Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe"

Transcription

1 Méthode du smplee: prélmares Modèles de recherche opératoelle (RO). Programmato léare b. Méthode du smplee Das le cas où l y a ue fté de solutos, la méthode d élmato de Gauss-Jorda permet d detfer tros types de varables : varables fées varables dépedates varables dépedates Eemple : : fée; : dépedate;, 3 : dépedates Programmato léare Méthode du Smplee 3 Méthode du smplee: prélmares Méthode algébrque basée sur la résoluto de systèmes d équatos léares Revor la méthode d élmato de Gauss-Jorda O s téresse uquemet au systèmes d équatos léares avec u ombre de varables supéreur au ombre d équatos Das ce cas, l y a deu possbltés : l y a pas de soluto l y a ue fté de solutos O suppose que toutes les varables sot Soluto de base Soluto obteue e fat toutes les varables dépedates à Varables hors-base : varables dépedates fées à Varables de base : les autres varables Soluto de base réalsable : lorsque toutes les varables de base ot ue valeur Soluto de base réalsable dégéérée : lorsqu au mos ue varable de base a la valeur Das l eemple, la soluto de base est :,, 3 Elle est réalsable et o dégéérée Programmato léare Méthode du Smplee Programmato léare Méthode du Smplee

2 Pvot Il est facle de chager le statut des varables par des opératos élémetares : Das cette ouvelle soluto de base, o a : Varable hors-base : 3 Varables de base :,, Soluto de base o réalsable : 5,, - Pvot : opérato cosstat à remplacer ue varable de base par ue varable hors base pour obter ue ouvelle soluto de base, dte adjacete Eemple Wydor Glass (sute) Soluto de base : (,, 3,, 5 ) (,,,, 8) O veut effectuer u pvot : remplacer la varable hors-base par ue des varables de base actuelles Laquelle?... O veut que la ouvelle soluto de base sot réalsable Das cette soluto de base, o aura toujours et ue des varables d écart devedra ue varable hors-base, doc predra la valeur Programmato léare Méthode du Smplee 5 Programmato léare Méthode du Smplee 7 Retour à l eemple Wydor Glass Les cotrates foctoelles sot : O ajoute des varables d écart pour trasformer ces égaltés e système d équatos : Varables hors-base :, Programmato léare Méthode du Smplee 6 Eemple Wydor Glass (sute) E eplotat les égaltés 5 8 o obtet : / 6 8/ 9 Doc, e posat 6, o obtet, alors que s o augmete davatage, la soluto devet o réalsable O effectue u pvot: remplacer la varable de base (qu devedra hors-base) par Programmato léare Méthode du Smplee 8

3 Eemple Wydor Glass (sute) Iterprétato géométrque O obtet alors le système suvat : Soluto de base : (,, 3,, 5) (,6,,,6) O effectue u pvot pour que la varable etre das la base (devee varable de base) Pusque : Programmato léare Méthode du Smplee 9 Programmato léare Méthode du Smplee Eemple Wydor Glass (sute) E posat, o obtet Pvot : remplacer la varable de base 5 par Le système obteu est alors : Soluto de base : ( 5 5,, 3,, ) (,6,,,) Programmato léare Méthode du Smplee Iterprétato géométrque Ue soluto de base réalsable correspod à u pot etrême du domae réalsable U pvot correspod à u déplacemet d u pot etrême à u autre qu lu est adjacet La méthode du smplee : Démarre avec ue soluto de base réalsable tale (u pot etrême) Effectue à chaque térato u pvot, passat as à ue soluto de base réalsable adjacete (u pot etrême adjacet) S arrête lorsqu elle detfe ue soluto de base réalsable optmale (u pot etrême correspodat à ue soluto optmale) Programmato léare Méthode du Smplee 3

4 Iterprétato des varables d écart Das la soluto optmale du problème Wydor Glass, o a 3, 5 Cela dque que les deu derères ressources (temps au uses et 3) sot pleemet utlsées Ue parte de la premère ressource (temps à l use ) est pas utlsée: heures Vor l eemple das le OR Tutor Crtère d optmalté (sute) Après substtuto das l objectf, o obtet : z ( + (/3) (/3) 5 ) + 5 (6 (/) ) 36 - (3/) 5 Toute soluto réalsable (,, 3,, 5 ) satsfat z (3/) La valeur optmale est doc 36 Programmato léare Méthode du Smplee 3 Programmato léare Méthode du Smplee 5 Crtère d optmalté Eprmos l objectf e focto des varables horsbase das la soluto optmale Rappelos que das cette soluto, o a : Crtère d optmalté (sute) Le crtère d optmalté s éoce as comme sut : État doé que l objectf s eprme uquemet e focto des varables hors-base de la soluto de base réalsable courate S les coeffcets de ces varables das l objectf sot tous égatfs ou uls, alors la soluto de base réalsable courate est optmale Les coeffcets des varables hors-base das l objectf sot appelés coûts réduts (ou coûts relatfs) Programmato léare Méthode du Smplee Programmato léare Méthode du Smplee 6

