Différentiabilité ; Fonctions de plusieurs variables réelles

Dimension: px
Commencer à balayer dès la page:

Download "Différentiabilité ; Fonctions de plusieurs variables réelles"

Transcription

1 Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2 = i i n x 2 i ; x = sup x i. i i n 1 Fonctions de plusieurs variables réelles Fonction f : U R n R p (U est ouvert de R n ). Définition 1.1 f admet une limite en a U s il existe l R p tel que S il existe, l est unique et on note l = lim x a. ε > 0, α > 0, x R n, x a < α = f(x) l < ε. {f l, l = lim x a f} est un R-espace vectoriel ; φ : f lim x a f est linéaire. Définition 1.2 f est continue en a U si lim x a f(x) = f(a). On note f C 0 (a). {f f C 0 (a)} est un R-espace vectoriel. Si f est linéaire, f est continue (en particulier, si f est une projection, f est continue). Définition 1. f admet des fonctions partielles associées à f au point a = (a 1,...,a n ) U : f (a) i : x i f(a 1,...,a i 1, x, a i+1,...,a n ). f admet une limite au point a = f (a) i admet une limite en a i. Mais la réciproque est fausse. f C 0 (a) = f (a) i C 0 (a i ). Mais la réciproque est fausse. Laboratoire de mathématiques pures et appliquées Joseph Liouville ; 50, rue Ferdinand Buisson BP 699 ; Calais cedex ; France 1

2 Définition 1.4 f admet un développement limité d ordre 2 en a U si L forme linéaire, q forme quadratique, f(a + h) = f(a) + L(h) + q(h) + φ(h) avec φ(h) = o( h 2 n(n+1) n+ ), i.e. (α 1,...,α n, ω 1,1, ω 1,2,...,ω n,n ) R 2 tels que avec φ(h) = o( h 2 ). f(a 1 + h 1,...,a n + h n ) = f(a 1,...,a n ) + 1 i n α i h i + 1 i j n ω i,j h i h j + φ(h) 2 Différentielle Fonction f : U R n R p (U est ouvert de R n ). Définition 2.1 f est différentiable en a (on note f Diff(a)) si L forme linéaire, h, f(a + h) = f(a) + L(h) + φ(h) avec φ(h) = o( h ). De façon équivalente, ε > 0, α > 0, h, h < α = f(a + h) f(a) L(h) < ε h. df a. L application L, si elle existe, est unique et est appelée la différentielle de f au point a U. On la note Lorsque f est différentiable en a U et que la différentielle de f est continue en a U, on dit que f est continûment différentiable en a (on note f C 1 (a)). L = df a est linéaire de U dans R p. Mais attention, la différentiabilité et L ne dépendent pas du choix des normes. f Diff(a) = f C 0 (a). {f f Diff(a)} est un R-espace vectoriel ; φ : df a est linéaire. f C 1 (a) df a C 0 (a). Définition 2.2 On dit que f admet une dérivée dans la direction u (u est tel que u = 1), s il existe lim λ 0 f(a+λu) f(a) λ = u (a). Si f Diff(a), alors f admet des dérivées dans toutes les directions et u (a) = df a(u). Mais la réciproque est fausse. 2/12 Mathématiques

3 Exemples d applications différentiables Si f est linéaire, df a = f. Si f : U R 2 R p est bilinéaire, df a1,a 2 (h 1, h 2 ) = f(a 1, h 2 ) + f(h 1, a 2 ). Si f : U R R p, f Diff(a) f D(a) et hf (a) = df a (h). Si f : U R n R p, f Diff(a) i, f i Diff(a) et df a (h) = (df 1a (h),..., df pa (h)) avec f = (f 1,...,f p ). Dans le cas particulier où n = 1, f (a) = (f 1 (a),..., f p(a)). 4 Différentielle de la composée de deux applications U R n Proposition 4.1 f R p g R q. f Diff(a), g Diff(f(a)) = g f Diff(a) et f C 1 (a), g C 1 (f(a)) = g f C 1 (a). d(g f) a = dg f(a) df a. 5 Différentielle du produit et du quotient de deux applications Proposition 5.1 Si f Diff(a), g Diff(a), alors fg Diff(a) et d(fg) a = f(a)dg a + g(a)df a. Proposition 5.2 Si f Diff(a), g Diff(a) et si g ne s annule pas dans un voisinage de a, alors f g Diff(a) et d( f g ) a = g(a)df a + f(a)dg a (g(a)) 2. 6 Dérivées partielles Définition 6.1 On dit que f admet une dérivée partielle d indice i si f (a) i est dérivable au point a i. (a) = (f (a) i ) f(a 1,...,a i 1, a i + ρ, a i+1,...,a n ) f(a 1,...,a n ) (a i ) = lim. ρ 0 ρ f Diff(a) = f admet en a des dérivées partielles à tous les indices et df a (h) = 1 i n h i (a). Mais, la réciproque est fausse. f admet en a des dérivées partielles continues à tous les indices = f Diff(a). Mais, la réciproque est fausse. f C 1 (U) i, C 0 (U). /12 Mathématiques

