Propriétés des images numériques Contraintes sur l interprétation

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Propriétés des images numériques Contraintes sur l interprétation"

Transcription

1 Propriétés des images numériques Contraintes sur l interprétation M.LOUYS, Traitement d images et problèmes inverses Master Astrophysique, Observatoire de Strasbourg, 2013

2 Propriétés générales d une image Résolution: en unités physiques distinguer résolution interprétable de la taille du pixel (pixel size cad pas d échantillonnage). La précision des mesures effectuées sur les objets représentés dépend de la résolution. Position, surface, et donc densité intégrée. Codage couleur : RVB, Hue Saturation Intensity, HSV, YCU, etc... niveaux de gris: matrice des pixels, plans de résolution successifs, Runlength coding, etc nombre de bit par pixels Dynamique de l image Contraste Niveau de bruit S/B= rms(s)/rms(b)

3 Visualisation d une image numérique Passer d'une valeur codée à une valeur de la palette de l écran. Fonction d'affichage: Valeurs affichées écran 255 Look Up Table ou table de couleurs Cf illustration page web Color representation 0 Valeurs fichiers Image

4 Définition: Histogramme Fonction de répartition des valeurs des pixels. Nb de pixels Valeur de pixels

5 Amélioration de la qualité des images (1) But: Faciliter l interprétation de l image Par une visualisation plus confortable En éliminant le bruit En séparant les signaux parasites de l information à interpréter. En corrigeant les défauts identifiés dans la chaîne d acquisition. Non uniformité d éclairement, aberration des lentilles, rayons cosmiques, etc M.LOUYS, Cours Traitement d images, DEA Astro Strasbourg

6 Différentes stratégies d amélioration Transformations ponctuelles Optimiser l affichage des valeurs contenues dans le fichier image Manipulation d histogramme Transformations locales Masques de convolution Changer d espace de représentations Décomposition sur des fonctions de bases adaptées: sinus/cosinus, cosinus discrète, ondelettes, curvelettes, etc., de façon à sélectionner l information pertinente.

7 Résolution de l instrument Échantillonnage Théorème de Shannon Réponse de l instrument Résolution MTF ou Fonction de Transfert de Modulation : fonction qui illustre comment les fréquences spatiales sont transmises par le système imageur. On peut calculer la réponse théorique de l instrument: Convolution des différentes fonctions de transfert de chaque étape de la chaîne d acquisition. Résolution interprétable Point Spread Function : PSF Limitations diverses des conditions d acquisitions: ex : seeing, bruit, non-uniformité spatiale..

8 Résolution Interprétable C est la taille du plus petit détail interprétable sur l image Principalement limitée au sol par les turbulences de l atmosphère: déformations de la tache ponctuelle attendue pour une source de type étoile. La réponse de l instrument est estimée selon les conditions d observations par une forme simple, tq ellipse, dont les paramètres donnent une approximation de l étalement: le seeing Caractérisée dans la description des images de chaque survey par la PSF Point Spread Function

9 Influence du bruit Exemple d images bruitées: Sources de bruit: Bruit thermique: Échauffement du substrat photosensible électrons parasites Électronique de contrôle Bruit de lecture: à la lecture des cellules du CCD: transfert de charges Bruit de quantification Artefacts Turbulences de l atmosphère: déformations de la tache ponctuelle attendue pour une source de type étoile. La réponse de l instrument est estimée selon les conditions d observations par une forme simple, tq ellipse, dont les paramètres donnent une approximation de l étalement: le seeing

10 Exemple de PSF: MUSE :simulation de l instrument (cubes IFU) Modélisation HST M.LOUYS, Cours Traitement d images, U 35 Master Astro, Strasbourg

11 Relation Résolution/Bruit Contraste 100% Bruit fmax fmax: fréquence spatiale maximale interprétable, fe: fréquence de coupure instrumentale fe f,fréquence spatiale

12 Elimination du bruit Hypothèse: bruit additif gaussien de moyenne nulle g(x,y) = f(x,y) +n(x,y) corrélation, redondance des pixels sur un voisinage Stratégies: Opérateurs locaux (filtres de convolution) Appliqués selon un algorithme de fenêtre glissante Moyenne des pixels voisins sur un voisinage. 1/9 * le pixel central est remplacé par une combinaison linéaire des pixels voisins dans le masque, affectés des coefficients correspondants.

13 Elimination du bruit (2) Effet: Homogénéisation des niveaux de gris. Cf. histogramme Lissage des zones homogènes. PB: Flou sur les contours de l image. N.B. L amélioration du signal à bruit dépend du nombre de points dans la moyenne, donc de la taille du masque. M.LOUYS, Cours Traitement d images, DEA Astro Strasbourg

14 Filtre médian: Elimination du bruit (3) (filtre de rang) Le pixel central du masque est remplacé par la valeur médiane des niveaux de gris des pixels désignés dans le masque image originale image filtrée Meilleure localisation des contours, Conservation des propriétés des niveaux de gris (histogramme) Insensible aux valeurs extrêmes dans la fenêtre. M.LOUYS, Cours Traitement d images, DEA Astro Strasbourg

15 Filtre médian (suite) Performances: Efficace contre le bruit de pic (salt and pepper noise) Fidèle à la dynamique de l image d entrée. Coûteux en temps de calcul: tri des valeurs des pixels de la fenêtre. Prohibitif si la taille de l image ou du masque augmente.