5 Varable d etrée S au mos u coût rédut est postf pour la soluto de base réalsable courate : O a pas ecore attet ue soluto optmale Il faut doc effectuer au mos u pvot Quelle varable dot-o fare etrer das la base? O propose de chosr celle dot le coût rédut est le plus grad parm toutes les varables hors-base Cette varable fourt la plus grade augmetato margale (par uté) de la valeur de l objectf Atteto : ce est peut-être pas la plus grade augmetato globale Programmato léare Méthode du Smplee 7 Varable de sorte (sute) Pour que toutes les varables demeuret o égatves sute au pvot, o dot avor : S j aj b ajj ajj b, l égalté e lmte pas l augmetato de S cette codto est satsfate pour tous les, o peut doc augmeter défmet j : l objectf est o boré S j, l égalté lmte l augmetato de a > Varable de sorte : celle qu attet Programmato léare Méthode du Smplee 9 j b m a aj j > Varable de sorte Lorsqu o effectue u pvot, l faut chosr la varable qu va sortr de la base e tetat de garder toutes les varables o égatves Supposos que j est la varable d etrée Alors, chaque varable de base s eprme as e focto de la varable d etrée (pusque les autres varables hors-base sot ulles) : b ajj Das cette epresso, les coeffcets obteus sute à pluseurs pvots O a écessaremet b (pourquo?) b aj, sot Programmato léare Méthode du Smplee 8 Méthode du smplee: résumé. Obter ue soluto de base réalsable tale. Vérfer le crtère d optmalté: s les coûts réduts de toutes les varables hors-base sot égatfs ou uls, arrêter 3. Chosr la varable d etrée j, celle qu a le coût rédut le plus élevé b. Détermer la varable de sorte: m aj> aj 5. Effectuer u pvot et détermer ue ouvelle soluto de base réalsable; retourer à l étape Vor l eemple das le OR Tutor Programmato léare Méthode du Smplee 5

6 Forme augmetée Tout modèle de PL peut se rameer à la forme suvate : ajj+ + j j,,..., + ma cjj b,,..., m,,..., m Hypothèse: b,,,,m But: obter ue soluto de base tale S b, Trasformato du e ajj b, b <, o multple l'égalté par -et o se ramèe au cas suvat, c'est - à - dre celu l y a deu cas : o ajoute ue varable d' écart ajj+ + b de la trasformato + et o obtet (égalté) (égalté) Programmato léare Méthode du Smplee Programmato léare Méthode du Smplee 3 Trasformato du m au ma Supposos qu o dot mmser l objectf au leu de le mamser O utlse alors la proprété suvate: m cjj ma cjj O résout le problème de mamsato e chageat les sges des coeffcets das l objectf La valeur optmale du problème de mmsato est l opposé de celle du problème de mamsato S Trasformato du e a j jb, b, l y a deu cas: o multplel'égaltépar -pour se rameer au casprécédet c'est-à -dreceludela trasformato b >, o soustrat ue varabledesurplus a j j + o se ramèeau cassuvat, b (égalté) + c'est- à - dreceludel'troducto de varablesartfceles (égalté) et o obtet Programmato léare Méthode du Smplee Programmato léare Méthode du Smplee 6

7 Ajout de varables artfcelles Illustrato: commet trouver ue soluto réalsable? S,.., a j j b et qu aucue varable est solée (ue varable est solée s elle est à coeffcet das cette équato et à coeffcet das les autres): O ajoute ue varable artfcelle + O lu assoce u proft très égatf : - M ma,.., c j j - M + sous les cotrates:,.., a j j b S le problème est réalsable, o dot avor + m z. +.5 sous les cotrates: , Programmato léare Méthode du Smplee 5 Programmato léare Méthode du Smplee 7 Que fare s vous avez de la dffculté pour trouver ue soluto réalsable? Méthode à deu phases Phase : trouver ue soluto réalsable e mmsat la somme des varables artfcelles Phase : optmser e reveat à la focto de coût tal à partr de la soluto tale trouvée das la phase Méthode du grad M Optmser e utlsat ue focto objectve formée de la focto de coût tale et de la somme, très fortemet péalsée, des varables artfcelles Trasformatos Système tal Système d égaltés s s 6 s, s Programmato léare Méthode du Smplee 6 Programmato léare Méthode du Smplee 8 7