4 7 Matrice jacobienne Définition 7.1 J f (a) donnée par J f (a) = est appelée matrice jacobienne de f au point a. 1 x 1 (a).... p x 1 (a)... 1 x n (a). p x n (a), Cas particuliers. p = 1, df a (h) = 1 i n h i (a). n = 1, f (a) = 1 i n f i (a)e i. n = p, det(j f (a)) = j f (a) = D(f 1,...,f n) D(x 1,...,x n). Proposition 7.1 U R n f R p g R q. Si f Diff(a) et si g Diff(f(a)), Proposition 7.2 (formule de changement de variable). J g f (a) = J g (f(a)) J f (a). (g f) i (a) = g i (f(a)) k (a) x l k x l 1 k p 8 Difféomorphismes f : U R n V R n. Dans cette section, p = n. Définition 8.1 Φ est un difféomorphisme si c est une bijection différentiable ainsi que Φ 1. Soit Φ est un difféomorphisme. Pour tout a U, la matrice jacobienne J Φ (a) est inversible et J Φ 1(Φ(a)) = (J Φ (a)) 1. Soit Φ est un difféomorphisme. Pour tout a U, le jacobien j φ (a) ne s annule pas et j Φ 1(Φ(a)) = 1 j Φ (a)). Définition 8.2 Φ est un C 1 -difféomorphisme si c est une bijection de classe C 1 ainsi que Φ 1. Soit Φ est un C 1 -difféomorphisme. Alors, l application a j φ (a) est continue. Proposition 8.1 théorème d inversion locale. Soit U un ouvert de R n, et f : U R n une application de classe C 1 dans U telle que J f (a) soit inversible. Alors, il existe un voisinage W 1 de a et un voisinage W 2 de f(a) tel que la restriction de f à W 1 soit un C 1 -difféomorphisme de W 1 sur W 2. 4/12 Mathématiques

5 9 Formule des accroissements finis f : U R n R. Dans cette section, p = 1 et U est convexe. Proposition 9.1 Si f Diff(U), θ ]0, 1[ tel que Proposition 9.2 f(a + h) f(a) = 1 i n h i (a + θh) Si df est bornée (i.e. M R + tel que x U, (x) M), alors inégalité des accroissements finis. K R +, (a, b) U 2, f(b) f(a) k b a. 10 Dérivées successives, fonctions de classe C k f : U R n R. Dans cette section, p = 1. Définition 10.1 Si l application a (a) admet en a une dérivée partielle d indice j, on la note dérivée partielle seconde de f en a. 2 f x j (a). C est une Proposition 10.1 théorème de Schwarz. Si f admet des dérivées partielles secondes a et si ces dérivées partielles sont continues en a, alors Définition f x j (a) = 2 f x j (a). On définit par récurrence les dérivées partielles successives si elles existent. 2 f x j et 2 f x j dans un voisinage de Si f admet sur U des dérivées partielles continues jusqu à l ordre k, on dit que f est de classe C k dans U. On peut alors intervertir l ordre des dérivations. 11 Formules de Taylor-Lagrange et de Taylor-Young, développements limités f : U R R. Dans cette section, n = et p = 1. 5/12 Mathématiques

6 Proposition 11.1 formule de taylor-lagrange. Si f est de classe C ρ, alors il existe θ ]0, 1[ tel que Proposition 11.2 f(a + h) f(a) = + 1 ρ! 1 k ρ 1 1 k! α 1 +α 2 +α =ρ α 1 +α 2 +α =k k! α 1!α 2!α! hα 1 1 hα 2 ρ! α 1!α 2!α! hα 1 1 hα 2 2 hα 2 hα x α 1 1 xα 2 k f (a) 2 xα x α 1 1 xα 2 ρ f (a + θh). 2 xα formule de taylor-young. Si f est de classe C ρ, alors il existe une fonction φ telle que avec φ(h) = o( h ρ ). Proposition 11. f(a + h) f(a) = 1 k ρ 1 k! α 1 +α 2 +α =k k! α 1!α 2!α! hα 1 1 hα 2 2 hα k f (a) + φ(h). 2 xα x α 1 1 xα 2 Si f est de classe C 2 dans U, alors f admet en tout a U un développement limité à l ordre 2 fourni par la formule de Taylor-Young f(a + h) = f(a) + L(h) + q(h) + o( h 2 ). où et q(h) = 1 2 ( 2 f h 2 1 x h 2 2 f 2 x 2 2 L(h) = + h 2 ( ) h 1 + h 2 + h (a) x 1 x 2 x x 2 [ 2 f 2 f + 2 h 1 h 2 + h 2 h + h h 1 x 1 x 2 x 2 x x x 1 ]) (a). 12 Extrema f : U R n R. Dans cette section, p = 1. Définition 12.1 On dit que f admet un maximum (respectivement minimum) relatif en a U s il existe un voisinage V de a tel que x V, f(x) f(a) (repsctivement f(x) f(a)). Le maximum (respectivement minimum) est dit strict si Proposition 12.1 x V \{a}, f(x) f(a). Si f est exrtemum en a et différentiable en a, alors df a = 0. En particulier, si U = R n, pour que f présente un extremum relatif en a, il est nécessaire que (a) = 0. La réciproque est fausse. Cas où n = 2. On suppose que f est une application de classe C 2 d un ouvert U de R 2 et a U est choisi tel que x (a) = y (a) = 0. On note alors r(a) = 2 f (a), s(a) = 2 f x 2 x y (a) et t(a) = 2 f (a) et y 2 δ(a) = (s 2 rt)(a). 6/12 Mathématiques