16 Elimination du bruit par moyennes d images Images à faible dose le S/B est très faible. Pour un bruit stationnaire gaussien, de moyenne nulle, si on maîtrise les conditions d observations pour obtenir des collections d images de la même scène : On superpose les prises de vues et on calcule la moyenne des images Pour N images sommées, l amélioration du S/B est en N coûteux en temps de calcul et stockage.

17 Différents masques de convolution Pour la détection de contours (ex: Prewitt) f(x,y) Norme(f(x,y) *M1 +f(x,y) *M2) Sur le même principe: Sobel Gradient vertical Roberts Gradient horizontal

18 Détection de contours (suite) Laplacien Dérivée de gaussienne ( DoG) Zero-crossing: Canny-Deriche, etc NB: Peu adapté aux images astronomiques, sauf détection de rayons cosmiques Ex Van Dokkum, «CosmicRay Rejection by Laplacian Edge Detection,», 2001

19 Conclusion Il existe différents niveaux de traitements Meilleurs résultats de restauration d images : Utiliser les a priori connus sur la chaîne instrumentale la statistique du bruit les propriétés du signal

20 D'après cours TI 2006 d'andré Jalobéanu ML2012 Traitement d'image en Astronomie, Master IRIV Telecom Physique

21 D'après cours TI 2006 d'andré Jalobéanu Modéliser la fonction de transfert de la chaîne instrumentale ML2012 Traitement d'image en Astronomie, Master IRIV Telecom Physique

22 Plan du cours ( suite) Les bases du traitement de réduction des données en imagerie astronomique Cf Developpements dans le cours d André Jalobeanu : AJ, traitements de base Premiers pas pour restaurer le signal original : Débruitage AJ: astroproc_7_low.pdf Déconvolution M.LOUYS, Module Pb Inverses : Prop. Images, Master Astro, Strasbourg

Informatique visuelle - Vision par ordinateur. Pré-traitement d images

Informatique visuelle - Vision par ordinateur. Pré-traitement d images Informatique visuelle - Vision par ordinateur Pré-traitement d images Elise Arnaud elise.arnaud@imag.fr cours inspiré par X. Descombes, J. Ros, A. Boucher, A. Manzanera, E. Boyer, M Black, V. Gouet-Brunet

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

Traitement d images. Chapitre I Prétraitements

Traitement d images. Chapitre I Prétraitements Traitement d images Chapitre I Prétraitements 1 2 Introduction Les prétraitements d une image consiste à effectuer des opérations visant à : améliorer sa qualité visuelle restaurer l image en éliminant

Plus en détail

Analyse d images. L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

Analyse d images. L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : Analyse d images La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers

Plus en détail

TP2 Opérations et filtres

TP2 Opérations et filtres TP2 Opérations et filtres 1. Opérations arithmétiques Mettre en place les fonctions Min et Max sur 2 images en niveaux de gris. Min() conserve entre 2 images les pixels de luminance minimum, Max() conserve

Plus en détail

Traitement bas-niveau

Traitement bas-niveau Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.

Plus en détail

Plan de la séance. Partie 4: Restauration. Restauration d images. Restauration d images. Traitement d images. Thomas Oberlin

Plan de la séance. Partie 4: Restauration. Restauration d images. Restauration d images. Traitement d images. Thomas Oberlin Plan de la séance Traitement d images Partie 4: Restauration Thomas Oberlin Signaux et Communications, RT/ENSEEHT thomasoberlin@enseeihtfr 1 ntroduction 2 Modélisation des dégradations Modèles de bruit

Plus en détail

Bases du traitement des images. Détection de contours

Bases du traitement des images. Détection de contours Détection de contours Dominique.Bereziat@lip6.fr Contributions: N. Thome, D. Béréziat, S. Dubuisson Octobre 2015 1 / 76 Introduction Rôle primordial de la détection de contours en vision 1 Réduction d

Plus en détail

Bases du traitement des images. Détection de contours. Nicolas Thome. 19 octobre 2009. Plan Modélisation Filtrage Approches continues Post-Traitements

Bases du traitement des images. Détection de contours. Nicolas Thome. 19 octobre 2009. Plan Modélisation Filtrage Approches continues Post-Traitements Détection de contours Nicolas Thome 19 octobre 2009 1 / 61 Introduction Rôle primordial de la détection de contours en vision 1 Réduction d'information Information de toute l'image résumée dans le contours

Plus en détail

Vision par Ordinateur

Vision par Ordinateur Vision par Ordinateur James L. Crowley DEA IVR Premier Bimestre 2005/2006 Séance 6 23 novembre 2005 Détection et Description de Contraste Plan de la Séance : Description de Contraste...2 Le Détecteur de

Plus en détail

Cours de Traitement de l Image Licence 3

Cours de Traitement de l Image Licence 3 Cours de Traitement de l Image Licence 3 Jean-Luc Baril Université de Bourgogne - Dépt IEM Laboratoire LE2I - http://vision.u-bourgogne.fr barjl@u-bourgogne.fr http://www.u-bourgogne.fr/jl.baril Lena :

