Texte Filtre de Kalman-Bucy

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Texte Filtre de Kalman-Bucy"

Transcription

1 Page 1. Texte Filtre de Kalma-Bucy 1 e modèle U avio se déplace etre Paris et odres. Il suit ue trajectoire théorique appelée trajectoire omiale dot les coordoées sot coues de tous. a trajectoire de l avio est suivie au sol par des cotrôleurs aéries grâce à u radar qui reçoit u écho de l avio à itervalles réguliers. a trajectoire effective de l avio s écarte de la trajectoire omiale pour de multiples raisos (météorologie, imprécisio du pilote automatique, turbuleces,... ). O ote X l écart etre cette trajectoire idéale et la positio de l avio au temps. De plus, o ote Y la mesure doée par le radar au temps (cette mesure est etachée d erreurs à cause de l imprécisio du radar). Pour simplifier l étude, o supposera que l objet observé évolue das u espace de dimesio 1. e problème qui se pose à l aiguilleur est d estimer au mieux la positio de l avio au temps au vu des observatios Y 0,..., Y. Grâce aux hypothèses présetées plus haut, il paraît aturel de modéliser l évolutio des suites (X ) 0 et (Y ) 0 de la maière suivate. Soit (V ) 0 et (W ) 0 des variables aléatoires idépedates, gaussiees, cetrées telles que (W ) aiet même variace σ 2 et (V ) aiet même variace τ 2. Soit a u ombre réel. O décrit alors l évolutio de X et Y aisi : X 0 = W 0, X = ax 1 + W 1, (1) Y = X + V 0. e but est ici de costruire u algorithme efficace permettat de calculer E(X Y 0,..., Y ) et d étudier les propriétés de cet objet. O pourra égalemet s itéresser à l estimatio des paramètres du modèle. 2 Quelques rappels sur les vecteurs gaussies Toutes les démostratios cocerat le filtre de Kalma-Bucy reposet sur la théorie des vecteurs aléatoires gaussies. Rappelos leur défiitio. Défiitio 2.1. U vecteur aléatoire Z sur R d est gaussie si et seulemet si, pour tout u R d la variable aléatoire u, Z est gaussiee. Page 1.

2 Page 2. emme 2.2. Soit (X, Y ) u vecteur gaussie das R 2 tel que (X) soit la loi N (µ, γ 2 ) et (Y X) soit la loi N (αx + β, δ 2 ) alors ( ( ) µ (X Y )=N ρ 2 α(y β) + ),ρ 2 1 avec γ2 δ 2 ρ = 1 2 γ + α2 2 δ. 2 Ce résultat élémetaire se gééralise à la loi coditioelle. Nous auros besoi das la suite de la forme suivate. Propositio 2.3. Soit (X, Y, Y 0,..., Y 1 ) u vecteur gaussie das R +1 tel que la loi de X sachat Y 0,..., Y 1 soit la loi N (µ, γ 2 ) et la loi de Y sachat Y 0,..., Y 1,X soit la loi N (X, δ 2 ). Alors la loi de X sachat Y 0,..., Y 1,Y est la loi ormale de paramètres ( µ ρ 2 γ + Y ) et ρ 2 1 où 2 δ 2 ρ = 1 2 γ δ. 2 3 e filtre optimal a première remarque importate est que pour tout 1, le vecteur aléatoire (X 0,..., X,Y 0,..., Y ) est u vecteur aléatoire gaussie. O e déduit doc que, pour tout 0, (X,Y 0,..., Y ) est ecore u vecteur gaussie. De plus, la loi de X sachat (Y 0,..., Y ) est ue loi ormale dot o otera la moyee ˆX et la variace P. O se propose de calculer ces quatités par récurrece. Remarque 3.1. a récurrece se fait e deux étapes. étape de prédictio cosiste à exprimer la loi (X Y 0,..., Y 1 ) e foctio de (X 1 Y 0,..., Y 1 ). Puis, das l étape de filtrage, o pred e compte l observatio Y pour exprimer (X Y 0,..., Y ) e foctio de (X Y 0,..., Y 1 ). C est l étape de filtrage. Propositio 3.2. a loi de X sachat Y 0,..., Y est la loi ormale N ( ˆX,P ) où ˆX = a ˆX 1 + P τ 2 (Y a ˆX 1 ) et P = a2 τ 2 P 1 + σ 2 τ 2 a 2 P 1 + σ 2 + τ 2. Démostratio. Comme aocé, o procède par récurrece. Iitialisatio. Puisque Y 0 = X 0 + V 0, la loi de Y 0 sachat X 0 est tout simplemet la loi N (X 0,τ 2 ). e lemme 2.2 assure que (X 0 Y 0 ) est la loi N ( ˆX 0,P 0 ) où ˆX 0 = O attaque alors la récurrece. σ2 σ 2 + τ Y 2 0 et P 0 = σ2 τ 2 σ 2 + τ. 2 Page 2.