7 Si δ(a) < 0, a est un extremum relatif pour f (maximum si r(a) < 0 ; minimum si r(a) > 0). Si δ(a) > 0, a n est pas un extremum relatif, mais un col pour f (tout voisinage de a contient x et y tels que f(x) < f(a) < f(y)). Si δ(a) = 0, on ne peut conclure. Cette discussion résume de l étude de la signature de la forme quadratique q(x, y) = r(a)x 2 + 2s(a)xy + t(a)y 2. 1 Fonctions implicites f : U R R. Dans cette section, n = et p = 1. Proposition 1.1 théorèmes des fonctions implicites Si f C 1 (U), et que (a, b, c) U est tel que f(a, b, c) = 0 et z (a, b, c) 0, alors il existe un voisinage V de (a, b, c), un voisinage W de (a, b) et une fonction φ : W R de classe C 1 vérifiant c = φ(a, b) et (x, y, z) V, f(x, y, z) = 0 (x, y) W, z = φ(x, y), alors 0. φ x (x, y) = x z (x, y, φ(x, y)) et φ y y (x, y) = (x, y, φ(x, y)). z Autrement dit, on peut résoudre localement l équation f(x, y, z) = 0. Les relations concernant les dérivées partielles s obtiennent par dérivation de la relation f(x, y, φ(x, y)) = 14 Gradient, divergence, laplacien, rotationnel Soit U un ouvert d un espace vectoriel euclidien E, de dimension. Définition 14.1 Un champ scalaire défini sur U est un application φ : U R. Un champ vectoriel défini sur U est un application V : U E. Ces définitions s étendent à un espace affine euclidien moyennant le chiox d une origine. On dit que le champ scalaire ou vectoriel est continu (respectivement différentiable, respectivement de classe C k ) si φ ou V est continu (respectivement différentiable, respectivement de classe C k ) Gradient d un champ scalaire φ est un champ scalaire différentiable dans U. Définition 14.2 Le vecteur φ i+ φ j + φ k est indépendant de la base orthonormée ( i, j, i j k) choisie. On l appelle le gradient k du champ φ et on le note grad φ. 7/12 Mathématiques

8 Proposition 14.1 Si u = x i + y j + z k et qu on note φ( u) = Φ(x, y, z), on a alors Propriétés du gradient. φ grad φ est linéaire. grad φ = Φ x i + Φ y j + Φ z k. Si φ 1 et φ 2 sont deux champs scalaires différentiables, grad (φ 1 φ 2 ) = φ 1 grad φ2 + φ 2 grad φ Divergence d un champ vectoriel V est un champ vectoriel différentiable dans U. Définition 14. Le réel i V i + j V j + k V k est indépendant de la base orthonormée ( i, j, k) choisie. On l appelle divergence du champ V et on le note div V. Proposition 14.2 Si u = x i + y j + z k et qu on note V ( u) = P(x, y, z) i + Q(x, y, z) j + R(x, y, z) k, on a alors Propriétés de la divergence. V div V est linéaire. div V = P x + Q y + R z. Si φ est un champ scalaire différentiable et si V est un champ vectoriel différentiable, div (φ V ) = φdiv V + V grad φ. 14. Laplacien d un champ scalaire φ est un champ scalaire de classe C 2 dans U. Définition 14.4 Le réel (div grad)(φ) est indépendant de la base orthonormée ( i, j, k) choisie. On l appelle le laplacien du champ φ et on le note φ. Proposition 14. Si u = x i + y j + z k et qu on note φ( u) = Φ(x, y, z), on a alors Propriétés du laplacien. φ φ est linéaire. φ = 2 Φ x Φ y Φ z 2. Si φ 1 et φ 2 sont deux champs scalaires de classe C 2, (φ 1 φ 2 ) = φ 1 φ 2 + φ 2 φ grad φ 1 grad φ2. 8/12 Mathématiques

9 14.4 Laplacien d un champ vectoriel V est un champ vectoriel de classe C 2 dans U. Définition 14.5 Le vecteur ( grad div)( V ) est indépendant de la base orthonormée ( i, j, k) choisie. On l appelle le laplacien du champ V et on le note V. Proposition 14.4 Si u = x i + y j + z k et qu on note V ( u) = P(x, y, z) i + Q(x, y, z) j + R(x, y, z) k, on a alors Propriétés du laplacien. V V est linéaire. V = P i + Q j + R k. Si φ est un champ scalaire de classe C 2 et si V est un champ vectoriel de classe C 2, (φ V ) = φ V + V φ + 2div V grad φ Rotationnel d un champ vectoriel E est, dans cette sous-section, orienté. V est un champ vectoriel différentiable dans U. Définition 14.6 ( ) ( ) ( ) Le vecteur i V + j V + k V i j est indépendant de la base orthonormée ( i, j, k) choisie. On k l appelle le rotationnel du champ V et on le note rot V. Proposition 14.5 Si u = x i + y j + z k et qu on note V ( u) = P(x, y, z) i + Q(x, y, z) j + R(x, y, z) k, on a alors ( rot V R = y Q ) ( P i + z z R ) ( Q j + x x P ) k = y Propriétés du rotationnel. V rot V est linéaire. x y z P Q R Si φ est un champ scalaire différentiable et si V est un champ vectoriel différentiable, rot (φv ) = φ rot V + grad φ V.. 15 Champ de gradient, champ de rotationnel Définition 15.1 Un champ vectoriel V défini sur un ouvert connexe U est un champ de gradient s il existe un champ scalaire φ différentiable sur U (appelé potentiel scalaire de V ), tel que V = grad φ. 9/12 Mathématiques