Plus en détail

Analyse d images introduction

Analyse d images introduction L3, option Image Analyse d images introduction http ://perception.inrialpes.fr/people/boyer/teaching/l3/ Elise Arnaud - Edmond Boyer Université Joseph Fourier / INRIA Rhône-Alpes elise.arnaud@inrialpes.fr

Plus en détail

PLAN Analyse d images Morphologie et Segmentation

PLAN Analyse d images Morphologie et Segmentation PLAN Analyse d images et Segmentation L.Chen, J.Y.Auloge. INTRODUCTION. DEFINITIONS 3. VISION HUMAINE ET SYSTEMES DE COULEURS 4. ECHANTILLONNAGE ET QUANTIFICATION. TRANSFORMATIONS D IMAGES 6. AMELIORATION

Plus en détail

ECHOGRAPHE ET CAPTEUR. D.I.U. d Echocardiographie module 1

ECHOGRAPHE ET CAPTEUR. D.I.U. d Echocardiographie module 1 ECHOGRAPHE ET CAPTEUR D.I.U. d Echocardiographie module 1 Plan Généralités Capteur Echographe Traitement du signal Stockage Transport Généralités Historique the blue goose 1970 180 cm Généralités Historique

Plus en détail

Cours: SYSTEMES MULTIMEDIA Master RSD, 2014/2015

Cours: SYSTEMES MULTIMEDIA Master RSD, 2014/2015 Cours: SYSTEMES MULTIMEDIA Master RSD, 2014/2015 Prof. Slimane Larabi Chapitre 2. Notions sur l image et la vidéo 2.1 Notions sur l'image 2.2 Représentation d une image 2.3 OPERATIONS SUR LES IMAGES 2.4

Plus en détail

Au programme. Vision par ordinateur: Formation d image et Photographie. Formation de l image. Introduction

Au programme. Vision par ordinateur: Formation d image et Photographie. Formation de l image. Introduction Au programme Vision par ordinateur: Formation d image et Photographie Sébastien Roy Jean-Philippe Tardif Marc-Antoine Drouin Département d Informatique et de recherche opérationnelle Université de Montréal

Plus en détail

Vision par ordinateur: Formation d image et Photographie

Vision par ordinateur: Formation d image et Photographie Vision par ordinateur: Formation d image et Photographie Sébastien Roy Jean-Philippe Tardif Marc-Antoine Drouin Département d Informatique et de recherche opérationnelle Université de Montréal Hiver 2007

Plus en détail

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES Table des matières Avant propos Chapitre I NOTIONS SUR LES SYSTEMES 1. Systèmes linéaires 1 2. Systèmes stationnaires 1 3. Systèmes continus 2 4. Systèmes linéaires invariants dans le temps (LIT) 2 4.1

Plus en détail

Détection de contours. Cours n 3

Détection de contours. Cours n 3 Détection de contours Cours n 3 1 Détection de contours Régions homogènes BF de l image Filtre passe-bas Somme de pixels Contours HF de l image Filtre passe-haut Différence de pixels 2 Exercices Ex1: Détection

Plus en détail

Numérisation de l information

Numérisation de l information Numérisation de l Une est un élément de connaissance codé à l aide de règles communes à un ensemble d utilisateurs. Le langage, l écriture sont des exemples de ces règles. 1 Comment les s sont-elles transmises?

Plus en détail

5. Traitement d'image? 5.3 Segmentation : détourage automatique et sélection par les couleurs

5. Traitement d'image? 5.3 Segmentation : détourage automatique et sélection par les couleurs 5. Traitement d'image? 5.3 Segmentation : détourage automatique et sélection par les couleurs PLAN 5.3.1 Définition et utilité 5.3.2 Détourage Hypothèses Principe Traitements automatiques/manuels Règlages

Plus en détail

Détection de contours

Détection de contours Traitement Détection de s Plan? Dérivées d une image Bibliographie Cours de traitement Elise Arnaud - Edmond Boyer Université Joseph Fourier Cours de traitement Alain Boucher Cours de traitement T Guyer

Plus en détail

Atelier de photométrie: Principe de mesure et prétraitements

Atelier de photométrie: Principe de mesure et prétraitements Pro/Am WETAL 2015-12 Novembre 2015 - Giron Atelier de photométrie: Principe de mesure et prétraitements Alexandre Santerne Marie Curie Fellow Instituto de Astrofísica e Ciências do Espaço Universidade

Plus en détail

Vision industrielle Dispositif optique

Vision industrielle Dispositif optique Vision industrielle Dispositif optique Plan du cours L objectif La focale L ouverture La mise au point Qualité d image Choix de l objectif Cours de Vision Industrielle Nicolas Vandenbroucke 2 Constitution

Plus en détail

OUTILS FONDAMENTAUX EN TRAITEMENT D IMAGES

OUTILS FONDAMENTAUX EN TRAITEMENT D IMAGES OUTILS FONDAMENTAUX EN TRAITEMENT D IMAGES Défis actuels Mégadonnées (big data) Square Kilometer Array Telescope : 300 To/s (100 Internet) 9 Robustesse Défis actuels Repérer les comportements suspects