3 Page 3. Prédictio. Par défiitio, (X 1 Y 0,..., Y 1 )=N ( ˆX 1,P 1 ). D après (1), o a Filtrage. D après (1) à ouveau, il viet (X Y 0,..., Y 1 )=N (a ˆX 1,a 2 P 1 + σ 2 ). (Y Y 0,..., Y 1,X )=N (X,τ 2 ). O applique alors la formule de Bayes coditioelle (propositio 2.3) pour iverser le coditioemet etre Y et X : la loi de X sachat Y 0,..., Y est la loi N ( ˆX,P ) avec ( 1 1 = P a 2 P 1 + σ + 1 a et 2 τ 2 ˆX = P ˆX ) 1 a 2 P 1 + σ + Y, 2 τ 2 ce qui achève la preuve. Remarque 3.3. O peut vérifier que P = E [(X ˆX ] ) 2 E [ (X Y ) 2] = τ 2. Ceci est pas surpreat coaissat les propriétés de l espérace coditioelle mais soulige bie que l o gage effectivemet à utiliser toutes les observatios Y 0,..., Y plutôt que de se coteter de la derière Y. 4 Estimatio de certais paramètres du modèle O suppose das cette sectio que l o observé les positios de l avio sas erreurs, c est-à-dire que l o coaît la suite (X i ) 1 i. O souhaite estimer les coefficiets a et σ. a questio est pas complètemet évidete car les observatios e sot pas idépedates. a vraisemblace du modèle est doée par : (a, σ, X 1,..., X )= 1 2πσ 2 exp ( (X ) k ax k 1 ) 2. (2) 2σ 2 Propositio 4.1. es estimateurs obteus par la méthode du maximum de vraisemblace sot â = X k 1X k, X2 k 1 ˆσ 2 = 1 (X k â X k 1 ) 2. Page 3.

4 Page 4. Démostratio. es estimateurs â et ˆσ sot les valeurs des paramètres a et σ redat maximale la quatité (2) (ou so logarithme)... O peut motrer que ces estimateurs ot de boes propriétés asymptotiques. Supposos que a appartiee à l itervalle ] 1, 1[ (que cela sigifie-t-il pour le pilote?). Théorème 4.2. es estimateurs â et ˆσ sot fortemet cosistats, c est-à-dire qu ils coverget presque sûremet vers a et σ respectivemet. De plus, (â a) N (0, 1 a2 ) et (ˆσ 2 σ 2) N (0, 2σ4 ) a suite du paragraphe motre commet obteir le comportemet asymptotique de l estimateur â de a. O supposera das la suite σ cou et fixé. O réécrit â de la maière suivate : â = a + X k 1W k. X2 k 1 O défiit alors la suite aléatoire (M ) N e posat M 0 = 0 et, pour 1, M = X k 1 W k. a suite (M ) N est ue martigale par rapport à la filtratio (F ), où F est la tribu egedrée par les variables aléatoires (W k ) 1 k. O lui associe sa variatio quadratique ( M ) défiie de la maière suivate : c est la seule () suite (A ) (a priori aléatoire) telle que M 2 A soit ue martigale par rapport à (F ). Théorème 4.3. a variatio quadratique de M est doée par De plus, si a < 1 alors M M 0 =0 et, pour 1, M = σ 2 σ 4 (1 a 2 ), M M 0 et M M Remarque 4.4. Das le cas a < 1, o a e particulier M Démostratio. Par ue récurrece immédiate, o a X = a X 0 + a k W k. X 2 k 1. N (0, 1). +. Page 4.

