Automates Cellulaires et application à la physique

Dimension: px
Commencer à balayer dès la page:

Download "Automates Cellulaires et application à la physique"

Transcription

1 Automates Cellulaires et application à la physique Dominique d Humières Laboratoire de Physique Statistique de l École Normale Supérieure 24, rue Lhomond Paris cedex Introduction 2. Automates cellulaires 3. Gaz sur réseau 1

2 Introduction 1) Automate Un automate est un objet défini au temps t par: des entrées E(t) à valeur dans un ensemble fini {A e }; un état interne I(t) à valeur dans un ensemble fini {A i }; des sorties S(t) à valeur dans un ensemble fini {A s }; une application f de {A e } {A i } {A s }, telle que S(t) =f(e(t),i(t)); une application g de {A e } {A i } {A i }, telle que I(t )=g(e(t),i(t)) pour t >t. L automate est dit synchrone si t = t + δt, où δt est un pas de temps constant. 2) Réseau d automates Un ensemble d automates reliés entre eux 2

3 3) Automates cellulaires Un réseau d automates tous identiques disposés sur un réseau régulier et reliés entre eux par un graphe de connexions régulier. 1D: chaîne linéaire ou anneau; 2D: réseau carré ou triangulaire; 3D: réseau cubique; 4D: réseau hypercubique (1, 0, 0, 0) ou hypercubique face centré (1, 1, 0, 0); plus de 4D: réseau hypercubique; Le graphe de connexion usuellement choisi est tel que les entrées E( r) du site r proviennent des sorties des automates contenus dans un voisinage V donné: E( r) ={S( r + c)}, c V 3

4 Automates cellulaires à une dimension Les modèles étudiés considèrent en général le cas S = I avec S (0,...,b 1) et S(n, t +1)=Φ(S(n k, t),...,s(n + k, t)) avec Φ (0,...,b 1) Par exemple pour b =2etk =1 S(n, t +1)=Φ(S(n 1,t),S(n, t),s(n +1,t)) où Φ est défini par les 2 3 = 8 valeurs booléennes prises par Φ(0) à Φ(7). On peut ainsi construire 2 8 = 256 lois d évolution qui sont codées de manière canonique par 7 Φ(i)2 i. i=0 Ainsi la loi 90 correspond à Φ(1) = Φ(3) = Φ(4) = Φ(6) = 1 et Φ(i) =0pour les autres valeurs de i. 4

5 De manière plus générale le codage canonique est donné par b 2r+1 1 i=0 Φ(i)b i, ce qui correspond à b b2r+1 lois possibles ( lois pour b =2etr = 2). Automates totalisateurs Φnedépend plus des S(n + i, t) que par leur somme, ce qui réduit le nombre des automates à étudier à b (b 1)(2r+1)+1. classification proposée par Wolfram 1. évolution vers un point fixe; 2. évolution vers un état périodique ou des structures séparées; 3. évolution vers un état homogène désordonné ou fractal; 4. évolution vers des structures complexes de durées longues et imprévisibles. 5

6 Automates cellulaires à deux dimensions D2QR Automate totalisateur sur un réseau carré connecté aux premiers voisins avec la règle : une cellule change d état si elle a exactement deux voisins à 1. Modèle simpliste de spins 1/2. jeu de la vie Automate totalisateur sur un réseau carré connecté aux premiers et seconds voisins avec la règle S23C3: une cellule à 1 survit si elle a deux ou trois voisins à 1 (y compris elle même); une cellule à 0 naît (change d état) si elle a exactement trois voisins à 1. Comportement de type 4, avec points fixes, objets périodiques, planeurs, etc. 6

7 Gaz sur réseau Automates à2 b états internes et entrées et sorties booléennes avec règles de conservations. Représentation alternative: b particules booléennes se déplaçant de manière synchrone sur un réseau régulier avec des vitesses leur permettant de sauter d un site à un voisin et interagissant sur les sites en respectant des règles de conservation. modèle HPP (Hardy, de Pazzis et Pomeau) réseau carré; 4 vitesses (1, 0), (0, 1), ( 1, 0) et (0, 1); conservation du nombre de particules et de leur quantité de mouvement: seules collisions possibles (1, 0)+( 1, 0) (0, 1)+(0, 1) 7

8 HPP se comporte presque comme un fluide usuel, mais comporte quelques pathologies: la quantité de mouvement est conservée ligne par ligne: pas de dissipation d un cisaillement dans la direction perpendiculaire; anisotropie des équations de transport; modèle FHP (Frisch, Hasslacher et Pomeau) réseau triangulaire; 6 vitesses (1, 0), (1/2, 3/2), ( 1/2, 3/2), ( 1, 0), ( 1/2, 3/2) et (1/2, 3/2); conservation du nombre de particules et de leur quantité de mouvement. Ce modèle permet de retrouver les équations de la mécanique des fluides dans la limite des petits nombres de Mach. 8

9 Gaz sur réseau Un gaz sur réseau est défini par: un réseau régulier L = { r } à D dimensions; un ensemble de b vitesses { c i } reliant un site du réseau r à l un de ses voisins r + c i et possédant le même groupe de symétrie G que L; un champ booléen décrit par un vecteur à b composantes n( r,t )={n i ( r,t )}, n i ( r,t ) représentant l état interne de l automate associé à la vitesse c i au site r et au pas de temps t. L évolution de l automate est donnée par n i ( r + c i,t +1)=n i ( r,t )+ i (n( r,t )), (1) où le terme de collision i est un polynôme des n j : i = s,s (s i s i )a(s s ) j n s j j (1 n j) 1 s j, (2) où a(s s ) est une variable booléenne, égale à1 avec probabilité A(s s )età 0 avec probabilité (1 A(s s )). 9

10 Le processus de collision est décrit par la probabilité A(s s ) que l état d entrée s est changé enl état de sortie s avec les contraintes suivantes: 1. normalisation s A(s s )=1, s ; (3) 2. lois de conservation: p vecteurs à b composantes u a tels que A(s s )(s s) u a =0, a, s, s ; (4) correspondant aux lois de conservation du monde physique (masse, quantité de mouvement, énergie, espèces, etc.); 3. le même groupe de symétrie G que le réseau A(g(s) g(s ))=A(s s ), g G, s, s ; (5) 4. bilan détaillé A(s s )=A(s s), s, s. (6) ou bilan semi-détaillé s A(s s )=1, s. (7) 10