Plus en détail

Lissage et filtrage linéaire

Lissage et filtrage linéaire Lissage et filtrage linéaire TP de traitement d images :MMIS A Un système d enregistrement d image ne restitue pas l image de manière parfaite : des informations parasites apparaissent et viennent s ajouter

Plus en détail

Chapitre III : Détection de contours

Chapitre III : Détection de contours Chapitre III : Détection de contours La détection de contour et la segmentation des images sont probablement les domaines qui ont reçu la plus grande attention de la part de la communauté de traitement

Plus en détail

Géométrie discrète Chapitre V

Géométrie discrète Chapitre V Géométrie discrète Chapitre V Introduction au traitement d'images Géométrie euclidienne : espace continu Géométrie discrète (GD) : espace discrétisé notamment en grille de pixels GD définition des objets

Plus en détail

Outils Mathématiques pour l informatique

Outils Mathématiques pour l informatique Outils Math. pour l info. - Licence 3 - IEM - Année 2015/2016 Université de Bourgogne Labo. Le2i, UMR-CNRS 5158 http://jl.baril.u-bourgogne.fr September 10, 2015 Cours outils Math. pour l info. - Licence

Plus en détail

largeur x hauteur en pixels, par exemple 640 x 480 ou 1920 x 1080

largeur x hauteur en pixels, par exemple 640 x 480 ou 1920 x 1080 Capteurs Cours #1 : Capteurs 2D CCD Par : Bernard Besserer Terminologie Dimensions / Taille de l image largeur x hauteur en pixels, par exemple 640 x 480 ou 1920 x 1080 Résolution points par pouce (dpi

Plus en détail

Introduction au traitement d images Détection de contours et segmentation

Introduction au traitement d images Détection de contours et segmentation Introduction au traitement d images Détection de contours et segmentation Résumé : Ce document est une introduction au traitement d images s intéressant notamment à la détection de contours et à la segmentation.

Plus en détail

LES IMAGES NUMERIQUES

LES IMAGES NUMERIQUES LES IMAGES NUMERIQUES Plan du cours Pourquoi? Comment? Qu est-ce qu une image numérique La couleur Le crénelage Le traitement d images La protection du contenu 2 Introduction 2 types d images issues de

Plus en détail

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés ENSEIRB-MATMECA PG-113 014 TP6: Optimisation au sens des moindres carrés Le but de ce TP est d implémenter une technique de recalage d images qui utilise une méthode vue en cours d analyse numérique :

Plus en détail

Plan. 1. Généralités. 2. Types d Images. 3. Numérisation. 4. Couleurs. 5. Introduction au traitement d Images. 6. Dégradations d une image

Plan. 1. Généralités. 2. Types d Images. 3. Numérisation. 4. Couleurs. 5. Introduction au traitement d Images. 6. Dégradations d une image Plan Licence Pro 1. Généralités 2. Types d Images 3. Numérisation Bases de traitement d images 4. Couleurs Alain Dieterlen 5. Introduction au traitement d Images 6. Dégradations d une image Groupe LAB.EL,

Plus en détail

Analyse d images numériques en microscopie

Analyse d images numériques en microscopie Analyse d images numériques en microscopie Yves Usson Reconnaissance et Microscopie Quantitative, Laboratoire TIMC UMR5525 CNRS Institut d Ingénierie et d Information de Santé (IN3S), La Tronche Traitement

Plus en détail

FICHIER d' IMAGE & Compression/Compactage

FICHIER d' IMAGE & Compression/Compactage Partie 1 - Section 2 FICHIER d' IMAGE & Compression/Compactage Guy Kivits - p. 1 Fichier - Contexte Pour conserver une information, ou la transmettre, dans un système informatique il faut " l' emballer

Plus en détail

Modification des valeurs d une image

Modification des valeurs d une image Modification des valeurs d une image Pour l instant, nous avons vu surtout des transformations ponctuelles des pixels d une image Lire la valeur d un pixel la remplacer par une autre Il existe aussi des

Plus en détail

Projet de Traitement du Signal Segmentation d images SAR

Projet de Traitement du Signal Segmentation d images SAR Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,

Plus en détail

PhotoFiltre 7 : formats des images

PhotoFiltre 7 : formats des images PhotoFiltre 7 : formats des images L'enregistrement consiste à sauver votre image dans un fichier en utilisant un format de stockage compressé ou non. PhotoFiltre est capable d'enregistrer une image dans

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

II. Conversions. I. Initialisation. III. Méthode point. TD Python Traitement d images MP*

II. Conversions. I. Initialisation. III. Méthode point. TD Python Traitement d images MP* Le but de ce TD est d utiliser les procédures et fonctions Python pour traiter des fichiers images. II. Conversions I. Initialisation Importer le module numpy sous l appellation np. On utilise le module

Plus en détail

TP Traitement d images

TP Traitement d images BOISSARD Benjamin BAROCHI Guillaume L3 ESI TP Traitement d images TP 1 : Histogramme et Binarisation TP 2 : Filtrage de bruit et de flou TP 3 : Détection de contours (méthodes linéaires) TP 4 : Segmentation