10 Deux potentiels scalaires de V diffèrent d une constante. Pour tout réel λ, l ensemble des points M tels que φ(m) = λ est appelée surface équipotentielle. Si V C 1 (U), la condition rot V = 0 est nécessaire pour que V soit un champ de gradient car rot grad φ = 0. Cette condition devient suffisante lorsque U est convexe. Si u = x i + y j + z k et qu on note V ( u) = P(x, y, z) i + Q(x, y, z) j + R(x, y, z) k, la condition précédente (i.e. rot V = 0) équivaut à R y Q z = 0 ; P z R x = 0 ; Q x P y = 0. Dans la pratique, si V vérifie rot V = 0, on écrit φ φ φ x = P, y = Q et z = R, puis on intègre l une des équations pour obtenir par exemple, φ(x) = x x 0 P(t, y, z)dt + λ(y, z) que l on dérive pour écrire Q = φ y, ce qui donne une condition sur λ. Définition 15.2 Un champ vectoriel V défini sur un ouvert connexe U est un champ de rotationnel s il existe un champ vectoriel Ω différentiable sur U (appelé potentiel vecteur de V ), tel que V = rot Ω. Deux potentiels vecteurs de V diffèrent d un gradient. Si V C 1 (U), la condition div V = 0 est nécessaire pour que V soit un champ de rotationnel car div rot Ω = 0. Dans la pratique, pour déterminer les potentiels vecteurs Ω = P i + Q j + R k, on cherche une solution particulière Ω 0 dont on fixe arbitrairement l une des composantes à 0, puis Ω 0 + grad φ (où φ est un champ scalaire arbitraire de classe C 2 ) est aussi un potentiel vecteur. 16 Formes différentielles de degré un U R n. Définition 16.1 Une forme différentielle de degré un sur U est une application ω de U dans l ensemble des applications linéaires de R n dans R. Soit a U et h = (dx 1,...,dx n ) R n, on a : ω(a)(h) = P i (a)dx i. 1 i n Pour que la forme différentielle ω soit de classe C k dans U, il faut et il suffit que chaque P i le soit. Si f : U R est différentiable dans U, l application df : a df a est un exemple de forme différentielle de degré un. 10/12 Mathématiques

11 Définition 16.2 Une forme différentielle ω est exacte sur U s il existe f de classe C 1 dans U telle que df = ω (f est une primitive de ω et si U est connexe, deux primitives de ω diffèrent d une constante). Définition 16. Une forme différentielle ω = Pdx + Qdy + Rdz de degré 1 et de classe C 1 dans U est fermée si R y Q z = 0 ; P z R x = 0 ; Q x P y = 0. Toute forme exacte est fermée. La réciproque est vraie si U est convexe. Si on regarde P, Q et R comme les composantes d un champ vectoriel V = P i + Q j + R k, alors ω est fermée rot V = 0. ω est exacte et φ est une primitive de ω V est un champ de gradient et φ est un potentiel scalaire de V. Définition 16.4 Un champ scalaire µ est un facteur intégrant de la forme différentielle ω si la forme µω est fermée. Définition 16.5 ω = Pdx + Qdy est une forme différentielle de degré un et de classe C 1 dans U, W un ouvert de R 2 et φ : W = U un changement de variables admissible (C 1 -difféomorphisme) donné par x = f(u, v) et y = g(u, v). On appelle image transposée de la forme ω par φ la forme ( ) ( ) φ g (ω) = P(φ(u, v)) du + u v dv g + Q(φ(u, v)) du + u v dv = [(P φ) u + (Q φ) g ]du + [(P φ) + (Q φ) g u v v ]dv φ (ω) est de classe C 1 dans W. φ (ω 1 + ω 2 ) = φ (ω 1 ) + φ (ω 2 ). (φ ψ) = ψ φ. Exemple : si φ est la transposition polaire x = ρ cos θ et y = ρ sin θ, ω 1 = xdy ydx ; φ (ω 1 ) = ρ 2 dθ. ω 2 = xdx + ydy ; φ (ω 2 ) = ρdρ. 17 Intégrales curvilignes Définition 17.1 Soit ω = Pdx + Qdy + Rdz une forme différentielle de degré un, continue dans un ouvert U R et γ = ([a, b], F) un arc géométrique orienté de classe C 1, dont le support Γ est contenu dans U. Si F : t F(t) = f 1 (t) i + f 2 (t) j + f (t) k, alors l intégrale b a [P( F(t))f 1(t) + Q( F(t))f 2(t) + R( F(t))f (t)]dt ne dépend pas du choix de la paramétrisation de γ et on l appelle intégrale de la forme différentielle ω sur l arc orienté γ ou intégrale curviligne selon γ (notée γ ω). 11/12 Mathématiques