11 Vingt quatre vitesses sur un réseau hypercubique face centré à quatre dimensions: FCHC (d Humières, Lallemand, Frisch, Europhys. Lett. 2, 291 (1986)) états! Équations Hydrodynamiques Les variables booléennes n i sont remplacées par leur valeurs moyennes N i = n i qui évoluent comme l équation (1) moyennée: N i ( r + c i,t +1)=N i ( r,t )+ i (n( r,t )). (8) Dans l approximation de Boltzmann, toutes les correlations entre sites sont negligées et C i s,s (s i s i )A(s s ) j N s j j (1 N j) 1 s j i (n). (9) 11

12 Pour les modèles avec conservation de la masse et de la quantité de mouvement et pour des particules de même masse et même vitesse: u 0 = 1 =(1,...,1) et u α = c α =(c 1α,...,c bα ). Soit Q iαβ = c iα c iβ c2 D δ αβ, (10) et les vecteurs à b composantes correspondant Q αβ =(Q iαβ ). 1, c α, and Q αβ sont D(D +3)/2 vecteurs orthogonaux deux à deux. La densité ρ, la quantité de mouvement j, et le tenseur des contraintes visqueuses (S αβ ) sont donnés par ρ = N 1 = ρu α = j α = N c α = S αβ = N Q αβ = i i i N i, (11) c iα N i, (12) Q iαβ N i. (13) 12

13 En utilisant le bilan semi-détaillé, il est possible de démontrer qu un état homogène évolue vers un état d équilibre décrit par une distribution de Fermi-Dirac N eq i = exp(a + b c i ), (14) où a et b sont déterminés à partir des quantités conservées ρ et j. Après linéarisation de l opérateur de collision (C i ) autour de la distribution d équilibre pour j = 0,il vient N i ( r + c i,t +1) = N i ( r,t ) (A(N N eq )( r,t )) i, (15) où f = ρ/b et A =(A ij ) est l opérateur de collision linéarisé: A ij = 1 2 s,s (s i s i )(s j s j )A(s s ) f q 1 (1 f) b q 1, où q = s i i est le nombre total de particules de l état s. (16) 13

14 Les lois de conservation donnent directement A 1 = A c α =0. (17) Pour un gaz sur réseau à une vitesse avec suffisamment de symétries, les Q αβ sont des vecteurs propres de A: A Q αβ = λ B Q αβ, αβ, (18) où la valeur propre positive λ B depend des details des règles de collision.. Les étapes finales sont un développement de Taylor de l équilibre de Fermi-Dirac pour les petites vitesses, suivit d un développement de Chapman-Enskog. On montre alors que la dynamique des gaz sur réseau suit approximativement les équations macroscopiques suivantes: t ρ + (ρ u) = 0, t (ρu α )+ β (g(ρ)ρu α u β ) = c 2 s α ρ + ν (ρu α ) + ( 1 g(ρ) u2 c 2 ) ν(d 2) α ( (ρ u)). D 14

15 Avantages stables, rapides (au moins à deux dimensions). Inconvénients faibles nombres de Mach, plage limitée des valeurs des coefficients de transport, bruit, difficiles à implémenter à trois dimensions, invariants parasites. 15

16 Bibliographie S. Wolfram, Theory and applications of cellular automata (World Scientific 1986). T. Toffoli et N. Margolus, Cellular automata machines: a new environment for modeling (MIT Press 1987). G. Weisbuch, Dynamique des systèmes complexes: une introduction aux réseau d automates (InterÉdition 1989). Lattice gas methods for Partial Differential equations, édité par G. D. Doolen (Addison-Weysley 1990). D. d Humières et G. Weisbuch, Réseaux d automates, Images de la Physique 59, (1985). D. d Humières, Y. Pomeau et P. Lallemand, Une nouvelle méthode de simulation numérique en mécanique des fluides: les gaz sur réseau., Images de la Physique 68, (1987). 16

17 J.P. Boon, U. Frisch, et D.d Humières, Lhydrodynamique sur réseaux d automates., La Recherche 253, (1993). L. F. Gray, A reader s guide to Gács s Positive Rates paper, J. Stat. Phys. 103, 1 44 (2001). P. Gács, Reliable cellular automata with self-organization, J. Stat. Phys. 103, (2001). Sites Web keithw/strangeuniverse.html eppstein/ca/ 17

Francois Dubois 1 UNE INTRODUCTION AU SCHÉMA DE BOLTZMANN SUR RÉSEAU. ESAIM: PROCEEDINGS, July 2007, Vol.18,

Francois Dubois 1 UNE INTRODUCTION AU SCHÉMA DE BOLTZMANN SUR RÉSEAU. ESAIM: PROCEEDINGS, July 2007, Vol.18, ESAIM: PROCEEDINGS, July 007, Vol.18, 181-15 Jean-Frédéric Gerbeau & Stéphane Labbé, Editors UNE INTRODUCTION AU SCHÉMA DE BOLTZMANN SUR RÉSEAU Francois Dubois 1 Abstract. We propose an elementary introduction

Plus en détail

Statistiques - Ajustement de courbes

Statistiques - Ajustement de courbes Statistiques - Ajustement de courbes 1 Rappels de Statistiques 1.1 Moyenne, variance, écart-type Soit une série statistique : x 1, x 2, x n (n valeurs) Moyenne x = 1 n x i n i=1 Somme des carrés des écarts

Plus en détail

Des particules vers la mécanique des fluides

Des particules vers la mécanique des fluides Des particules vers la mécanique des fluides Diogo Arsénio Institut de Mathématiques Université Paris Diderot Mathématiques en mouvement Université Paris Descartes 5 juin 013 Le sixième problème de Hilbert

Plus en détail

P i,k P k,j P (2) Le calcul du carré de la matrice P! P (2) = P 2 p. 1/1. i,j = k=1

P i,k P k,j P (2) Le calcul du carré de la matrice P! P (2) = P 2 p. 1/1. i,j = k=1 Calculs exacts et asymptotiques Calcul exact des probabilités de transition en plusieurs étapes La probabilité d une transition de l état i à l état j dans 2 transitions est la somme pour tout k de la

Plus en détail

Chapitre II Oscillations libres amorties des systèmes à un seul degré

Chapitre II Oscillations libres amorties des systèmes à un seul degré Chapitre II Oscillations libres amorties des systèmes à un seul degré de liberté 1. Introduction : Oscillations libres amortis des mouvements oscillatoires dont l amplitude diminue au cours du temps jusqu

Plus en détail

Introduction à la turbulence

Introduction à la turbulence Introduction à la turbulence F. Ravelet Laboratoire DynFluid, Arts et Métiers-ParisTech 31 octobre 2015 Notions importantes sur la turbulence Expérience de Reynolds : écoulement de Poiseuille cylindrique.