5 Page 5. Supposos que X 0 soit ul. iégalité de Cauchy-Schwarz assure que X a a k Wk 2. Posos S = X2 k 1 et = W k 1 2. a majoratio ci-dessus motre que S = O( ). D autre part, e vertu de la loi des grads ombres, = O() et par suite S = O() et M = O(). U résultat de martigale assure qu alors M = o(). O peut égalemet écrire S = a 2 S 1 +2aM + et doc (1 a 2 ) S = a2 X 2 + 2aM +. Aisi doc, la suite S / coverge-t-elle presque sûremet vers σ 2 /(1 a 2 ). O a doc motré que M σ 4 (1 a 2 ). a fi du théorème repose sur la loi des grads ombres et le théorème limite cetral pour les martigales de carré itégrable. 5 Suggestios. Pour traiter le sujet, o suggère de répodre à certaies des questios suivates. 1. Commeter le modèle de la sectio 1. O commetera e particulier le choix des lois des variables aléatoires itroduites et leur idépedace. 2. Expliquer l iterprétatio physique du coefficiet a (et de sa positio par rapport à 1). Pourquoi est-il légitime de supposé a < 1 s il y a u pilote das l avio? Pourquoi a ] 1, 0[ correspod à u pilote e phase d appretissage? 3. Démotrer le lemme 2.2 ou la propositio Démotrer la propositio 3.2 et e déduire l algorithme de Kalma-Bucy. 5. Écrire ue foctio qui pred e etrée le temps fial d observatio N, a, σ et τ 2 et géère les trajectoires (X ) 0 N,(Y ) 0 N et ( ˆX ) 0 N jusqu au temps N. 6. Étudier l évolutio temporelle de P e foctio du coefficiet a. 7. Démotrer la propositio Illustrer par la simulatio le théorème Commet utiliser le théorème 4.2 pour répodre, à partir de l observatio de X 1,..., X à la questio suivate : le pilote est-il vraimet expérimeté? 10. O pourra faire quelques commetaires au sujet du théorème 4.3 (M est-elle vraimet ue martigale? M est-il bie so processus croissat?). Page 5.

1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ

1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ Pla du cours 3 RFIDEC cours 3 : Itervalles de cofiace, tests d hypothèses, loi du χ Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Itervalles de cofiace Tests d hypothèses 3 La loi du χ Itervalles

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

Master Ingénierie mathématique, Univ. Nantes Option Mathématiques et applications, ECN. Statistique Inférentielle.

Master Ingénierie mathématique, Univ. Nantes Option Mathématiques et applications, ECN. Statistique Inférentielle. Master Igéierie mathématique, Uiv. Nates Optio Mathématiques et applicatios, ECN Statistique Iféretielle. Ae Philippe Uiversité de Nates, LMJL Adresses email : Ae.Philippe@uiv-ates.fr Pages web : Iformatio

Plus en détail

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres.

et arctanx + arctan 1 x = sgn(x)π 2. 3. Application à la statue de la liberté : haute de 46 mètres avec un piédestal de 47 mètres. Eo7 Foctios circulaires et hyperboliques iverses Correctios de Léa Blac-Ceti. Foctios circulaires iverses Eercice Vérifier arcsi + arccos π et arcta + arcta sgπ. Idicatio Correctio Vidéo [00075] Eercice

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

Quelques inégalités classiques

Quelques inégalités classiques Quelques iégalités classiques O se propose de motrer, sous forme d exercices, quelques iégalités classiques. Les preuves de ces iégalités e écessitet que quelques coaissaces élémetaires.. Exercices classiques

Plus en détail

Introduction aux tests statistiques

Introduction aux tests statistiques Itroductio aux tests statistiques Philippe Boeau 27 septembre 2006 Chapitre 1 Élémets de probabilités Exercice 1 O ote E l esemble des etiers aturels iférieurs ou égaux à 12 et A (respectivemet B et C)

Plus en détail

Une définition de la fonction exponentielle dans l esprit des nouveaux programmes