Plus en détail

Analyse d images en vidéosurveillance embarquée dans les véhicules de transport en commun

Analyse d images en vidéosurveillance embarquée dans les véhicules de transport en commun des s Analyse d images en vidéosurveillance embarquée dans les véhicules de transport en commun Sébastien Harasse thèse Cifre LIS INPG/Duhamel le 7 décembre 2006 1 Système de surveillance des s Enregistreur

Plus en détail

8TRD147: Animation et images par ordinateur

8TRD147: Animation et images par ordinateur 8TRD147: Animation et images par ordinateur Introduction au traitement numérique des images Y. Chiricota Département d informatique et de mathématique Université du Québec à Chicoutimi / Certaines des

Plus en détail

Travaux dirigés d analyse d image

Travaux dirigés d analyse d image Travaux dirigés d analyse d image A partir du cours de Claude Kergomard, ENS Paris. http://www.geographie.ens.fr/img/file/kergomard/teledetection/cteledetection.pdf Partie A. Etude d une image NOASS 14-AVHRR

Plus en détail

Traitement d images. Quelques applications. Vision humaine. Qu est-ce qu une image? Introduction

Traitement d images. Quelques applications. Vision humaine. Qu est-ce qu une image? Introduction Traitement Introduction Plan Introduction et prise en main J Transformations d histogramme Transformations géométriques Convolution Détection de contour Bibliographie Cours de traitement Elise Arnaud -

Plus en détail

Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes

Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes CNES Paris - 22/05/2003 Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes Michel DHOME LASMEA UMR 6602CNRS/UBP Clermont-Ferrand Etat de l art (communauté vision artificielle)

Plus en détail

Traitement des images!

Traitement des images! Traitement des images! Yves USSON! Reconnaissance des Formes et Microscopie Quantitative! Lab. TIMC UMR 5525 CNRS, Grenoble! Traitement d images - définition! Séquence d opérations ayant pour but :!! -

Plus en détail

Thème info 3 Traitement d images matricielles

Thème info 3 Traitement d images matricielles Thème info 3 Traitement d images matricielles I- Images vectorielles vs images matricielles Certains logiciels de dessin assisté par ordinateur permettent de créer des images vectorielles, c est-àdire

Plus en détail

Traitement d un AVI avec Iris

Traitement d un AVI avec Iris Traitement d un AVI avec Iris 1. Définir le répertoire de travail Fichier > Réglages (Ctrl + R) Et on définit le chemin du répertoire de travail. C est là que les images vont être stockées. 2. Convertir

Plus en détail

Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP

Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP Master IMA - UMPC Paris 6 RDMM - Année 2009-200 Fiche de TP Préliminaires. Récupérez l archive du logiciel de TP à partir du lien suivant : http://www.ensta.fr/~manzaner/cours/ima/tp2009.tar 2. Développez

Plus en détail

Découverte de Photoshop 7

Découverte de Photoshop 7 Découverte de Photoshop 7 L espace de travail : Options de l outil utilisé Menu principal (fonctions principales du logiciel) Outils de sélection Outils de retouche et de peinture Outils de dessin et de

Plus en détail

Chaine de transmission

Chaine de transmission Chaine de transmission Chaine de transmission 1. analogiques à l origine 2. convertis en signaux binaires Échantillonnage + quantification + codage 3. brassage des signaux binaires Multiplexage 4. séparation

Plus en détail

Figure 1 : image de cubes en éponge et leur visualisation en 3D.

Figure 1 : image de cubes en éponge et leur visualisation en 3D. DÉRIVATION DES IMAGES : CALCUL DU GRADIENT DE SHEN-CASTAN. 1 OBJECTIF DE CE TRAVAIL. Beaucoup d algorithmes de traitement ou d analyse d images sont basés sur un opérateur de dérivation spatiale, ou plus

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

Les mathématiques et le traitement de l image Kévin Polisano

Les mathématiques et le traitement de l image Kévin Polisano Les mathématiques et le traitement de l image Kévin Polisano [ Doctorant au Laboratoire ] Jean Kuntzmann et CNRS N hésitez pas à lever la main! pour m interrompre! Qu est-ce qu une image numérique? Source

Plus en détail

L imagerie vue par un mathématicien

L imagerie vue par un mathématicien L imagerie vue par un mathématicien Li-Thiao-Té Sébastien LAGA UMR 7539, Université Paris 13 Plan Généralités Images Modèles Qu est-ce qu une image? des coordonnées spatiales des mesures pour chaque position

Plus en détail

Analyse d images, vision par ordinateur. Partie 6: Segmentation d images. Segmentation? Segmentation?