Plus en détail

Formation à la Modélisation et à l Identification du Comportement Mécanique des Matériaux

Formation à la Modélisation et à l Identification du Comportement Mécanique des Matériaux Formation à la Modélisation et à l Identification du Comportement Mécanique des Matériaux OBJECTIF Il s agit ici de mécanique appliquée aux matériaux : métaux et alliages, polymères, céramiques et composites.

Plus en détail

Introduction à la physique des plasmas

Introduction à la physique des plasmas à la physique des plasmas S. Mazevet Laboratoire de Structure Electronique Département de Physique Théorique et Appliquée Commissariat à l Energie Atomique Bruyères-Le-Châtel, France p-1/21 Table of contents

Plus en détail

Plan. Le principe d équivalence. système de particules. Énoncé du principe. Les forces gravitationnelles

Plan. Le principe d équivalence. système de particules. Énoncé du principe. Les forces gravitationnelles 1 / 34 Plan 2 / 34 Énoncé du principe Le principe d équivalence Erwan Penchèvre 24 mars 2015 Les forces gravitationnelles Relation entre la métrique et la connexion affine Approximation classique Ralentissement

Plus en détail

VI ème Congrès International sur les Energies Renouvelables et l Environnement

VI ème Congrès International sur les Energies Renouvelables et l Environnement EVALUATION DE MODÈLES DE TURBULENCE RELATIFS AUX TENSEURS DE PRESSION DÉFORMATION ET DE DISSIPATION DANS LE CADRE D UNE TURBULENCE COMPRESSIBLE NAJIB FAKRAOUI 1 ; HECHMI KHLIFI 2 1. Faculté des sciences

Plus en détail

Le Saut de Felix Baumgartner

Le Saut de Felix Baumgartner Le Saut de Felix Baumgartner David Doyen - Olivier Sester Université Paris Est-Marne la Vallée 15 janvier 2014 David Doyen - Olivier Sester (UPEMLV) Le Saut de Felix Baumgartner 15 janvier 2014 1 / 19

Plus en détail

Physique statistique

Physique statistique 1 Cours Sciences Physiques MP Physique statistique La Thermodynamique statistique a pour ambition de considérer les entités microscopiques qui constituent la matière comme les atomes, les molécules, les

Plus en détail

1. Familles de vecteurs

1. Familles de vecteurs Compléments d algèbre linéaire 1-1 Sommaire 1 Familles de vecteurs 1 11 Famille libre 1 1 Famille génératrice 1 13 Base 14 Propriétés Sous-espaces vectoriels 1 Somme de sous-espaces vectoriels Base adaptée

Plus en détail

Thermodynamique et systèmes réactionnels : du rêve à la réalité. Denis Dochain CESAME Université catholique de Louvain, Belgique

Thermodynamique et systèmes réactionnels : du rêve à la réalité. Denis Dochain CESAME Université catholique de Louvain, Belgique Thermodynamique et systèmes réactionnels : du rêve à la réalité Denis Dochain CESAME Université catholique de Louvain, Belgique La thermodynamique est-elle utile pour l analyse des systèmes réactionnels?

Plus en détail

La loi d Ohm et l effet Joule (Cours X et XI)

La loi d Ohm et l effet Joule (Cours X et XI) La loi d Ohm et l effet Joule (Cours X et XI) Dans un métal, les électrons de conduction sont libres de se déplacer. Comme pour les molécules d un gaz, ils sont animés d un mouvement erratique et changent

Plus en détail

Université de Nice Sophia-Antipolis Licence L3 Mathématiques Année 2008/2009. Analyse Numérique. Corrigé du TD 7. EXERCICE 1 Normes vectorielles

Université de Nice Sophia-Antipolis Licence L3 Mathématiques Année 2008/2009. Analyse Numérique. Corrigé du TD 7. EXERCICE 1 Normes vectorielles Analyse Numérique Corrigé du TD 7 EXERCICE Normes vectorielles Définitions Soit un entier n > 0 a Montrer que les applications suivantes définies sur R n sont des normes sur R n, x x x i, x x x i, x x,,n

Plus en détail

Physique Statistique

Physique Statistique Paris 7 PH 402 2002 03 Physique Statistique EXERCICES Feuille 7 : Statistiques quantiques 1 Gaz de fermions ultra-relativistes On considère un gaz de fermions libres et indépendants de masse m et de spin

Plus en détail

Support Vecteurs Machine

Support Vecteurs Machine Support Vecteurs Machine Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Support Vecteurs Machine IUP SID 2011-2012 1 / 20 Plan

Plus en détail

Correction Maths Epreuve B 2017, Banque PT. Questions de cours. n X k (1 X ) n k k. = (X + (1 X )) n

Correction Maths Epreuve B 2017, Banque PT. Questions de cours. n X k (1 X ) n k k. = (X + (1 X )) n Correction Maths Epreuve B 7, Banque PT Questions de cours. On a d après la formule du binôme de Newton B k,n X = k= k= n X k X n k k = X + X n =.. a D après le cours cette loi s appelle loi binomiale

Plus en détail

Dimensionnement d un barrage

Dimensionnement d un barrage Dimensionnement d un barrage en l honneur des 12 ans de l article pionnier de Maurice Lévy 1 On se propose d étudier, dans l hypothèse des petites perturbations, l équilibre d un barrage constitué d un

Plus en détail

Pierre BOUTELOUP. Les paragraphes I, II, et III sont très largement indépendants. I INTERACTION ÉLECTRIQUE DE DEUX ATOMES D HÉLIUM

Pierre BOUTELOUP. Les paragraphes I, II, et III sont très largement indépendants. I INTERACTION ÉLECTRIQUE DE DEUX ATOMES D HÉLIUM Pierre BOUTELOUP Les paragraphes I, II, et III sont très largement indépendants. I INTERACTION ÉLECTRIQUE DE DEUX ATOMES D HÉLIUM Lorsque un atome est soumis à un champ électrique, les fonctions d ondes

Plus en détail

Transferts de chaleur et de masse : Objectifs

Transferts de chaleur et de masse : Objectifs Convection Objectifs Transferts de chaleur et de masse : Objectifs Faire comprendre les mécanismes de transferts par convection Metter en évidence et présenter des outils de calcul des transferts par convection