12 γ ω = γ ω. Si γ est C 1 par morceaux, il est réunion finie d arcs γ i de classe C 1 et on définit l intégrale de ω par γ ω = 1 i n γ ω. i Définition 17.2 Si (P, Q, R) sont regardées comme composantes du champ vectoriel V = P i + Q j + R k, on note alors γ ω = γ V dm et on dit que c est la circulation du champ vectoriel V le long de l arc orienté γ. γ étant fixé, ω γ ω est linéaire. γ V dm l(γ)supm Γ V (M) où l(γ) est la longueur de l arc γ. Si φ (ω) désigne la transposée de la forme ω, on a φ( γ ) ω = γ φ (ω) où φ( γ ) est l image par φ de l arc ω. Si ω est une forme différentielle exacte dans U, γ ω ne dépend que des extrémités de l arc γ et γ ω = φ(b) φ(a) où φ est une primitive de ω (i.e. dφ = ω) et A et B les extrémités de l arc (i.e. OA = F(a) et OB = F(b)). En particulier, si ω est une forme différentielle exacte et si l arc γ est fermé (i.e. A = B), γ ω = 0. Références [1] M. Serfati, Exercices de mathématiques.. Analyse II, Belin, Collection DIA, /12 Mathématiques

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Mathématiques pour MPSI (mais pas que pour) 2011-2012 JPV

Mathématiques pour MPSI (mais pas que pour) 2011-2012 JPV Mathématiques pour MPSI (mais pas que pour) 211-212 JPV Lycée international de Valbonne Sophia-Antipolis E-mail address: jean-paul.vincent@prepas.org 3 Résumé. Ce fascicule développe le programme officiel

Plus en détail

Chapitre VI Fonctions de plusieurs variables

Chapitre VI Fonctions de plusieurs variables Chapitre VI Fonctions de plusieurs variables 6. 1 Fonctions différentiables de R 2 dans R. 6. 1. 1 Définition de la différentiabilité Nous introduisons la différentiabilité sous l angle des développements

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Intégrales curvilignes.

Intégrales curvilignes. Chapitre 1 Intégrales curvilignes. 1.1 Généralités 1.1.1 Courbes paramétrées dans le plan. Motivations, exemples. L exemple basique de courbe est la trajectoire décrite par un objet assimilée à un point

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Fonctions de plusieurs variables. Sébastien Tordeux

Fonctions de plusieurs variables. Sébastien Tordeux Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................

Plus en détail

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 Voici une fiche contenant 100 exercices de difficulté raisonable, plutôt techniques, qui recouvrent l ensemble du programme étudié cette année. A raison

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Mathématiques II. Session de rattrapage

Mathématiques II. Session de rattrapage NOM :... FIPA BTP Prénom :... Date :... Mathématiques II Session de rattrapage Thème: Opérateurs vectoriels, potentiels scalaires, circulations vectorielles, intégrales doubles Durée: 1H00 Outils autorisés:

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

Fonctions de plusieurs variables et applications pour l ingénieur

Fonctions de plusieurs variables et applications pour l ingénieur Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie

Plus en détail

PROGRAMME DE I. NOMBRES COMPLEXES ET GÉOMÉTRIE ÉLÉMENTAIRE CLASSE DE PREMIÈRE ANNÉE MPSI

PROGRAMME DE I. NOMBRES COMPLEXES ET GÉOMÉTRIE ÉLÉMENTAIRE CLASSE DE PREMIÈRE ANNÉE MPSI CLASSE DE PREMIÈRE ANNÉE MPSI Le programme de première année MPSI est organisé en trois parties. Dans une première partie figurent les notions et les objets qui doivent être étudiés dès le début de l année

Plus en détail

INTÉGRATION SUR LES SURFACES. Le but de ce texte est d expliquer comment définir et calculer des expressions du type

INTÉGRATION SUR LES SURFACES. Le but de ce texte est d expliquer comment définir et calculer des expressions du type INTÉGRATION SUR LES SURFACES Le but de ce texte est d expliquer comment définir et calculer des expressions du type φ(x)dσ(x) Σ où Σ est une surface de classe C 1 de R 3 ou plus généralement une hypersurface

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

L3 MASS Calcul différentiel (cours et exercices) John BOXALL (Année universitaire 2009 2010 ) Introduction

L3 MASS Calcul différentiel (cours et exercices) John BOXALL (Année universitaire 2009 2010 ) Introduction L3 MASS Calcul différentiel (cours et exercices) John BOXALL (Année universitaire 2009 2010 ) Introduction (0.1) Ce cours s articule autour du calcul différentiel et, en particulier, son application au

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Université Joseph Fourier, Grenoble Maths en Ligne Fonctions de plusieurs variables Bernard Ycart Ce chapitre contient des techniques que vous utiliserez très souvent en physique, mais les justifications

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme Cahier de vacances Exercices PCSI - PC, Lycée Dupuy de Lôme Votre année de PCSI a été bien remplie et il est peu probable que l année de PC qui arrive vous paraisse plus facile. C est pourquoi, je vous

Plus en détail

Extrema locaux (ou relatifs)

Extrema locaux (ou relatifs) Chapitre 3 Extrema locaux (ou relatifs) 3.0.77 DÉFINITION Soit f : U! R une fonction, U ouvert d un espace vectoriel normé E et a 2 U. On dit que f présente un minimum local (respectivement un maximum

Plus en détail

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité?