Analyse d images, vision par ordinateur. Partie 6: Segmentation d images. Segmentation? Segmentation? Analyse d images, vision par ordinateur Traitement d images Segmentation : partitionner l image en ses différentes parties. Reconnaissance : étiqueter les différentes parties Partie 6: Segmentation d images

Plus en détail

Extraction de Contours

Extraction de Contours Extraction de Contours Michèle Gouiès À quoi ça sert? Réduction d'information / matrice d'intensité. Déscription de forme (courbure, points particuliers) en vue d'une reconnaissance. Atout des contours

Plus en détail

INTRODUCTION AU DATA MINING

INTRODUCTION AU DATA MINING INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET TP DE DATA MINING Le TP et le projet consisteront à mettre

Plus en détail

Traitement du signal et Applications

Traitement du signal et Applications Traitement du signal et Applications Master Technologies et Handicaps 1 ère année Philippe Foucher 1 Plan Signal? Exemples Signaux analogiques/signaux numériques Propriétés Séance de TP 2 Plan Signal?

Plus en détail

Plan du cours. Cours de Traitement Du Signal - Transformées discrètes. Transformée de Fourier d un signal numérique. Introduction

Plan du cours. Cours de Traitement Du Signal - Transformées discrètes. Transformée de Fourier d un signal numérique. Introduction Plan du cours Cours de raitement Du Signal - ransformées discrètes 1 guillaume.hiet@rennes.supelec.fr ESACA 17 octobre 2007 2 3 Guillaume HIE Cours de raitement Du Signal - ransformées discrètes 1/38 Guillaume

Plus en détail

Les outils de dessin en Photoshop (brosses etc)

Les outils de dessin en Photoshop (brosses etc) Les outils de dessin en Photoshop (brosses etc) Les outils de dessin, donc le pinceau et le crayon, peuvent s utiliser de deux façons en Photoshop : directement dans le document ou dans la sélection, ou

Plus en détail

Comment est compressée une image?

Comment est compressée une image? Comment est compressée une image? Compression JPEG Les inventeurs du format JPEG ont constaté qu un pixel était souvent entouré de pixel de la même couleur (ou presque). Ils ont donc eu l idée suivante

Plus en détail

Introduction générale

Introduction générale Introduction générale Avec la parole l image constitue l un des moyens les plus importants qu utilise l homme pour communiquer avec autrui. C est un moyen de communication universel dont la richesse du

Plus en détail

Codage Compression d images

Codage Compression d images Codage Compression d images E. Jeandel Emmanuel.Jeandel at lif.univ-mrs.fr E. Jeandel, Lif CodageCompression d images 1/1 Une image Une image est un tableau de w h pixels, chaque pixel étant représenté

Plus en détail

Vision par ordinateur

Vision par ordinateur Vision par ordinateur Stéréoscopie par minimisation d'énergie Frédéric Devernay d'après le cours de Richard Szeliski Mise en correspondance stéréo Quels algorithmes possibles? mettre en correspondance

Plus en détail

NOTICE SIMPLIFIEE DE LA CAMERA CCD CALIENS

NOTICE SIMPLIFIEE DE LA CAMERA CCD CALIENS Réalisée par E. Deleporte NOTICE SIMPLIFIEE DE LA CAMERA CCD CALIENS Le système Caliens est constitué d une barette CCD à 2048 pixels (taille d un pixel = 14 mm), commandé par un boîter de contrôle, qui

Plus en détail

Microscope confocal à balayage laser. Microscopie photonique. lumière Laser Objectif. Miroir dichroïque Source de. Filtre confocal.

Microscope confocal à balayage laser. Microscopie photonique. lumière Laser Objectif. Miroir dichroïque Source de. Filtre confocal. Microscope confocal à balayage laser Photo-détecteur Filtre confocal Plan image Image reconstruite point par point par balayage laser Miroir dichroïque Source de lumière Laser Objectif Obtention directe

Plus en détail

Application et méthodologie d acquisition d images

Application et méthodologie d acquisition d images Application et méthodologie d acquisition d images Application industrielle et acquisition de l image 2 Imagerie industrielle est utilisée comme outil de contrôle et de gestion augmentation flexibilité

Plus en détail

Analyse d images IMN 259

Analyse d images IMN 259 Hiver 2013 Analyse d images IMN 259 Présentation du cours Par Pierre-Marc Jodoin Présentation Professeur : Pierre-Marc Jodoin Courriel : pierre-marc.jodoin@usherbrooke.ca Page web : http://www.dmi.usherb.ca/~jodoin/

Plus en détail

Multimédia et Signaux Numériques : Image

Multimédia et Signaux Numériques : Image Multimédia et Signaux Numériques : Image Plan des cours «images et multimédia» 1 Images et représentations 2 Images, capteurs, Fourier, TCD 3 Compression d images : JPEG 4 Filtrage numérique des images

Plus en détail

Enseignement (M21) «Numérisation des signaux audio-vidéo, compression et stockage» Cours 1/4

Enseignement (M21) «Numérisation des signaux audio-vidéo, compression et stockage» Cours 1/4 Enseignement (M21) «Numérisation des signaux audio-vidéo, compression et stockage» Cours 1/4 Cette matière fait partie du module M3.21 «Culture scientifique et traitement de l information» (4CM, 2TD, 3TP)

Plus en détail

Leçon N 8 Traitement des photos 4 ème

Leçon N 8 Traitement des photos 4 ème Leçon N 8 Traitement des photos 4 ème Partie Voyons maintenant quelques applications de GIMP 10 Renforcement de la netteté Aucun logiciel de retouche ne peut restituer une photo dont la netteté est très