Plus en détail

Approximation particulaire d une méthode adaptative de calcul d énergie libre

Approximation particulaire d une méthode adaptative de calcul d énergie libre Approximation particulaire d une méthode adaptative de calcul d énergie libre Raphaël Roux Travail en commun avec Benjamin Jourdain et Tony Lelièvre CERMICS ENPC & Projet MicMac INRIA Journées MAS - 29

Plus en détail

Information Quantique Corrigé de l examen du 21 Mai 2012

Information Quantique Corrigé de l examen du 21 Mai 2012 ENSEIRB-MATMECA Option second semestre, / Notation : la note finale est min(,note-ex+note-ex). Information Quantique Corrigé de l examen du Mai Exercice (/ pts) Circuits quantiques. - On cherche une matrice

Plus en détail

Chapitre 4 : Méthode des moindres carrés

Chapitre 4 : Méthode des moindres carrés Chapitre 4 : Méthode des moindres carrés Table des matières 1 Introduction 2 11 Généralités 2 12 Notion de modèle et de regression linéaire multiple 2 2 Critère des moindres carrés - formulation 2 21 Critère

Plus en détail

Modélisation, étude mathématique et simulation des collisions dans les fluides complexes

Modélisation, étude mathématique et simulation des collisions dans les fluides complexes Soutenance de Thèse Modélisation, étude mathématique et simulation des collisions dans les fluides complexes Céline Baranger Directeur de thèse : Laurent Desvilletttes CMLA, ENS de Cachan & UMR 8536 du

Plus en détail

Michel Rioux, ing., M.Ing. Directeur Génie des opérations et de la logistique (514) GOL675 Planification et

Michel Rioux, ing., M.Ing. Directeur Génie des opérations et de la logistique (514) GOL675 Planification et Michel Rioux, ing., M.Ing. Directeur Génie des opérations et de la logistique (514) 396-8617 michel.rioux @etsmtl.ca Planification et optimisation d expériences Chapitre 11 - Méthodes et plans de surfaces

Plus en détail

Introduction à la simulation numérique

Introduction à la simulation numérique Introduction à la simulation numérique Edwige Godlewski et Alexandra Claisse Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie - Paris 6 ENS, 23 avril 2008 Les étapes Modélisation (physique,

Plus en détail

Physique Statistique

Physique Statistique Paris 7 PH 402 2002 03 Physique Statistique EXERCICES Feuille 3 : Distribution microcanonique 1 Défauts de Frenkel Les N atomes qui constituent un cristal parfait sont régulièrement disposés sur les N

Plus en détail

Mécanique des milieux continus

Mécanique des milieux continus Mécanique des milieux continus Séance 4 : Calcul pratique des déformations Guilhem MOLLON GEO3 2012-2013 Plan de la séance A. Hypothèse des petites perturbations B. Tenseur des déformations linéarisées

Plus en détail

Mécanique des milieux continus

Mécanique des milieux continus Mécanique des milieux continus Séance 6 : Contraintes Guilhem MOLLON GEO3 2012-2013 Plan de la séance A. Théorème de Cauchy B. Directions principales, invariants C. Cercle de Mohr 1. Principe 2. Contrainte

Plus en détail

Convection de Rayleigh-Bénard

Convection de Rayleigh-Bénard Article Pédagogique Multimedia O. Thual, APM-INPT thu-rayben (2006) Convection de Rayleigh-Bénard Cet article pédagogique a pour but de présenter la notion d instabilité sur l exemple de la convection

Plus en détail

Le problème de la turbulence 2D est celui de la dynamique d un fluide gouverné par les équations de Navier-Stokes 2D :

Le problème de la turbulence 2D est celui de la dynamique d un fluide gouverné par les équations de Navier-Stokes 2D : Chapitre 3 ynamique de la vorticité Introduction Un certain nombre d alignements remarquables entre la direction de la vorticité et les directions propres de la matrice d étirement, d une part et de la

Plus en détail

Fonctions réelles de deux variables. () Fonctions réelles de deux variables 1 / 50

Fonctions réelles de deux variables. () Fonctions réelles de deux variables 1 / 50 Fonctions réelles de deux variables () Fonctions réelles de deux variables 1 / 50 1 Fonctions de deux variables réelles à valeurs dans R 2 Calcul différentiel 3 Extrema d une fonction de deux variables

Plus en détail

Cours 2 Champ électrique PHY332

Cours 2 Champ électrique PHY332 Cours 2 Champ électrique PHY332 1. Rappel Introduction 2. Notion de champ 3. Champ électrique d une charge ponctuelle 4. Distribution de charges 5. Les conducteurs 6. Mouvement d une particule chargée

Plus en détail

MATRICES. x + a f. x y + a 2 f. ) f( k ) ) = (N(F k+1 F k ) 0 k N 1 ).

MATRICES. x + a f. x y + a 2 f. ) f( k ) ) = (N(F k+1 F k ) 0 k N 1 ). MATRICES CCP 2, MATHÉMATIQUES 2, MP À PROPOS DU PRÉAMBULE Le préambule évoque des équations aux dérivées partielles elliptiques Ce sont des équations linéaires homogènes d ordre 2 Par exemple, dans le

Plus en détail

Mécanique et Thermodynamique galiléenne des milieux continus. 1 Chapitre 1 : Gravitation et tenseurs affines en Mécanique galiléenne

Mécanique et Thermodynamique galiléenne des milieux continus. 1 Chapitre 1 : Gravitation et tenseurs affines en Mécanique galiléenne 5ème Ecole d Eté de Mécanique Théorique de Quiberon, 11-17 septembre 2016 Mécanique et Thermodynamique galiléenne des milieux continus Géry de Saxcé Laboratoire de Mécanique de Lille, FRE CNRS 3723, Université

Plus en détail

Application de la méthode des frontières immergées aux équations de Navier-Stokes

Application de la méthode des frontières immergées aux équations de Navier-Stokes Application de la méthode des frontières immergées aux équations de Navier-Stokes Joris Picot Stéphane Glockner Thomas Milcent Delphine Lacanette GdT I2M TREFLE 17 décembre 2015 Planches restantes : 26

Plus en détail

Avant-propos 3. 1 Principes fondamentaux Conservation de la masse Le fluide newtonien Dissipation d énergie...