Une définition de la fonction exponentielle dans l esprit des nouveaux programmes 1 Ue défiitio de la foctio expoetielle das l esprit des ouveaux programmes 0. Itroductio. Les ouveaux programmes de mathématiques de termiale S qui sot etrés e vigueur à la retrée 2002 icitet fortemet

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

COURS DE STATISTIQUES INFERENTIELLES Licence d économie et de gestion

COURS DE STATISTIQUES INFERENTIELLES Licence d économie et de gestion COURS DE STATISTIQUES INFERENTIELLES Licece d écoomie et de gestio Laurece GRAMMONT Laurece.Grammot@uiv-st-etiee.fr http://www.uiv-st-etiee.fr/maths/cvlaurece.html September 19, 003 Cotets 1 Rappels 5

Plus en détail

INF582 : Cryptologie Attaque de clés RSA par la méthode de Wiener

INF582 : Cryptologie Attaque de clés RSA par la méthode de Wiener INF58 : Cryptologie Attaque de clés RSA par la méthode de Wieer Nicolas DOUZIECH - Thomas JANNAUD - X005 9 mars 008 Table des matières Quelques rappels sur le cryptosystème RSA Pricipe de l attaque de

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

PROJET DE MONTE CARLO SUJET 1: LE PRICING

PROJET DE MONTE CARLO SUJET 1: LE PRICING LE Age KHOURI Nadie M MMD PROJE DE MONE ARLO SUJE : LE PRIING Selim ZOUGHLAMI QUESION : Supposos d abord que X est u mouvemet browie W t G([ 0, ]) Alors W0 G( 0 ) suit ue loi N(0,0) et doc W 0ps 0 Esuite,

Plus en détail

Notions de base pour l analyse d un tableau de contingence

Notions de base pour l analyse d un tableau de contingence Uiversité de Bordeaux - Master MIMSE - 2ème aée Notios de base pour l aalyse d u tableau de cotigece Marie Chavet http://wwwmathu-bordeauxfr/ machave/ 204-205 Notatios et défiitios U tableau de cotigece

Plus en détail

TD n 3 : quelques exercices sur la récurrence

TD n 3 : quelques exercices sur la récurrence Éocé TD 3 : quelques exercices sur la récurrece Exercice 1 Soit (a ) 0 ue suite de ombres réels ou complexes. O pose b 0 = 1 et b = (1 a k ) pour 1. Motrer que b +1 = 1 Exercice O défiit ue suite (u )

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

LEÇON N 20 : Racines n-ièmes d un nombre complexe. Interprétation géométrique. Applications.

LEÇON N 20 : Racines n-ièmes d un nombre complexe. Interprétation géométrique. Applications. LEÇON N 20 : Racies -ièmes d u ombre complexe. Iterprétatio géométrique. Applicatios. Pré-requis : Représetatio d u ombre complexe das le pla R 2 mui d u repère orthoormé direct ; Formes trigoométrique

Plus en détail

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 6

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 6 Termiale S Exercices sur le chapitre 5 «Suites umériques» Page sur 6 Gééralités sur les suites ------------------------------------------------------------------------------------------------------ Exercice

Plus en détail

CORRIGÉ DE LA FEUILLE 2

CORRIGÉ DE LA FEUILLE 2 CORRIGÉ DE LA FEUILLE. Exercice Soiet u et v deux séries à termes positifs.. Si ue des séries est divergete, alors la série de terme gééral u + v est divergete C est vrai. E effet, supposos que la série

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

Chapitre 3 RÉGRESSION CORRÉLATION

Chapitre 3 RÉGRESSION CORRÉLATION Chapitre 3 RÉGRESSION CORRÉLATION Les doées se présetet sous la forme d ue suite de couples de valeurs umériques(x i, y i ), umérotés de à i =. O ote m x, s x ², m y, s y ² les moyees et les variaces des

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

CORRECTION DU BAC BLANC 2

CORRECTION DU BAC BLANC 2 CORRCTION DU BAC BLANC 2 XRCIC 1 (6 poits) Baccalauréat ST Mercatique Podichéry - 2010 Deux tableaux sot doés e aexe : le premier doe l évolutio du prix du mètre carré das l immobilier résidetiel acie