Plus en détail

L impact de deux strategies de compression dans le

L impact de deux strategies de compression dans le L impact de deux strategies de compression dans le problème stéréo Réunion scientifique, Imagerie stéréo et 3D GdR ISIS, 2011 G. Blanchet, A. Buades, B. Coll (Univ. Illes Balears), J.M. Morel, B. Rougé

Plus en détail

Logiciels d acquisition et de traitement d images

Logiciels d acquisition et de traitement d images Logiciels d acquisition et de traitement d images Iris : http://astrosurf.com/buil/iris/iris.htm : Gratuit et téléchargeable sur Internet. Permet de faire de l acquisition et du traitement ; très performant

Plus en détail

Avertissement. Cette présentation ne prétend pas détenir la seule vérité en matière d histogramme

Avertissement. Cette présentation ne prétend pas détenir la seule vérité en matière d histogramme Avertissement Cette présentation ne prétend pas détenir la seule vérité en matière d histogramme Si vous fouillez un peu dans votre appareil photo, vous êtes surement déjà tombé sur un graphique un peu

Plus en détail

TDs Architecture des ordinateurs DUT Informatique - M4104c SUJETS. R. Raffin Aix-Marseille Université romain.raffin-at-univ-amu.fr

TDs Architecture des ordinateurs DUT Informatique - M4104c SUJETS. R. Raffin Aix-Marseille Université romain.raffin-at-univ-amu.fr TDs Architecture des ordinateurs DUT Informatique - M4104c SUJETS R. Raffin Aix-Marseille Université romain.raffin-at-univ-amu.fr 2015 Table des matières 1 TD1 : les bonnes résolutions 2 1.1 Premières

Plus en détail

Traitement des données avec Microsoft EXCEL 2010

Traitement des données avec Microsoft EXCEL 2010 Traitement des données avec Microsoft EXCEL 2010 Vincent Jalby Septembre 2012 1 Saisie des données Les données collectées sont saisies dans une feuille Excel. Chaque ligne correspond à une observation

Plus en détail

Présentation des Images et introduction a la reconnaissance des formes

Présentation des Images et introduction a la reconnaissance des formes Master Info 1 Image et RF Présentation des Images et introduction a la reconnaissance des formes Plis fòs ba pengwen là! Objet de ce cours? Comprendre comment est acquise / stockée une image. Quelles mesures

Plus en détail

EL5E13 Vision et traitement d'images embarqué. Rostom KACHOURI Département IT (Informatique et TELECOMS) ESIEE

EL5E13 Vision et traitement d'images embarqué. Rostom KACHOURI Département IT (Informatique et TELECOMS) ESIEE EL5E13 Vision et traitement d'images embarqué Rostom KACHOURI Département IT (Informatique et TELECOMS) ESIEE Cours : 2 x 2h L image numérique Indexation & analyse d images TD : 2 x 2h L image numérique

Plus en détail

Intérêt du découpage en sous-bandes pour l analyse spectrale

Intérêt du découpage en sous-bandes pour l analyse spectrale Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,

Plus en détail

L e s O u t i l s s o u s P h o t o s h o p

L e s O u t i l s s o u s P h o t o s h o p L e s O u t i l s s o u s P h o t o s h o p Sélections Rectangle / Ellipse M Lassos L Recadrage C Correcteur/Pièce/Remplacer couleur Tampon duplication / Motif S J Gomme E V Déplacement W Baguette magique

Plus en détail

Vérification du bâti à partir de la disparité de points de contour

Vérification du bâti à partir de la disparité de points de contour Vérification du bâti à partir de la disparité de points de contour Charles Beumier Signal and Image Centre (Prof. Marc Acheroy) Ecole royale militaire Bruxelles, Belgique 8 Jan 29, Paris-Tech 1 Vérification

Plus en détail

Laennext aspects techniques

Laennext aspects techniques Laennext aspects techniques 1 LAENNEXT : ASPECTS TECHNIQUES Résumé L'obstruction des voies respiratoires par des glaires provoque l'apparition de bruits spécifiques lors de la respiration, ces bruits sont

Plus en détail

Discrétisation et génération de hiérarchies de concepts

Discrétisation et génération de hiérarchies de concepts Prétraitement des données 1 Pourquoi prétraiter les données? Nettoyage des données Intégration et transformation Réduction des données Discrétisation et génération de hiérarchies de g concepts Pourquoi

Plus en détail

TRAITEMENT DE L'IMAGE SATELLITAIRE

TRAITEMENT DE L'IMAGE SATELLITAIRE 233 TRAITEMENT INFORMATIQUE DE L'IMAGE SATELLITAIRE INTRODUCTION Les images recueillies par les satellites d'observation sont, dans leur quasi-totalité, diffusées à la fois sous forme de reproductions

Plus en détail

Détection Multi-Utilisateurs

Détection Multi-Utilisateurs Détection Multi-Utilisateurs 3 ème année Télécom-Réseaux année 007-008 Martial COULON INP-ENSEEIHT Position du Problème Obectif : concevoir et analyser la démodulation numérique en présence d interférences

Plus en détail

UE3 Analyse des Images Contours

UE3 Analyse des Images Contours Plan du cours UE Analyse des Images Contours Introduction : principes fondamentaux. Notion de contour. Caractérisation des points contours. Notion de gradient. Filtres linéaires la détection des points

Plus en détail

IMN459 - Fondements de la vision par ordinateur

IMN459 - Fondements de la vision par ordinateur IMN459 - Fondements de la vision par ordinateur Chapitre 1 Introduction 1. Acquisition IMN117 2. Traitement IMN259 Scène 3D Caméra optique Une ou plusieurs images 2D Caractéristiques bas niveaux (contours,

Plus en détail

Chapitre 2 : communications numériques.