Avant-propos 3. 1 Principes fondamentaux Conservation de la masse Le fluide newtonien Dissipation d énergie... Table des matières Avant-propos 3 1 Principes fondamentaux 15 1.1 Conservation de la masse......................... 16 1.2 Équation du mouvement.......................... 16 1.3 Le fluide newtonien.............................

Plus en détail

COURANT CONTINU : LES LOIS GENERALES

COURANT CONTINU : LES LOIS GENERALES CORNT CONTN : LE LO GENERLE Le courant électrique 1) Déplacement des charges électriques Le courant électrique est la manifestation du déplacement de charges électriques. Le sens conventionnel du courant

Plus en détail

IFT 3740 & IFT 6845 Animation par Ordinateur 6. Simulation dynamique et collisions. Département d informatique et de recherche opérationelle

IFT 3740 & IFT 6845 Animation par Ordinateur 6. Simulation dynamique et collisions. Département d informatique et de recherche opérationelle IFT 3740 & IFT 6845 Animation par Ordinateur 6. Simulation dynamique et collisions Sébastien Roy Département d informatique et de recherche opérationelle Université de Montréal été 2005 En bref Simulation

Plus en détail

Feuille 5. f(t)g(t)dt. Montrer que pour toute fonction continue f : [0, 1] R on a. 1 f 2 (t)dt. f(t)dt)

Feuille 5. f(t)g(t)dt. Montrer que pour toute fonction continue f : [0, 1] R on a. 1 f 2 (t)dt. f(t)dt) Licence Math. Appliquées 2004-05 Géométrie Feuille 5 Exercice 1. Produits scalaires. 1) Soit E un espace vectoriel réel de dimension finie. Dans chacun des cas suivants, justifier que la formule proposée

Plus en détail

École Normale Supérieure, École Polytechnique, Paris VI, VII et XI M2 CFP Parcours de physique théorique Examen de Physique Statistique

École Normale Supérieure, École Polytechnique, Paris VI, VII et XI M2 CFP Parcours de physique théorique Examen de Physique Statistique École Normale Supérieure, École Polytechnique, Paris VI, VII et XI M2 CFP Parcours de physique théorique Examen de Physique Statistique le 5 janvier 2010 Durée : 3 heures Notes de cours et de TD autorisées.

Plus en détail

Exercice I.1 Montrer que la somme de vecteurs et le produit d un vecteur par un nombre réel donnent à IR 3 une structure d espace vectoriel sur IR.

Exercice I.1 Montrer que la somme de vecteurs et le produit d un vecteur par un nombre réel donnent à IR 3 une structure d espace vectoriel sur IR. Exercices avec corrigé succinct du chapitre 1 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qui apparaissent dans ce texte sont bien définis dans la version

Plus en détail

Modélisation du bain de soudage pour le procédé TIG (Tungsten Inert Gas)

Modélisation du bain de soudage pour le procédé TIG (Tungsten Inert Gas) (Tungsten Inert Gas) Michel Brochard Club Cast3M 006 Club Cast3M 006 Sommaire Le soudage (Tungsten Inert Gas) Club Cast3M 006 Le procédé Exemples de pour l acier 4 mm 3 Introduction: Pourquoi modéliser

Plus en détail

Une approximation de la probabilité de ruine ultime du modèle de ruine de Cramer-Lundberg via un développement polynomial

Une approximation de la probabilité de ruine ultime du modèle de ruine de Cramer-Lundberg via un développement polynomial Une approximation de la probabilité de ruine ultime du modèle de ruine de Cramer-Lundberg via un développement polynomial P.O. Goffard 1 X. Guerrault 2 S. Loisel 3 D. Pommerêt 4 1 Axa France - Institut

Plus en détail

Chapitre VI. Introduction. Lois de conservation

Chapitre VI. Introduction. Lois de conservation Chapitre VI COLLISIONS VIA Introduction Nous étudierons au chapitre VII le mouvement de deux points matériels tout au long de leur interaction Dans le cas de deux corps M et M quelconques (p ex deux solides

Plus en détail

Étude des fonctions polynômes du second degré

Étude des fonctions polynômes du second degré Étude des fonctions polynômes du second degré Définitions Définition d une fonction polynôme de degré 2 Une fonction, définie sur est une fonction polynôme de degré 2 lorsqu il existe trois réels et avec

Plus en détail

Université Paris-Dauphine Ceremade. Introduction aux méthodes particulaires. François BOLLEY

Université Paris-Dauphine Ceremade. Introduction aux méthodes particulaires. François BOLLEY Université Paris-Dauphine Ceremade o Introduction aux méthodes particulaires o François BOLLEY I - Les équations d Euler incompressibles : modèle macroscopique, particules déterministes II - L équation

Plus en détail

Module Complémentaire Poursuites études

Module Complémentaire Poursuites études 1/39 Diagonalisation Suites numériques Series Intégrales curvilignes Intégrales de surface Module Complémentaire Poursuites études Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/

Plus en détail

Particules identiques en mécanique quantique

Particules identiques en mécanique quantique Le cours PH432 7 blocs de mécanique quantique + 11 blocs de physique statistique sondage en ligne cette semaine Particules identiques en mécanique quantique Chapitre 16 http://www.enseignement.polytechnique.fr/physique/

Plus en détail

CHAPITRE III LE MODELE QUANTIQUE DE L'ATOME

CHAPITRE III LE MODELE QUANTIQUE DE L'ATOME CHAPITRE III LE MODELE QUANTIQUE DE L'ATOME 1 INTRODUCTION Le début de ce siècle a vu la naissance d'une nouvelle mécanique adaptée à ces objets minuscules. Cette nouvelle mécanique à reçut le nom de mécanique

Plus en détail

Leçons d analyse et probabilités

Leçons d analyse et probabilités Leçons d analyse et probabilités 201 : Étude de suites numériques définies par différents types de récurrence. Applications. 202 : Séries à termes réels positifs. Applications. 203 : Séries à termes réels

Plus en détail

CONTRAINTES. Nous considérons un solide Ω en cours de déformation, nous isolons une partie

CONTRAINTES. Nous considérons un solide Ω en cours de déformation, nous isolons une partie CONTRAINTES 1 Tenseur des contraintes 1.1 Hypothèses de base Nous considérons un solide Ω en cours de déformation, nous isolons une partie Ω A de ce solide, et nous analysons les efforts agissant sur cette

Plus en détail

La thermodynamique traite de l énergie et de ses transformations, en particulier chaleur travail mécanique