8 Itroducto de varables artfcelles Système d égaltés s s 6 s, s Ajout de varables artfcelles s a s + a3 6 s, s, a, a3 Varables à valeurs quelcoques S ue varable j peut predre des valeurs égatves, o trodut deu varables j+ et j- O pose alors j j+ - j - Autre possblté : s j L j (L j est ue costate égatve) O pose alors j+ j - L j Programmato léare Méthode du Smplee 9 Programmato léare Méthode du Smplee 3 Démarrer l algorthme du smple Ajout de varables artfcelles s a s + a3 6 s, s, a, a3 Algorthme à deu phases Phase : m a + a3 jusqu à obter ue valeur optmale ulle (s le PL a ue soluto réalsable) Phase : m. +.5 Pour epérmeter Pour des petts modèles (mos de 6 varables et 6 cotrates foctoelles) : essayer le IOR Tutoral Pour des modèles plus gros, modélser et résoudre avec Ecel Solver Revor le cas Wydor Glass Pour des modèles ecore plus gros, essayer Ldo/Lgo et CPLEX/MPL (CD) Méthode du grad M m M a + M a3 Programmato léare Méthode du Smplee 3 Programmato léare Méthode du Smplee 3 8

Interprétation des variables d écart

Interprétation des variables d écart Iterprétato des varables d écart IFT575 Modèles de recherche opératoelle (RO). Programmato léare b. Méthode du smplexe c. Dualté d. Aalyse de sesblté Das la soluto optmale du problème Wydor Glass, o a

Plus en détail

Programmation linéaire en nombres entiers

Programmation linéaire en nombres entiers Programmato léare e ombres eters Itroducto Problème de programmato léare e ombres eters (P) M Suet à = = c a = b =,, m 0, eter =,, Eemple M z = Suet à, + 0 5 0 0, eter F(P) = domae réalsable de P Itroducto

Plus en détail

PROGRAMMATION LINEAIRE

PROGRAMMATION LINEAIRE Recherche Opératoelle PROGRAMMATION LINEAIRE I. INTRODUCTION P. TOLLA U grad ombre de problèmes de Recherche Opératoelle peuvet être modélsés sous forme de programmes léares : par eemple certas problèmes

Plus en détail

Ift Chapitre 7. Introduction. aux valeurs propres et aux vecteurs propres

Ift Chapitre 7. Introduction. aux valeurs propres et aux vecteurs propres Ift 4 Chaptre 7 Itroducto au valeurs propres et au vecteurs propres Ift4 Chaptre 7 Défto : S A est ue matrce de, alors u vecteur o ul est dt vecteur propre de A s A est appelé valeur propre de A, et vecteur

Plus en détail

Pondichéry Avril 2014 Série S Exercice.

Pondichéry Avril 2014 Série S Exercice. Podchéry Avrl 04 Sére S Exercce Le pla complexe est mu d u repère orthoormé ( O; uv, ) Pour tout eter aturel, o ote A le pot d affxe z déf par : O déft la sute ( ) z z 0 = et + = + z 4 4 r par r = z pour

Plus en détail

Partie 1. Corrigé de CCIP 2000 par Pierre Veuillez

Partie 1. Corrigé de CCIP 2000 par Pierre Veuillez Corrgé de CCIP 2000 par Perre Veullez Das tout le problème, désge u eter aturel o ul. O cosdère ue ure U coteat boules umérotées de à. O tre ue boule au hasard das U. O ote k le uméro de cette boule. S

Plus en détail

Correction Exercices du MODULE 1 : M1Exo4b Distribution statistique à un caractère

Correction Exercices du MODULE 1 : M1Exo4b Distribution statistique à un caractère Exo Math Stat Correcto exercces du Module Dstrbuto statstque à u caractère MExo4b Correcto Exercces du MODULE : MExo4b Dstrbuto statstque à u caractère Exercce Mexo4 b Objectf : Cet exercce trate du calcul

Plus en détail

Améliorer la productivité

Améliorer la productivité Maurce Pllet Amélorer la productvté Déploemet dustrel du toléracemet ertel, 00 SBN : 978---54754- Commet calculer ue tolérace ertelle 75 Nous avos doc u toléracemet par tervalle sur les exgeces foctoelles

Plus en détail

IR homogène de degré α ( α IR ). (0.5 pt.)