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité? Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Examen - septembre 01 Le sujet comporte pages. L épreuve dure heures. Les documents, calculatrices et téléphones portables sont interdits. Question

Plus en détail

CHAPITRE V. de U U dans Hom(F, F ) est de classe C. b dans Hom(F,F ) est de classe C, l application b b. de U U

CHAPITRE V. de U U dans Hom(F, F ) est de classe C. b dans Hom(F,F ) est de classe C, l application b b. de U U CHAPITRE V FIBRÉS VECTORIELS 1. Fibrés vectoriels 1. Cartes et atlas vectoriels Soit B une variété différentielle. Considérons un B -ensemble, c est à-dire un ensemble M muni d une application p : M B.

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Direction des Admissions et concours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Espaces vectoriels euclidiens. Groupe orthogonal

Espaces vectoriels euclidiens. Groupe orthogonal 19 Espaces vectoriels euclidiens. Groupe orthogonal Dans un premier temps, E est un espace vectoriel réel de dimension n 1. 19.1 Espaces vectoriels euclidiens Dénition 19.1 On dit qu'une forme bilinéaire

Plus en détail

CENTRALE PC 2000 ÉPREUVE DE MATH 2. Première partie

CENTRALE PC 2000 ÉPREUVE DE MATH 2. Première partie CENTRALE PC 2000 ÉPREUVE DE MATH 2 Première partie I. A. 1. La fonction x px kx 2 = x(p kx) présente un maximum pour toute valeur de p au point d abscisse x = p p2 et il vaut 2k 2k. Conclusion : J(f) =

Plus en détail

1 Outils mathématiques pour la Physique

1 Outils mathématiques pour la Physique Licence 3 Sciences de la Terre, de l Univers et de l Environnement Université Joseph-Fourier TUE 302 : Outil Physique et Géophysique 1 Outils mathématiques pour la Physique k Daniel.Brito@ujf-grenoble.fr

Plus en détail

Université Joseph Fourier, Grenoble I Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies 2e année

Université Joseph Fourier, Grenoble I Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies 2e année Université Joseph Fourier, Grenoble I Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies 2e année Courbes et surfaces Boris Thibert Les courbes et les surfaces interviennent

Plus en détail

Cours d Analyse 3 Fonctions de plusieurs variables

Cours d Analyse 3 Fonctions de plusieurs variables Université Claude Bernard, Lyon I Licence Sciences, Technologies & Santé 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France L. Pujo-Menjouet pujo@math.univ-lyon1.fr

Plus en détail

Feuilles de TD du cours d Algèbre S4

Feuilles de TD du cours d Algèbre S4 Université Paris I, Panthéon - Sorbonne Licence M.A.S.S. 203-204 Feuilles de TD du cours d Algèbre S4 Jean-Marc Bardet (Université Paris, SAMM) Email: bardet@univ-paris.fr Page oueb: http://samm.univ-paris.fr/-jean-marc-bardet-

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

Topologie des espaces vectoriels normés

Topologie des espaces vectoriels normés Topologie des espaces vectoriels normés Cédric Milliet Version préliminaire Cours de troisième année de licence Université Galatasaray Année 2011-2012 2 Chapitre 1 R-Espaces vectoriels normés 1.1 Vocabulaire

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F.

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle 2006-2007 Espaces vectoriels Convention 1. Dans toute la suite, k désignera un corps quelconque. Définition 2.

Plus en détail

Calcul Différentiel. I Fonctions différentiables 3

Calcul Différentiel. I Fonctions différentiables 3 Université de la Méditerranée Faculté des Sciences de Luminy Licence de Mathématiques, Semestre 5, année 2008-2009 Calcul Différentiel Support du cours de Glenn Merlet 1, version du 6 octobre 2008. Remarques

Plus en détail

CONCOURS DE RECRUTEMENT D ELEVES PILOTES DE LIGNE EPREUVE DE MATHEMATIQUES

CONCOURS DE RECRUTEMENT D ELEVES PILOTES DE LIGNE EPREUVE DE MATHEMATIQUES ÉCOLE NATIONALE DE L AVIATION CIVILE ANNEE 2009 CONCOURS DE RECRUTEMENT D ELEVES PILOTES DE LIGNE EPREUVE DE MATHEMATIQUES Durée : 2 Heures Coefficient : 1 Ce sujet comporte : 1 page de garde, 2 pages

Plus en détail

Devoir à la maison : correction

Devoir à la maison : correction Calcul différentiel 2 Sous-variétés : bilan Devoir à la maison : correction Exercice 1. Un exemple de sous-variété : les structures complexes Soit E un R-espace vectoriel. Montrer que la donnée d une structure

Plus en détail

Cours MP. Espaces vectoriels normés

Cours MP. Espaces vectoriels normés Table des matières Espaces vectoriels normés B. Seddoug. Médiane Sup, Oujda I Norme et distance 1 I.1 Définitions..................... 1 I.2 Evn produit.................... 12 I.3 Notions topologiques

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

Notes du cours Mathématiques pour l ingénieur. Sup Galilée - année 2008-2009

Notes du cours Mathématiques pour l ingénieur. Sup Galilée - année 2008-2009 Notes du cours Mathématiques pour l ingénieur Sup Galilée - année 2008-2009 Benoît Merlet Ces notes de cours s adressent aux élèves ayant suivi le cours. Elles contiennent peu d explications. Elles pourront

Plus en détail

Outils Mathématiques 4

Outils Mathématiques 4 Université de Rennes1 Année 5/6 Outils Mathématiques 4 Intégrales de surfaces résumé 1 Surfaces paramétrées éfinition 1.1 Une surface paramétrée dans l espace, est la donnée de trois fonctions de classes

Plus en détail

Applications Bilinéaires et Formes Quadratiques

Applications Bilinéaires et Formes Quadratiques Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7.