La thermodynamique traite de l énergie et de ses transformations, en particulier chaleur travail mécanique 5. THERMODYNAMIQUE 5.1 Introduction La thermodynamique traite de l énergie et de ses transformations, en particulier chaleur travail mécanique Les principes thermodynamiques expriment des restrictions

Plus en détail

Matrices symétriques réelles. Exercice 2 Le produit de deux matrices symétriques réelles est-il symétrique? R n = ker (u) Im (u)

Matrices symétriques réelles. Exercice 2 Le produit de deux matrices symétriques réelles est-il symétrique? R n = ker (u) Im (u) Matrices symétriques réelles 1 Préliminaires On se place dans (R n, ) euclidien, le produit scalaire canonique étant défini par : (x, y) R n R n, x y = t x y = x k y k On note : M n (R) l algèbres des

Plus en détail

École Nationale Supérieure de Techniques Avancées module : Commande des Systèmes. examen du cours B7 1 Filtrage bayésien et approximation particulaire

École Nationale Supérieure de Techniques Avancées module : Commande des Systèmes. examen du cours B7 1 Filtrage bayésien et approximation particulaire École Nationale Supérieure de Techniques Avancées module : Commande des Systèmes examen du cours B7 1 Filtrage bayésien et approximation particulaire lundi 18 octobre 2010, 8:30 à 10:30 Exercice 1 : L

Plus en détail

Initiation aux processus : Chaînes de Markov (solutions)

Initiation aux processus : Chaînes de Markov (solutions) Initiation aux processus : Chaînes de Markov (solutions) Fabrice Rossi 8 février Espace d état fini. Exercice.. Question Pour représenter la chaîne, on choisit de numéroter les états de à, dans l ordre

Plus en détail

Méthodes de résolution des équations. différentielle linéaire, est :

Méthodes de résolution des équations. différentielle linéaire, est : Méthodes de résolution des équations différentielles linéaires Table des matières 1 Résolution d équations différentielles du 1er ordre 1 1.1 Equations différentielles linéaires sans second membre.......................

Plus en détail

Le MOSFET. Chapitre Opération DC Courant de drain

Le MOSFET. Chapitre Opération DC Courant de drain Chapitre 3 Le MOSFET On présente ici un résumé de l opération du MOSFET. On parlera aussi un peu du calcul des capacitances, ainsi que certaines méthodes pour résoudre les problèmes reliés au FETs. 3.1

Plus en détail

Exercices de Statistiques

Exercices de Statistiques Exercices de Statistiques 1. Ajustement d une droite On cherche à ajuster, par régression linéaire, la droite d équation y = β 0 + β 1 x aux données suivantes : x y 1 2 2 4 3 5 (a) Tracer les points et

Plus en détail

Table des matières. Cours. Méthodes. Entraînement Corrigés Chapitre 1 Les trinômes du second degré 11

Table des matières. Cours. Méthodes. Entraînement Corrigés Chapitre 1 Les trinômes du second degré 11 Table des matières Chapitre 1 Les trinômes du second degré 11 I. Les trinômes du second degré : caractérisation... 1 II. Variations des fonctions trinôme du second degré... 13 III. Représentation graphique...

Plus en détail

Équations de Navier-Stokes

Équations de Navier-Stokes Chapitre 8 Équations de Navier-Stokes O. Thual, 26 mai 2013 Sommaire 1 Fluides newtoniens................... 2 1.1 Rhéologie des fluides newtoniens........... 2 1.2 Conditions aux limites................

Plus en détail

Dynamique des gaz, volumes finis et moment cinétique

Dynamique des gaz, volumes finis et moment cinétique 6 Dynamique des gaz, volumes finis et moment cinétique Après avoir remarqué que les équations de la dynamique des gaz conservent le moment cinétique, nous proposons un nouveau schéma de volumes finis pour

Plus en détail

ENSTA - COURS MS 204 DYNAMIQUE DES SYSTÈMES MÉCANIQUES : ONDES ET VIBRATIONS

ENSTA - COURS MS 204 DYNAMIQUE DES SYSTÈMES MÉCANIQUES : ONDES ET VIBRATIONS ENSTA - COURS MS 204 DYNAMIQUE DES SYSTÈMES MÉCANIQUES : ONDES ET VIBRATIONS Amphi 1 EQUIPE PÉDAGOGIQUE Cours : Cyril Touzé Petites classes : Jean Boisson Corinne Rouby Marine Bayard Cyril Touzé Exemples

Plus en détail

MT23-Algèbre linéaire

MT23-Algèbre linéaire MT23-Algèbre linéaire Chapitre 5 : Espaces euclidiens ÉQUIPE DE MATHÉMATIQUES APPLIQUÉES UTC juillet 2014 suivant Chapitre 5 Espaces Euclidiens et applications 5.1 Produit scalaire, norme, espace euclidien....................

Plus en détail

1 Invariance de jauge

1 Invariance de jauge M2 Physique Théorique Invariances en physique et théorie des groupes Opérateurs de translation magnétique et invariance de jauge 1 Invariance de jauge rappel: E r, t) = U r, t) A r, t) t B r, t) = A r,

Plus en détail

MATHÉMATIQUES I : Algèbre linéaire et calcul MAT102 VIRGINIE CHARETTE DÉPARTEMENT DE MATHÉMATIQUES UNIVERSITÉ DE SHERBROOKE

MATHÉMATIQUES I : Algèbre linéaire et calcul MAT102 VIRGINIE CHARETTE DÉPARTEMENT DE MATHÉMATIQUES UNIVERSITÉ DE SHERBROOKE MATHÉMATIQUES I : Algèbre linéaire et calcul MAT102 VIRGINIE CHARETTE DÉPARTEMENT DE MATHÉMATIQUES UNIVERSITÉ DE SHERBROOKE Hiver 2009 Remarques sur le texte. 1- Les définitions principales et les théorèmes

Plus en détail

Code HADES 2D / Simulation de jets d étoile jeune H. C. NGUYEN. LUTH, le 14 Juin 2010

Code HADES 2D / Simulation de jets d étoile jeune H. C. NGUYEN. LUTH, le 14 Juin 2010 Code HADES 2D / Simulation de jets d étoile jeune H. C. NGUYEN LUTH, le 14 Juin 2010 Jet d étoile jeune la vitesse des centaines de km/s (nombre de Mach M très élevé) ; la longueur 10 4 ua ; la durée de

Plus en détail

Concours National Commun d admission aux Grandes Écoles d Ingénieurs ou assimilées Session 2007