IR homogène de degré α ( α IR ). (0.5 pt.) Javer 05 ( heures et 0 mutes) a) Sot IN 0 \ {} Défr : sous-esemble boré de IR sous-esemble covee de IR b) Soet les sous-esembles suvats de IR : A [-4,0] [0,] B {(,y) IR : + y 9} Représeter graphquemet,

Plus en détail

Divisibilité et congruences. Corrigés d exercices

Divisibilité et congruences. Corrigés d exercices Dvsblté et cogrueces Corrgés d exercces Les exercces du lvre corrgés das ce docuet sot les suvats : Page 445 : N 1, 5 Page 459 : N 45 Page 449 : N 10 Page 460 : N 51, 5, 55, 57 Page 451 : N 16 Page 461

Plus en détail

IFT1575 Modèles de recherche opérationnelle (RO) 7. Programmation non linéaire

IFT1575 Modèles de recherche opérationnelle (RO) 7. Programmation non linéaire IFT575 Modèles de recherche opératonnelle (RO 7. Programmaton non lnéare Fonctons convees et concaves Sot et deu ponts dans R n Le segment de drote jognant ces deu ponts est l ensemble des ponts + λ( -

Plus en détail

NOMBRES COMPLEXES EXERCICES CORRIGES

NOMBRES COMPLEXES EXERCICES CORRIGES Cours et exercces de mathématques NOMRES COMPLEXES EXERCICES CORRIGES Exercce. O doe = + et = + Ecrre sous forme algébrque les complexes suvats : = ; Exercce. Calculer, et = ; = ; = ; 5 006 009 E dédure

Plus en détail

LEÇON N 6 : Loi de Poisson, loi normale.

LEÇON N 6 : Loi de Poisson, loi normale. LEÇON N 6 :. Pré-requs : Probabltés : défto, calculs et probabltés codtoelles ; Lo bomale cf. leço o 5) ; Noto de varables aléatores dscrètes et cotues cf. leços o 4 et 7), et proprétés assocées : espérace,

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

La valeur acquise par un capital au bout d'une année est donc obtenue en multipliant ce capital par (1 + i). Par suite, le capital C1

La valeur acquise par un capital au bout d'une année est donc obtenue en multipliant ce capital par (1 + i). Par suite, le capital C1 LGL Cours de Mathématques 26 Exemples de sutes das le domae des faces 1) Itérêts composés O place 1. à térêts composés au taux de 4,5 % par a. Détermer le captal dspoble à la f de chaque aée et ce pedat

Plus en détail

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit Itroducto à l écoométre S6-EF sc. éco. & gesto Prof. Mohamed El Meroua IV.- Espérace mathématque de l estmateur  : A ˆ A + X X X Nous avos ( ε alors l espérace mathématque sera : E ( E( A + E[ ( X X X

Plus en détail

arlesrcomplexesraurbacr2014r==corriges=z

arlesrcomplexesraurbacr2014r==corriges=z arlesrcomplexesraurbacr0r==corriges= Nouvelle-Calédoe ovembre 0 5 pots Proposto : Pour tout eter aturel : ( + ) = () VRAI! ( ) doc d où ( ) ( ) ( ) ( ) Sot (E) l équato ( )( + 8) = 0 où désge u ombre complexe

Plus en détail

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON BAC BLANC MATIERE : MATHEMATIQUES OBLIGATOIRE CLASSE de : Termale S SALLE : Grade Permaece PROFESSEUR : Mle GUIHENEUF ATE : Vedred javer 6 HEURE ébut : 8 h HEURE f : h MATERIEL UTILISE : CALCULATRICE AUTORISEE

Plus en détail

Gilles Leborgne 31 mai Rappel de dérivation 1. i=1 x i e i et y = n

Gilles Leborgne 31 mai Rappel de dérivation 1. i=1 x i e i et y = n 1 Notes de cours de l'isima, premère aée http://wwwsmafr/ leborge Méthode des modres carrés : melleure approxmato léare Glles Leborge 31 ma 2005 Table des matères 1 Rappel de dérvato 1 2 Cas 1-D 2 21 Les