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7. Mathématiques pour l informatique IMAC première année - Soutien - Nombres complexes Rappels. Un nombre complexe z admet plusieurs représentations : représentation vectorielle z = (a, b) où a, b R représentation

Plus en détail

Formulaire de maths Algèbre linéaire et multilinéaire

Formulaire de maths Algèbre linéaire et multilinéaire Formulaire de maths Algèbre linéaire et multilinéaire Nom Formule Espaces vectoriels Famille libre On dit que la famille est libre si Famille liée On dit que la famille est liée si Théorème de la base

Plus en détail

Espaces vectoriels normés

Espaces vectoriels normés Espaces vectoriels normés Essaidi Ali 19 octobre 2010 K = R ou C. E un K-espace vectoriel. 1 Normes et distances : 1.1 Normes et distances : Définition : On appelle semi-norme sur E toute application N

Plus en détail

Université Joseph Fourier Premier semestre 2009/10. Licence première année - MAT11a - Groupe CHB-1. Contrôle Continu 1, le 9/10/2009

Université Joseph Fourier Premier semestre 2009/10. Licence première année - MAT11a - Groupe CHB-1. Contrôle Continu 1, le 9/10/2009 Université Joseph Fourier Premier semestre 9/ Licence première année - MATa - Groupe CHB- Contrôle Continu, le 9//9 Le contrôle dure heure. Questions de cours. ) Soit f :]a, b[ ]c, d[ unefonctionbijectiveetdérivabletelleque,pourtoutx

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Mathématiques I. Recueil d exercices #2. Analyse II

Mathématiques I. Recueil d exercices #2. Analyse II FACULTE DES SCIENCES ECONOMIQUES ET SOCIALES Sections des sciences économiques et des hautes études commerciales Mathématiques I Cours du professeur D. Royer Recueil d exercices #2 Analyse II Semestre

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

LICENCE DE MATHÉMATIQUES FONDAMENTALES. D. Azé

LICENCE DE MATHÉMATIQUES FONDAMENTALES. D. Azé LICENCE DE MATHÉMATIQUES FONDAMENTALES Calcul Différentiel et Équations Différentielles D. Azé Université Paul Sabatier Toulouse 2008 Table des matières 1 Généralités sur les espaces normés 3 1.1 Espaces

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Intégrales doubles et triples - M

Intégrales doubles et triples - M Intégrales s et - fournie@mip.ups-tlse.fr 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5

Plus en détail

1 Fonctions de plusieurs variables

1 Fonctions de plusieurs variables Université de Paris X Nanterre U.F.R. Segmi Année 006-007 Licence Economie-Gestion première année Cours de Mathématiques II. Chapitre 1 Fonctions de plusieurs variables Ce chapitre est conscré aux fonctions

Plus en détail

Cahier de textes Page 1 sur 9. Cahier de textes

Cahier de textes Page 1 sur 9. Cahier de textes Cahier de textes Page 1 sur 9 Cahier de textes Jeudi 04/09/2014 9h-12h et 13h30-16h30 : Cours sur la logique : - Conjonction, disjonction, implication, équivalence - Quelques formules. - Quantificateurs

Plus en détail

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Frédéric Messine Introduction Dans ce chapitre, nous allons étudier une application de la dérivation des fonctions de plusieurs variables

Plus en détail

Licence de Mathématiques 3

Licence de Mathématiques 3 Faculté des sciences et techniques Département de mathématiques 2004-2005 Licence de Mathématiques 3 M62 : Fonctions réelles de plusieurs variables Laurent Guillopé www.math.sciences.univ-nantes.fr/~guillope/m62/

Plus en détail

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html Licence MIMP Semestre 1 Math 12A : Fondements de l Analyse 1 http ://math.univ-lille1.fr/ mimp/math12.html Septembre 2013 Table des matières Chapitre I. Les nombres réels et les suites numériques 1 1

Plus en détail

Mathématiques MPSI. Pierron Théo. ENS Ker Lann

Mathématiques MPSI. Pierron Théo. ENS Ker Lann Mathématiques MPSI Pierron Théo ENS Ker Lann 2 Table des matières I Algèbre 1 1 Ensembles 3 1.1 Vocabulaire général........................ 3 1.2 Opérations sur les parties d un ensemble............ 4

Plus en détail

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

Exo7. Formes quadratiques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr Exo Formes quadratiques Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Plus en détail

Par contre, lorsque P est finie, l inclusion f(p ) P implique l égalité f(p ) = P car, f

Par contre, lorsque P est finie, l inclusion f(p ) P implique l égalité f(p ) = P car, f Université Lyon 1 Algèbre générale S.P. Groupes III I. Groupe symétrique et géométrie. On se donne un ensemble E (souvent un espace euclidien ou une partie de cet espace) et une bijection f : E E (souvent

Plus en détail

OBJECTIFS DE FORMATION ET PROGRAMME DE MATHÉMATIQUES

OBJECTIFS DE FORMATION ET PROGRAMME DE MATHÉMATIQUES CLASSE PRÉPARATOIRE ATS OBJECTIFS DE FORMATION ET PROGRAMME DE MATHÉMATIQUES I. OBJECTIFS DE FORMATION 1- Mission de la filière et acquis des étudiants Les classes préparatoires ATS sont destinées aux