Concours National Commun d admission aux Grandes Écoles d Ingénieurs ou assimilées Session 2007 ROYAUME DU MAROC Ministère de l Éducation Nationale, de l Enseignement Supérieur, de la Formation des Cadres et de la Recherche Scientifique Présidence du Concours National Commun École Supérieure d Électricité

Plus en détail

Ingénierie des procédés

Ingénierie des procédés Ingénierie des procédés Pascaline Chevrel Avril 006 Mathieu Gillard Laleh Tcharkhtchi Introduction Le sujet nous propose de déterminer un matériau (bauxite particulière ou mélange de bauxites) pouvant

Plus en détail

Systèmes dynamiques et modélisation des

Systèmes dynamiques et modélisation des Systèmes dynamiques et modélisation des tumeurs cérébrales Christophe DEROULERS 8 février 2008 Plan Le laboratoire IMNC Modélisation du glioblastome Modélisation par de la diffusion non linéaire Conclusion

Plus en détail

Mécanique des solides déformables: TD4

Mécanique des solides déformables: TD4 Mécanique des solides déformables: TD4 2016 1 Loi de comportement 1.1 Rappel de cours : Pour un solide élastique, homogène et isotrope, la relation entre déformation et contrainte s écrit, en élasticité

Plus en détail

Modélisation des transferts thermiques couplés à l aide de la méthode de Boltzmann sur réseau.

Modélisation des transferts thermiques couplés à l aide de la méthode de Boltzmann sur réseau. Modélisation des transferts thermiques couplés à l aide de la méthode de Boltzmann sur réseau. A. Mezrhab a,*, H. Naji b a Faculté des Sciences, Département de Physique, Laboratoire de Mécanique & Energétique,

Plus en détail

Université de Metz. Licence de Mathématiques - 2ème année 1er semestre CALCUL DIFFERENTIEL

Université de Metz. Licence de Mathématiques - 2ème année 1er semestre CALCUL DIFFERENTIEL Université de Metz Licence de Mathématiques - 2ème année 1er semestre CALCUL DIFFERENTIEL par Ralph Chill Laboratoire de Mathématiques et Applications de Metz Année 2010/11 1 Table des matières Chapitre

Plus en détail

DNS. Centrifugeuse. Sujet. G.P. DNS08 Décembre Centrifugeuse...1 I.Cinématique...2 II.Écriture du principe fondamental...2 III.Résolution...

DNS. Centrifugeuse. Sujet. G.P. DNS08 Décembre Centrifugeuse...1 I.Cinématique...2 II.Écriture du principe fondamental...2 III.Résolution... DNS Sujet Centrifugeuse...1 I.Cinématique...2 II.Écriture du principe fondamental...2 III.Résolution...3 Centrifugeuse Une centrifugeuse est un appareil destiné à séparer la phase solide d une suspension

Plus en détail

Comportement des Matériaux : Grandes Déformations

Comportement des Matériaux : Grandes Déformations Comportement des Matériaux : Grandes Mars 2013 s Cantournet Sabine sabine.cantournet@mines-paristech.fr hyper.1 Intérêt des Grandes Def? Quelques dommaines d applications Les instabilités de structures

Plus en détail

Chapitre 5 ESTIMATION ET INTERVALLES DE CONFIANCE

Chapitre 5 ESTIMATION ET INTERVALLES DE CONFIANCE Thierry Foucart 1 http://foucart.thierry.free.fr Chapitre 5 ESTIMATION ET INTERVALLES DE CONFIANCE 1. DES PROBABILITÉS À LA STATISTIQUE. hypothèse intuitive élaborée à partir d expériences diverses : convergence

Plus en détail

Régression linéaire et non linéaire

Régression linéaire et non linéaire Régression linéaire et non linéaire Mark Asch Septembre 2010 TADE - EDSS, UPJV 2010-11 1 Régression linéaire 1.1 La droite de moindres carrés Le problème suivant est souvent rencontré dans tous les domaines

Plus en détail

Introduction aux problèmes mal posés.

Introduction aux problèmes mal posés. Introduction aux problèmes mal posés. Lionel Ségui GdT Ignotus LAAS-CNRS 18 janvier 2007 Qu est-ce qu un problème bien posé? La notion de problème bien posé (Hadamard). Soit A : U X Y un opérateur, X et

Plus en détail

Ondes planes dans les solides

Ondes planes dans les solides Ondes planes dans les solides par Vincent Laude Institut FEMTO-ST, département MNS équipe MINANO «Micro-Instrumentation, NANosciences et Ondes» 3 avenue de l Observatoire F-5044 Besançon Email: vincent.laude@femto-st.fr

Plus en détail

THERMODYNAMIQUE APPLIQUÉE PARTIE 2 BILAN D ÉNERGIE APPLIQUÉ AUX SYSTÈMES OUVERTS

THERMODYNAMIQUE APPLIQUÉE PARTIE 2 BILAN D ÉNERGIE APPLIQUÉ AUX SYSTÈMES OUVERTS THERMODYNAMIQUE APPLIQUÉE PARTIE 2 BILAN D ÉNERGIE APPLIQUÉ AUX SYSTÈMES OUVERTS I. Différentes formes d énergie L énergie est un concept fondamental en physique Différentes formes d énergie existent.

Plus en détail

MATHÉMATIQUES II. Soit IP le plan vectoriel IR 2 muni du produit scalaire usuel et orienté par la base

MATHÉMATIQUES II. Soit IP le plan vectoriel IR 2 muni du produit scalaire usuel et orienté par la base MATHÉMATIQUES II Soit IP le plan vectoriel IR 2 muni du produit scalaire usuel et orienté par la base canonique (, ij) On notera o = (,) 00 l origine du plan Tout élément ( xy, ) de IP peut s interpréter

Plus en détail

Mécanique. , vecteur unitaire vertical) On peut donc schématiser chaque système de la façon suivante :

Mécanique. , vecteur unitaire vertical) On peut donc schématiser chaque système de la façon suivante : Mécanique La suspension d une automobile est assurée par quatre systèmes identiques indépendants, montés entre le châssis du véhicule et chaque arbre de roue, et constitués chacun : - d un ressort métallique

Plus en détail

L G Mai = p( u)+φ q ( )

L G Mai = p( u)+φ q ( ) L G L G Mai 2015 MECA0025-1 - MÉCANIQUE DES FLUIDES EXAMEN Prof. Éric J.M.DELHEZ Durée de l épreuve : 4 heures. Répondez aux différentes questions sur des feuilles séparées. Indiquez sur chacune de vos

Plus en détail

Application de la méthode RRE aux problèmes de Navier-Stokes

Application de la méthode RRE aux problèmes de Navier-Stokes Application de la méthode RRE aux problèmes de Navier-Stokes Sébastien DUMINIL L.M.P.A Université du Littoral - Calais en collaboration avec H. Sadok et D. Silvester SMAI 2011 Guidel - 27 Mai 2011 Plan

Plus en détail

PT Electronique Chapitre 1 Page 1

PT Electronique Chapitre 1 Page 1 CHAPITRE 1. STABILITE DES SYSTEMES LINEAIRES I. Qu est ce que la réponse harmonique d un système linéaire permanent?... 2 1. Réponse harmonique... 2 2. Système linéaire... 2 3. Critère de linéarité...