Plus en détail

Juin 2014 MATHEMATIQUES

Juin 2014 MATHEMATIQUES Jui 014 1 ères S MATHEMATIQUES Voici ue série d exercices sur différets thèmes abordés e classe de première S. Ils vous permettrot de repredre cotact avec les mathématiques avat d aborder la classe de

Plus en détail

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 5

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 5 Termiale S Exercices sur le chapitre 5 «Suites umériques» Page sur 5 Gééralités sur les suites ------------------------------------------------------------------------------------------------------ Exercice

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

Apprentissage: cours 3a Méthodes par moyennage local

Apprentissage: cours 3a Méthodes par moyennage local Appretissage: cours 3a Méthodes par moyeage local Guillaume Oboziski 1 er mars 2012 Réferece : chap. 6 of [Hastie et al., 2009] ad chap. 6 of [Devroye et al., 1996]. Algorithmes par moyeage local O cosidère

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

Estimation par vraisemblance

Estimation par vraisemblance Chapitre 4 Estimatio par vraisemblace Le procédé de costructio des estimateurs par isertio a été itroduit das le chapitre 2. L objectif de ce chapitre est d étudier ue autre méthode de costructio, basée

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

6.1 Modèle multiplicatif de mortalité excédentaire (proportional

6.1 Modèle multiplicatif de mortalité excédentaire (proportional 6 Tests d hypothèse (Klei 6.3, Lawless 10.2 et 10.3, Klugma 13.4) 6.1 Modèle multiplicatif de mortalité excédetaire (proportioal hazard) O veut comparer la mortalité d u groupe sous étude avec celle d

Plus en détail

CTU, Licence de Mathématiques Statistique Inférentielle. Jean-Yves DAUXOIS. Université de Franche-Comté

CTU, Licence de Mathématiques Statistique Inférentielle. Jean-Yves DAUXOIS. Université de Franche-Comté CTU, Licece de Mathématiques Statistique Iféretielle Jea-Yves DAUXOIS Uiversité de Frache-Comté Aée scolaire 2011-2012 Ce polycopié cotiet le cours, les sujets d exercice et leurs corrigés aisi que les

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

GRAPHES - EXERCICES CORRIGES Compilation réalisée à partir d exercices de BAC TES

GRAPHES - EXERCICES CORRIGES Compilation réalisée à partir d exercices de BAC TES GRAPHES - EXERCICES CORRIGES Compilatio réalisée à partir d exercices de BAC TES Exercice. U groupe d amis orgaise ue radoée das les Alpes. O a représeté par le graphe ci-dessous les sommets B, C, D, F,

Plus en détail

Terminales S BAC BLANC Mathématiques Sujet

Terminales S BAC BLANC Mathématiques Sujet Sujet Durée 4 heures. La calculatrice graphique est autorisée. Le barème est fouri à titre idicatif. Eercice 1 (commu) [5 poits] 3 Soit la foctio f défiie sur + par f ( ) =. O appelle C, la courbe représetative

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

Université Paris-Dauphine Année 2008-2009 U.F.R. Mathématiques de la décision L3 - Statistique Mathématique. Examen

Université Paris-Dauphine Année 2008-2009 U.F.R. Mathématiques de la décision L3 - Statistique Mathématique. Examen Uiversité Paris-Dauphie Aée 28-29 U.F.R. Mathématiques de la décisio L3 - Statistique Mathématique Exame Durée 2h. Le barême est doé à titre idicatif. Exercice : 5 poits) Soit X,...,X ) u échatillo de

Plus en détail

Reconnaissance des formes: Fenêtre de Parzen

Reconnaissance des formes: Fenêtre de Parzen Préom Nom Recoaissace des formes: Feêtre de Parze Pricipes de l'appretissage o paramétrique Estimatio o paramétrique de la desité Feêtres de Parze vs. k plus proches voisis Feêtres de Parze Réseau de euroes

Plus en détail

CHAPITRE 22. Machines à sous

CHAPITRE 22. Machines à sous CHAPITRE 22 Machies à sous 22. Corrigé possible du texte 22.. Eocé du problème et défiitio du modèle statistique associé O étudie ici u modèle statistique avec observatios icomplètes : o dispose d observatios