Plus en détail

Fonctions convexes et concaves. 7. Programmation non linéaire. Fonctions convexes et concaves. Fonctions convexes et concaves

Fonctions convexes et concaves. 7. Programmation non linéaire. Fonctions convexes et concaves. Fonctions convexes et concaves Foctos covees et cocaves IFT575 Modèles de recherche opératoelle RO 7. Proraato o léare Sot et de pots das R Le seet de drote oat ces de pots est l eseble des pots λ - λ - λ où λ ε [] Ue focto f est covee

Plus en détail

Exercice 1 : Analogie entre équilibres acido-basiques et équilibres de complexation (Application du Principe de Le Châtelier).

Exercice 1 : Analogie entre équilibres acido-basiques et équilibres de complexation (Application du Principe de Le Châtelier). Bla UE 1C G. EXERCICES BILAN Exercce 1 : Aaloge etre équlbres acdo-basques et équlbres de complexato (Applcato du Prcpe de Le Châteler). Objectfs de l'exercce - Coassaces/Compéteces testées das cet exercce

Plus en détail

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an BTS BLANC Ma 0 Epreuve : Mathématques Géérales et Applquées Flère : DA / ARLE Durée: heures NB : Chaque parte dot être tratée sur des copes dfféretes I- MATHEMATIQUES GENERALES Exercce a b Sot le Sot la

Plus en détail

1. Test d indépendance du KHI-2

1. Test d indépendance du KHI-2 1. Test d dépedace du HI- Ecrre ue focto qu réalse le test d dépedace du kh-. Etrée : x et y, deux vecteurs, de type factor Sorte : statstque de test, degrés de lberté, p-value Idcatos : Vous devez vérfer

Plus en détail

Cours (Terminale) Probabilités (révisions 1 ère )

Cours (Terminale) Probabilités (révisions 1 ère ) Cours (Termale) Probabltés (révsos ère ) Quelques rappels et complémets sur les esembles Uo de deux esembles O appelle «uo de deux esembles E et F» l esemble oté E F dot les élémets sot costtués des élémets

Plus en détail

L2 Mention Informatique. UE Probabilités. Chapitre 3 : Variables aléatoires réelles

L2 Mention Informatique. UE Probabilités. Chapitre 3 : Variables aléatoires réelles L Meto Iformatque UE Probabltés Chaptre 3 : Varables aléatores réelles Notes de cours rédgées par Rége Adré-Obrecht, Jule Pquer, Serge Solovev Sot (, A, P) Ω et X : Ω R ue varable aléatore. I. Varable

Plus en détail

L2 Mention Informatique. UE Probabilités. Chapitre 4 : Simulation - Régression

L2 Mention Informatique. UE Probabilités. Chapitre 4 : Simulation - Régression L Meto Iformatque UE Probabltés Chaptre 4 : Smulato - Régresso Notes de cours rédgées par Rége Adré-Obrecht, Jule Pquer I- Smulato de varables aléatores. Itroducto Das certaes expéreces «réelles», où le

Plus en détail

RADIOPROTECTION CIRKUS. Sommaire

RADIOPROTECTION CIRKUS. Sommaire RADIOPROTECTION CIRKUS Documet techque Radoprotecto Crkus 89 D boulevard du Fer 74000 Aecy www.rpcrkus.org - cotact@rpcrkus.org Assocato lo 1901 créée le 9 mars 010 W91300355 - Eregstrée à la préfecture

Plus en détail

I. Qu est-ce qu une variable aléatoire?

I. Qu est-ce qu une variable aléatoire? I. Qu est-ce qu ue varable aléatore?. Défto : Sot ue expérece aléatore dot l esemble des résultats possbles (l uvers est oté Ω. Ue varable aléatore est ue focto X allat de Ω sur R, c est-à-dre que c est

Plus en détail

NOMBRES COMPLEXES - EXERCICES CORRIGES Exercice n 1.