Plus en détail

Modélisation des moteurs à aimant permanent avec saturation magnétique

Modélisation des moteurs à aimant permanent avec saturation magnétique Modélisation des moteurs à aimant permanent avec saturation magnétique Al-Kassem Jebai 1 Philippe Martin 1 Pierre Rouchon 1 François Malrait 2 1 Mines ParisTech Centre Automatique et Systèmes prenom.nom@mines-paristech.fr

Plus en détail

LA FONCTION EXPONENTIELLE

LA FONCTION EXPONENTIELLE LA FONCTION EXPONENTIELLE A.ET L HOMME CRÉA L EXPONENTIELLE... A-1 : Une équation différentielle On considère un circuit électrique comprenant une résistance r et une bobine d inductance L. Soit u la tension

Plus en détail

Une représentation séparée multi-échelle pour simuler le comportement mécanique des structures périodiques

Une représentation séparée multi-échelle pour simuler le comportement mécanique des structures périodiques Une représentation séparée multi-échelle pour simuler le comportement mécanique des structures périodiques Etienne Pruliere, Sondes Metoui, Amine Ammar, Frédéric Dau, Ivan Iordanoff To cite this version:

Plus en détail

MEC3200 TRANSMISSION DE CHALEUR ÉNONCÉ DE LABORATOIRE TRANSFERT DE CHALEUR CONVECTIF

MEC3200 TRANSMISSION DE CHALEUR ÉNONCÉ DE LABORATOIRE TRANSFERT DE CHALEUR CONVECTIF DÉPARTEMENT DE GÉNIE MÉCANIQUE SECTION AÉROTHERMIQUE ÉCOE POYTECHNIQUE DE MONTRÉA MEC3200 TRANSMISSION DE CHAEUR ÉNONCÉ DE ABORATOIRE TRANSFERT DE CHAEUR CONVECTIF OBJECTIF e présent laboratoire vise à

Plus en détail

programme de mathématiques 6ème Temps Espace Vocabulaire Catégorisation

programme de mathématiques 6ème Temps Espace Vocabulaire Catégorisation programme de mathématiques 6ème Temps Espace Vocabulaire Catégorisation 1. Organisation et gestion de données. Fonctions 1.1. Proportionnalité 1.2. Organisation et représentation de données - Lire, utiliser

Plus en détail

Brevet de technicien supérieur Métropole Antilles Guyane 13 mai groupement B

Brevet de technicien supérieur Métropole Antilles Guyane 13 mai groupement B Brevet de technicien supérieur Métropole Antilles Guyane 13 mai 2015 - groupement B Exercice 1 Sur une chaîne de montage, une pièce de 10 kg est située sur un plateau. On note f (t) la cote (en mètres)

Plus en détail

TD 6 Moment cinétique

TD 6 Moment cinétique PH1ME2-C Université Paris 7 - Denis Diderot 2012-2013 TD 6 Moment cinétique 1. Force centrale 1. Définir une force centrale. 2. Donner les propriétés du moment cinétique d une masse ponctuelle uniquement

Plus en détail

Brisure spontanée de symétrie et mécanisme de Higgs dans le modèle standard des interactions électrofaibles

Brisure spontanée de symétrie et mécanisme de Higgs dans le modèle standard des interactions électrofaibles Brisure spontanée de symétrie et mécanisme de Higgs dans le modèle standard des interactions électrofaibles M1 de Physique et Applications - parcours Physique Fondamentale Université Pierre et Marie Curie

Plus en détail

Outils mathématiques. TD1 Exercices de logique

Outils mathématiques. TD1 Exercices de logique TD1 Exercices de logique Exercice 1. Considérons les deux affirmations suivantes P 1 : «Les basketteurs de ce tournoi mesurent tous au moins deux mètres de haut.» P 2 : «Un au moins de ces basketteurs

Plus en détail

Avancées sur un problème d isomorphisme de polynômes et pinceaux de formes quadratiques

Avancées sur un problème d isomorphisme de polynômes et pinceaux de formes quadratiques IP1S Introduction Avancées sur un problème d isomorphisme de polynômes et pinceaux de formes quadratiques G. Macario-Rat 1, J. Plût 2, H. Gilbert 3 1 Orange Labs, gilles.macario-rat@orange.fr 2 ANSSI,

Plus en détail

MATHÉMATIQUES II. Rappels, notations et objectifs du problème

MATHÉMATIQUES II. Rappels, notations et objectifs du problème MATHÉMATIQUES II Rappels, notations et objectifs du problème Dans tout ce problème, n désigne un entier naturel supérieur ou égal à 2 et M n ( IC ) l ensemble des matrices carrées complexes d ordre n De

Plus en détail

Simulation de l interaction lumière matière vivante V1.0. Le programme permet de choisir la façon dont les particules de lumière sont lancées.

Simulation de l interaction lumière matière vivante V1.0. Le programme permet de choisir la façon dont les particules de lumière sont lancées. sarl Simulation de l interaction lumière matière vivante V1.0 Ce modèle utilise la méthode dite de «Monte-Carlo» pour calculer l absorption et la diffusion de la lumière dans la matière vivante. Une particule

Plus en détail

MTH 2301 Méthodes statistiques en ingénierie. Chapitre 6 - Distributions échantillonnales et estimation

MTH 2301 Méthodes statistiques en ingénierie. Chapitre 6 - Distributions échantillonnales et estimation Chapitre 6 - Distributions échantillonnales et estimation Lexique anglais - français Constats et terminologie statistique Distribution de la moyenne théorème central- limite Estimation : Intervalle de

Plus en détail