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

c) représentation graphique T est la tangente à C exp au point A d abscisse 0. Une équation de T est de la forme : y = x + 1.

c) représentation graphique T est la tangente à C exp au point A d abscisse 0. Une équation de T est de la forme : y = x + 1. Chapitre VI : Foctio expoetielle I. La foctio expoetielle a) Défiitio La foctio expoetielle, otée exp, est la foctio défiie sur! par exp(x) = e x, e x état l uique ombre réel strictemet positif dot le

Plus en détail

VARIABLES ALEATOIRES

VARIABLES ALEATOIRES VARIABLES ALEATOIRES TABLE DES MATIÈRES. Loi de probabilité.. Exemple... Calcul de probabilités sur u uivers Ω... Variable aléatoire à valeurs réelles...3. Probabilité image défiie par ue variable aléatoire..4.

Plus en détail

Probabilités : Loi binomiale

Probabilités : Loi binomiale Probabilités : Loi biomiale Christophe ROSSIGNOL Aée scolaire 204/205 Table des matières Répétitio d expérieces idetiques et idépedates 2. Défiitio................................................. 2.2

Plus en détail

Vitesses de recouvrement et lois de Chung-Mogulskii dans pour le processus empirique

Vitesses de recouvrement et lois de Chung-Mogulskii dans pour le processus empirique Vitesses de recouvremet et lois de Chug-Mogulskii das pour le processus empirique Davit VARRON Laboratoire de Statistiques et Modélisatio, 6 rue Blaise Pascal, 3517 Bruz Résumé: E cotiuatio des travaux

Plus en détail

Préparation concours Sciences-Po

Préparation concours Sciences-Po Lycée Féelo Saite-Marie Préparatio cocours Scieces-Po Cocours blac de Mathéatiques Mai 0 Durée : 4 heures Tout docuet iterdit La calculatrice graphique type «lycée» est autorisée Toute répose doit être

Plus en détail

Chapitre 4. Lois de Probabilité. Sommaire. 1. Introduction. 4. 2. Lois discrètes..4

Chapitre 4. Lois de Probabilité. Sommaire. 1. Introduction. 4. 2. Lois discrètes..4 Mathématiques : Outils pour la Biologie Deug SV UCBL D. Mouchiroud (5/0/00) Chapitre 4 Lois de Probabilité Sommaire. Itroductio. 4. Lois discrètes..4.. Loi uiforme..4... Défiitio...4... Espérace et variace..5..

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques Agrégatio extere de mathématiques, sessio 2008 Épreuve de modélisatio, optio (public 2008) Mots clefs : Loi des grads ombres, espace des polyômes, estimatio o-paramétrique Il est rappelé que le jury exige

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE

EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE EPREUVE DE RAISONNEMENT LOGIQUE ET MATHEMATIQUE Nombre de pages de l épreuve Durée de l épreuve 0 pages 3h00 Compte teu du fait qu il s agissait d u cocours d etraiemet, cette épreuve à été prise sur le

Plus en détail

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f.

Intervalle de fluctuation des fréquences. Estimation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. fréquence F n. fréquence obtenue f. Chapitre 14 Itervalle de fluctuatio des fréqueces. Estimatio Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Itervalle de fluctuatio Estimatio Itervalle de cofiace (*). Niveau

Plus en détail

Suites numériques : définition générale.

Suites numériques : définition générale. 1 Suites arithmétiques Suites umériques : défiitio géérale.... Le pricipe de récurrece... 3 Suites arithmétiques... 4 Formule 1 des suites arithmétiques... 5 Appreos à compter... 6 Formule des suites arithmétiques...