Chapitre 2 : communications numériques. Chapitre 2 : communications numériques. 1) généralités sur les communications numériques. A) production d'un signal numérique : transformation d'un signal analogique en une suite d'éléments binaires notés

Plus en détail

LE TRAITEMENT DES IMAGES CCD

LE TRAITEMENT DES IMAGES CCD LE TRAITEMENT DES IMAGES CCD EN ASTRONOMIE AMATEUR Pierre CRUZALEBES CIV - 190 rue Frédéric-Mistral - BP 97-06902 SOPHIA ANTIPOLIS CEDEX - Tél : 06.61.98.00.39 Association loi 1901 agréée Education Nationale,

Plus en détail

TECHNIQUES DE BASE IMAGERIE 2D. Yves BRINGER I.S.T.A.S.E. Université Jean Monnet

TECHNIQUES DE BASE IMAGERIE 2D. Yves BRINGER I.S.T.A.S.E. Université Jean Monnet TECHNIQUES DE BASE EN IMAGERIE 2D Yves BRINGER I.S.T.A.S.E. Université Jean Monnet 1 1. INTRODUCTION 2. ECLAIRAGE 3. TYPES D IMAGE 4. OPTIQUE 5. CAPTEUR 6. CALIBRAGE 7. UNITE DE TRAITEMENT 8. TRAITEMENT

Plus en détail

QUANTIFICATION DES EXAMENS ONCOLOGIQUES AU FLUORO-DÉOXYGLUCOSE EN TOMOGRAPHIE PAR ÉMISSION DE POSITONS

QUANTIFICATION DES EXAMENS ONCOLOGIQUES AU FLUORO-DÉOXYGLUCOSE EN TOMOGRAPHIE PAR ÉMISSION DE POSITONS Journées Jeunes Chercheurs d Aussois d - Décembre D 2003 U494 QUANTIFICATION DES EXAMENS ONCOLOGIQUES AU FLUORO-DÉOXYGLUCOSE OXYGLUCOSE EN TOMOGRAPHIE PAR ÉMISSION DE POSITONS Juliette FEUARDENT Thèse

Plus en détail

1 Séance de TP 1. 1.2 Pour commencer : Ouverture/Visualisation d images

1 Séance de TP 1. 1.2 Pour commencer : Ouverture/Visualisation d images Université Joseph Fourier UE Imagerie Numérique 1 Séance de TP 1 1.1 Introduction à ImageJ Au cours de ces TPs, nous allons utiliser le logiciel de traitement d images ImageJ. Il s agit d un logiciel «libre»

Plus en détail

GENERALITES ANALYSE ET ETUDES DE MARCHE MASTER 2 MARKETING ET COMMUNICATION COMMERCIALE E.MARTIN VERDIER 2012/2013. Photoshop

GENERALITES ANALYSE ET ETUDES DE MARCHE MASTER 2 MARKETING ET COMMUNICATION COMMERCIALE E.MARTIN VERDIER 2012/2013. Photoshop GENERALITES ANALYSE ET ETUDES DE MARCHE MASTER 2 MARKETING ET COMMUNICATION COMMERCIALE E.MARTIN VERDIER 2012/2013 Photoshop Présentation des différents outils On peut regrouper les outils de Photoshop

Plus en détail

Comparaison d images binaires reposant sur une mesure locale des dissimilarités Application à la classification

Comparaison d images binaires reposant sur une mesure locale des dissimilarités Application à la classification 1/54 Comparaison d images binaires reposant sur une mesure locale des dissimilarités Application à la classification Étienne Baudrier CReSTIC vendredi 9 décembre 2005 2/54 Contexte programme national de

Plus en détail

Python et traitement d images

Python et traitement d images Python et traitement d images L objectif de ce court document est de présenter quelques aspects simples du traitement d images sous Python, et de donner quelques pistes pour aller plus avant. Plusieurs

Plus en détail

Traitement Et. Reconnaissance d'images

Traitement Et. Reconnaissance d'images Traitement Et Reconnaissance d'images Antoine Manzanera ENSTA/UEI Introduction aux images couleur Couleur : perception, formalismes, traitements Aspects physiques et perceptuels Acquisition et Restitution

Plus en détail

Laboratoire recherche UMR CNRS

Laboratoire recherche UMR CNRS Laboratoire recherche UMR CNRS Initiation au traitement des images Détection automatique Mesure de la surface des zones urbaines des images satellitaires Cet atelier propose de mesurer l'emprise urbaine

Plus en détail