences physiques

Plus en détail

OPERATIONS SUR LE SYSTEME BINAIRE

OPERATIONS SUR LE SYSTEME BINAIRE OPERATIONS SUR LE SYSTEME BINAIRE 1) Nombres signés Nous n avons, jusqu à présent tenu compte, que des nombre positifs. Pourtant, la plupart des dispositifs numériques traitent également les nombres négatifs,

Plus en détail

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux. UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases

Plus en détail

Microprocesseurs. et Microcontrôleurs

Microprocesseurs. et Microcontrôleurs Ministère de l Enseignement Supérieur, de la Recherche Scientifique et de la Technologie Université Virtuelle de Tunis Microprocesseurs et Microcontrôleurs Représentation de l information en numérique

Plus en détail

Livret d'évaluation et du socle commun en mathématiques

Livret d'évaluation et du socle commun en mathématiques Photo? Livret d'évaluation et du socle commun en mathématiques Niveau Cycle d'adaptation - 6ème Nom et prénom Classe Année scolaire 2... - 2... Il y a dans ce livret 4 grands thèmes : Nombres et Calculs

Plus en détail

La représentation des réels en machine nécessite de choisir la taille mémoire : souvent 4 octets ou 8 octets, des fois 16 octets.

La représentation des réels en machine nécessite de choisir la taille mémoire : souvent 4 octets ou 8 octets, des fois 16 octets. Conclusion La représentation des réels en machine nécessite de choisir la taille mémoire : souvent 4 octets ou 8 octets, des fois 16 octets. Les nombres réels représentables en machine sont en nombre fini,

Plus en détail

Programme de 6 ème en mathématiques

Programme de 6 ème en mathématiques Programme de 6 ème en mathématiques 1. LES NOMBRES DECIMAUX 3 I. Rappels sur les entiers naturels 3 II. Les nombres décimaux 4 III. Comparaison des nombres décimaux 6 2. A LA REGLE ET AU COMPAS 7 I. Segments,

Plus en détail

Sommaire des mises à jour au document : Indicateurs de rendement des mathématiques M à 9 de l Alberta

Sommaire des mises à jour au document : Indicateurs de rendement des mathématiques M à 9 de l Alberta Sommaire des mises à jour au document : Indicateurs de rendement des mathématiques M à 9 de l Alberta Ce document présente les mises à jour qui ont été faites au document d appui Indicateurs de rendement

Plus en détail

Note de cours de MAT009 Mise à niveau pour Mathématiques 536. Éric Brunelle

Note de cours de MAT009 Mise à niveau pour Mathématiques 536. Éric Brunelle Note de cours de MAT009 Mise à niveau pour Mathématiques 536 Éric Brunelle Table des matières Introduction 1 Chapitre 1. Quelques rappels 3 1. Les ensembles 3 2. Arithmétique sur les nombres réels 9 3.

Plus en détail

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays.

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays. Maquette de couverture : Graphir Design Maquette intérieure : Frédéric Jely Mise en page : CMB Graphic Dessins techniques : Gilles Poing www.hachette-education.com Hachette Livre 008, 4 quai de Grenelle,

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR Introduction. page 2 Classe de septième.. page 3 Classe de sixième page 7-1 - INTRODUCTION D une manière générale on

Plus en détail

SYSTEMES DE NUMERATION

SYSTEMES DE NUMERATION FICHE DU MODULE 1 SYSTEMES DE NUMERATION OBJECTIF GENERAL: La compétence visée par ce module est d amener l apprenant à se familiariser avec les systèmes de numération et les codes utilisés par les appareils

Plus en détail

CALCUL MENTAL. par Gilles BOURDENET, Irem de Strasbourg

CALCUL MENTAL. par Gilles BOURDENET, Irem de Strasbourg École primaire/collège CALCUL MENTAL par Gilles BOURDENET, Irem de Strasbourg Ce document s adresse autant aux enseignants de l Élémentaire que du Collège. On pourra relire également les documents d accompagnement

Plus en détail

AIDE-MÉMOIRE MATHÉMATIQUE. 3 e CYCLE

AIDE-MÉMOIRE MATHÉMATIQUE. 3 e CYCLE AIDE-MÉMOIRE MATHÉMATIQUE 3 e CYCLE Chers enseignants, PRODUCTION DU SERVICE DES RESSOURCES ÉDUCATIVES C est avec plaisir et fierté AU PRÉSCOLAIRE que nous vous offrons ET AU le PRIMAIRE lexique mathématique

Plus en détail

Contrôle de mathématiques

Contrôle de mathématiques Contrôle de mathématiques Correction du Lundi 18 octobre 2010 Exercice 1 Diviseurs (5 points) 1) Trouver dans N tous les diviseurs de 810. D 810 = {1; 2; 3; 5; 6; 9; 10; 15; 18; 27; 30; 45; 54; 81; 90;

Plus en détail