Plus en détail

Modèle de pointage et correction des dérives

Modèle de pointage et correction des dérives Ges de la Lue Observatoire astroomique de Plougastel Tél : 0 98 40 69 73 http://www.gesdelalue.org Modèle de poitage et correctio des dérives 1. Présetatio du problème Le poitage d u astre par u télescope

Plus en détail

Questions pour un champion en ligne

Questions pour un champion en ligne Questios pour u champio e lige Le jeu télévisé QPUC préseté sur FR3 et aimé par Julie Lepers existe aussi e variate «e lige». U jeu «e lige» se déroule aisi : Six iterautes disputet ue première mache dite

Plus en détail

( ) soit vraie, et on démontre ( ) elle est vraie. ( ) est vraie pour tout entier naturel n n 0

( ) soit vraie, et on démontre ( ) elle est vraie. ( ) est vraie pour tout entier naturel n n 0 Chapitre 1 : Les suites umériques I. Le raisoemet par récurrece 1. Présetatio Soit P( ) la propriété : «7 + 2 est divisible par 3». O veut vérifier que cette propriété est vraie pour tout etier aturel.

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

Cours et Exercices de Probabilités et Statistique descriptive Niveau Licence 1

Cours et Exercices de Probabilités et Statistique descriptive Niveau Licence 1 Cours et Exercices de Probabilités et Statistique descriptive Niveau Licece 1 U.F.R. Maths-Ifo i Prof. Auguste AMAN et Dr. Jea Marc OWO Table des matières I Statistique descriptive 1 1 Les doées statistiques

Plus en détail

Concours Communs Polytechniques - Session 2011 Corrigé de l épreuve d analyse- Filière MP

Concours Communs Polytechniques - Session 2011 Corrigé de l épreuve d analyse- Filière MP Cocours Commus Polytechiques - Sessio 11 Corrigé de l épreuve d aalyse- Filière MP Séries etières, équatios différetielles et trasformée de Laplace Corrigé par M.TRQI http://alkedy.1.m Eercice 1 1. La

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Chapitre 3 Détermination de la taille de l'échantillon

Chapitre 3 Détermination de la taille de l'échantillon Chapitre 3 Détermiatio de la taille de l'échatillo Lorsqu o prélève u échatillo pour estimer u paramètre, o court toujours le risque de découvrir u peu trop tard que l'échatillo prélevé est trop petit

Plus en détail

Probabilités. Poly des exercices. Prépa HEC Saint-Jean de Douai. Springer-Verlag ECS1 2007-2008. 4 septembre 2008

Probabilités. Poly des exercices. Prépa HEC Saint-Jean de Douai. Springer-Verlag ECS1 2007-2008. 4 septembre 2008 Prépa HEC Sait-Jea de Douai Probabilités Poly des exercices ECS1 2007-2008 Christia Skiada 4 septembre 2008 Spriger-Verlag Berli Heidelberg NewYork Lodo Paris Tokyo Hog Kog Barceloa Budapest Préface Voici

Plus en détail

Statistique descriptive bidimensionnelle

Statistique descriptive bidimensionnelle 1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets

Plus en détail

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski

Qu est-ce qu un bon énoncé de bac? Analyse de l exercice de spécialité de TS de Pondichéry 2013 Jacques Lubczanski Dossier : Actualité de l Aalyse e Lycée 447 Qu est-ce qu u bo éocé de bac? Aalyse de l exercice de spécialité de TS de Podichéry 2013 Jacques Lubczaski «Podichéry est tombé!» : cela ressemble à l aoce

Plus en détail

École de technologie supérieure

École de technologie supérieure École de techologie supérieure Mat 165-04 Algèbre liéaire et aalyse vectorielle A-015 Michel Beaudi michel.beaudi@etsmtl.ca Liste d exercices à faire e T.P./Caledrier des évaluatios Itroductio au cours

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR INFORMATIQUE DE GESTION

BREVET DE TECHNICIEN SUPÉRIEUR INFORMATIQUE DE GESTION BREVET DE TECHNICIEN SUPÉRIEUR INFORMATIQUE DE GESTION Optios : - Développeur d applicatios - Admiistrateur de réseaux locaux d etreprise SESSION 2011 SUJET ÉPREUVE E2 MATHÉMATIQUES I Durée : 3 heures

Plus en détail

SUITES (Partie 1) Dans l'exemple, si on suppose qu'un domino (k) tombe alors le domino suivant (k+1) tombe également.