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Champs d hyperplans. En particulier son rang en un point p, qui est le double du plus grand entier k tel que

Champs d hyperplans. En particulier son rang en un point p, qui est le double du plus grand entier k tel que Champs d hyperplans Un champ d hyperplans coorientable (resp. coorienté) sur une variété V m est le noyau ξ d une 1-forme différentielle non singulière α bien définie à multiplication près par une fonction

Plus en détail

1 Topologies, distances, normes

1 Topologies, distances, normes Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Les astuces de Maths. par Isabelle Blejean C OLLECTION LES MÉMENTOS DE L INSEEC MÉMENTO N 9

Les astuces de Maths. par Isabelle Blejean C OLLECTION LES MÉMENTOS DE L INSEEC MÉMENTO N 9 C OLLECTION LES MÉMENTOS DE L INSEEC CAHIERS MÉTHODOLOGIQUES POUR LES CLASSES PRÉPARATOIRES AUX GRANDES ÉCOLES DE COMMERCE Les astuces de Maths par Isabelle Blejean MÉMENTO N 9 Les Mémentos de l INSEEC

Plus en détail

Formulaire de maths - Analyse dans R n

Formulaire de maths - Analyse dans R n Formulaire de maths - Analyse dans R n Nom Théorème ou formule Espaces vectoriels normés Norme sur E Application qui vérifie les propriétés de : séparation : homogénéité : inégalité triangulaire : Normes

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Fonctions de plusieurs variables et changements de variables

Fonctions de plusieurs variables et changements de variables Notes du cours d'équations aux Dérivées Partielles de l'isima, première année http://wwwisimafr/leborgne Fonctions de plusieurs variables et changements de variables Gilles Leborgne juin 006 Table des

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

COURS OPTIMISATION. Cours à l ISFA, en M1SAF. Ionel Sorin CIUPERCA

COURS OPTIMISATION. Cours à l ISFA, en M1SAF. Ionel Sorin CIUPERCA COURS OPTIMISATION Cours à l ISFA, en M1SAF Ionel Sorin CIUPERCA 1 Table des matières 1 Introduction 4 1.1 Motivation.................................... 4 1.2 Le problème général d optimisation......................

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries

Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries Chapitre 4 Adjoints Opérateurs auto-adjoints et isométries I. Adjoint : Cas général d une forme { bilinéaire symétrique sesquilinéaire hermitienne On suppose dans tout I que E est un espace vectoriel de

Plus en détail

IV.1 Dual d un espace vectoriel... 77

IV.1 Dual d un espace vectoriel... 77 76 IV FORMES LINÉAIRES, DUALITÉ IV Formes linéaires, dualité Sommaire IV.1 Dual d un espace vectoriel.......... 77 IV.1.a Rappels sur les e.v................... 77 IV.1.b Rappels sur les applications linéaires........

Plus en détail

Introduction à l optimisation Première Partie : aspects théoriques Univ. Rennes 1, E.N.S. Rennes

Introduction à l optimisation Première Partie : aspects théoriques Univ. Rennes 1, E.N.S. Rennes Notes de cours - Préparation à l agrégation Introduction à l optimisation Première Partie : aspects théoriques Univ. Rennes 1, E.N.S. Rennes Yannick Privat ENS Cachan Bretagne, CNRS, Univ. Rennes 1, IRMAR,

Plus en détail

Exercices de mathématiques MPSI et PCSI

Exercices de mathématiques MPSI et PCSI Exercices de mathématiques MPSI et PCSI par Abdellah BECHATA www.mathematiques.ht.st Table des matières Généralités sur les fonctions 2 2 Continuité 3 3 Dérivabilité 4 4 Fonctions de classes C k 5 5 Bijections

Plus en détail

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe.

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe. Chapitre I INTRODUCTION ATHÉATIQUE I.A. I.A.1. Calcul vectoriel Produit vectoriel Plaçons-nous dans un espace vectoriel euclidien à trois dimensions. En faisant subir des rotations identiques aux trois

Plus en détail

Résumé du cours d algèbre de Maths Spé MP

Résumé du cours d algèbre de Maths Spé MP 1 POLYNÔMES Résumé du cours d algèbre de Maths Spé MP 1 Polynômes 1) Formule de Taylor pour les polynômes. Soit P un polynôme non nul de degré n N. a K, P(X) = k=0 P (k) (a) (X a) k et en particulier P(X)

Plus en détail

PC* Espaces préhilbertiens réels

PC* Espaces préhilbertiens réels I. Espace préhilbertien réel................................... 3 I.1 Produit scalaire dans un espace vectoriel réel................... 3 I.2 Inégalités de Cauchy-Schwarz et de Minkowski..................

Plus en détail

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015 Énoncé Dans tout le problème, K est un sous-corps de C. On utilisera en particulier que K n est pas un ensemble fini. Tous les espaces vectoriels considérés sont des K espaces vectoriels de dimension finie.

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail

Applications linéaires

Applications linéaires le 8 Février UTBM MT Arthur LANNUZEL http ://mathutbmal.free.fr Applications linéaires Exemples et définitions. Soit E et F, espaces vectoriels sur K = R ou C. On s intéresse aux applications qui conservent

Plus en détail