SUITES (Partie 1) Dans l'exemple, si on suppose qu'un domino (k) tombe alors le domino suivant (k+1) tombe également. SUITES (Partie ) I. Raisoemet par récurrece ) Le pricipe C'est au mathématicie italie Giuseppe Peao (858 ; 93), ci-cotre, que l'o attribue le pricipe du raisoemet par récurrece. Le om a probablemet été

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

Informatique quantique IFT6155. Algorithmes simples

Informatique quantique IFT6155. Algorithmes simples Iformatique quatique IFT6155 Algorithmes simples 1 Calcul de foctios À chaque foctio f : X Y o peut associer ue opératio uitaire F x y := x y f(x) clairemet F = F, F F = I et F x 0 := x f(x) Si f est ue

Plus en détail

SAINT-CYR. MATHEMATIQUES 1 - Epreuve commune Options M, P, T, TA

SAINT-CYR. MATHEMATIQUES 1 - Epreuve commune Options M, P, T, TA SESSION 993 SAINT-CYR MATHEMATIQUES - Epreuve commue Optios M, P, T, TA PREMIÉRE PARTIE ) Les polyômes L 0,, L sot + polyômes de R [X] qui est de dimesio + Pour vérifier que la famille (L i ) 0 i est ue

Plus en détail

Décomposition en Série de Fourier Principe et Propriétés. par Vincent Choqueuse, IUT GEII

Décomposition en Série de Fourier Principe et Propriétés. par Vincent Choqueuse, IUT GEII Décompositio e Série de Fourier Pricipe et Propriétés par Vicet Choqueuse, IUT GEII . Problématique Problématique Cotexte : Les sigaux liés aux systèmes physiques, électriques, acoustiques,... peuvet préseter

Plus en détail

Cours de calcul stochastique Master M2 IRFA

Cours de calcul stochastique Master M2 IRFA 1 Cours de calcul stochastique Master M2 IRFA Christophe Chorro Septembre 26 $!!!$!!&!!(!!*!!#!!!#$!!#&!!"!!"#!"$!"%!"&!"'!"(!")!"*!"+ #"! #"# Les évetuelles fautes d orthographe, coquilles ou erreurs

Plus en détail

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6 Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

Chapitre 3: Réfraction de la lumière

Chapitre 3: Réfraction de la lumière 2 e B et C 3 Réfractio de la lumière 16 Chapitre 3: Réfractio de la lumière 1. Expériece 1 : tour de magie avec ue pièce de moaie a) Dispositio Autour d'ue petite boîte coteat ue pièce de 1 de ombreux

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015

Cours VII. Tests de randomisation - Tests de contingence P. Coquillard 2015 1 TESTS DE RANDOMISATION Cours VII. Tests de radomisatio - Tests de cotigece P. Couillard 2015 Das ue majorité de cas e biologie o cosidèrera certaies hyothèses comme des alteratives à l hyothèse ulle.

Plus en détail

Promenades aléatoires : vers les chaînes de Markov

Promenades aléatoires : vers les chaînes de Markov AME Dossier : Matrices et suites 545 romeades aléatoires : vers les chaîes de Markov ierre Griho (*) Cet article propose ue mise e perspective de la otio de promeade ou de marche aléatoire itroduite das

Plus en détail

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL

Corrigé du baccalauréat Polynésie 16 juin 2014 STI2D STL spécialité SPCL Corrigé du baccalauréat Polyésie 6 jui 4 STID STL spécialité SPCL EXERCICE 4 poits Cet eercice est u questioaire à choi multiples. Pour chacue des questios suivates, ue seule des quatre réposes proposées

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

Le raisonnement par récurrence, un outil puissant de démonstration

Le raisonnement par récurrence, un outil puissant de démonstration TS Le raisoemet par récurrece, u outil puissat de démostratio I. Itérêt ) Exemple 0 0 u est la suite défiie par u u 2u (suite récurrete ; suite «arithmético-géométrique» ; o e coaît pas l expressio du

Plus en détail

Mai 2016 2 heures et 30 minutes

Mai 2016 2 heures et 30 minutes Mai 6 heures et 3 miutes a) Défiir : matrice élémetaire Doer u exemple de matrice de IR 3x3 qui est élémetaire et expliquer pourquoi elle l est Commet utilise-t-o ue telle matrice pour effectuer ue opératio

Plus en détail