NOMBRES COMPLEXES - EXERCICES CORRIGES Exercice n 1. NOMBRES COMPLEXES - EXERCICES CORRIGES Exercce. O doe = + et = + Ecrre sous forme algébrque les complexes suvats : = ; = ; = ; = ; 5 = Exercce. Calculer, et E dédure la valeur de 006 et de 009, pus les

Plus en détail

Séries de Fourier 12-1

Séries de Fourier 12-1 Séres de Fourer 1-1 Sommare 1. Applcato de classe C 1 par morceaux 1 1.1. Applcato de classe C 1 par morceaux 1 1.. Applcato -pérodque C 1 par mcx. 1 1.3. pérato sur les applcatos C 1 par mcx 1. Sére de

Plus en détail

Serie statistique double

Serie statistique double Sere statstque double Dstrbutos margales Actvté U relevé statstque des talles (e cm) et des pods Y (e kg) d u échatllo de 00 élèves a perms de costrure le tableau suvat : Y [0, 5[ [5, 50[ [50, 55[ [55,

Plus en détail

Statistiques II Sc. Éco. & Gestion (S3) Pr. M. El Merouani 3-Notation ensembliste des événements :

Statistiques II Sc. Éco. & Gestion (S3) Pr. M. El Merouani 3-Notation ensembliste des événements : wwwelmerouajmdocom Statstques II Sc Éco & Gesto S r M El Meroua Chaptre : roaltés I Itroducto : -Epreuve ou expérece : O appelle épreuve ou expérece ue certae acto que l o peut répéter pluseurs fos ar

Plus en détail

PRO 1 EXPRO010 EXPRO019

PRO 1 EXPRO010 EXPRO019 Exercces résolus de mathématques. PRO 1 EXPRO010 EXPRO019 http://www.matheux.be.tf Jacques ollot 1 avrl 03 www.matheux.be.tf - PRO 1-1 - EXPRO010W Ue ure cotet boules blaches ( 4) et 10 boules ores. O

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 003 EPREUVE SPECIFIQUE FILIERE MP MAHEMAIQUES 1 Durée : 4 heures Les calculatrces sot terdtes * * * NB : Le caddat attachera la plus grade mportace à la clarté, à la précso et à la cocso de la

Plus en détail

Série d'exercices *** 4 ème Maths Lycée Secondaire Ali Zouaoui LES N. COMPLEXES " Hajeb Laayoun "

Série d'exercices *** 4 ème Maths Lycée Secondaire Ali Zouaoui LES N. COMPLEXES  Hajeb Laayoun Sére d'exercces *** 4 ème Maths Lycée Secodare Al ouaou LES N COMPLEXES " Hajeb Laayou " I / L esemble des ombres complexes : Défto : O appelle esemble des ombres complexes, et o ote C, l esemble des ombres

Plus en détail

Le cours Interprétation physique de la dérivée

Le cours Interprétation physique de la dérivée Il est égalemet possble de procéder à la «dérvato umérque» d ue sute de valeurs {(t ; f )}. La sute dérvée est elle-même costtuée de couples {(t ; f )} ; la valeur f de correspodat au tau de varato mesuré

Plus en détail

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20.

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20. BTS CG 996 Eercce : (0 pots) Ue agece mmoblère evsage de commercalser u programme de costructo d'appartemets Deu projets lu sot soums: Projet P : Le coût de producto de appartemets ( eter et 0 )est doé

Plus en détail

Exercice n 1 1) Par associativité de l intersection des événements, et à l aide de la formule des probabilités conditionnelles,

Exercice n 1 1) Par associativité de l intersection des événements, et à l aide de la formule des probabilités conditionnelles, CONCOURS EMIA Sceces CONCOURS 0 EPREUVE DE MATHEMATIQUES Corrgé o offcel rédgé par Jea-Gullaume CUAZ, esegat au Lycée Mltare de Sat-Cyr, jgcuaz@hotmalcom Eercce ) Par assocatvté de l tersecto des évéemets,

Plus en détail

Chapitre 1. Résumé d une distribution statistique

Chapitre 1. Résumé d une distribution statistique Chaptre. Résumé d ue dstrbuto statstque.. Cocepts de base de la statstque descrptve Populato = O appelle populato assocée à ue épreuve l esemble des résultats possbles d ue «épreuve». E statstques, le

Plus en détail

Chapitre : Équilibre général de Walras

Chapitre : Équilibre général de Walras Écoome et maagemet Lcece Mcroécoome 3 Aée 04-05 Chaptre : Équbre gééra de Waras Robert Jorda Agets de 'écoome : aucue fuece dvdueemet Système de prx : permettat de réaser des échages Codusat à u état réasabe

Plus en détail

Séries chronologiques

Séries chronologiques Séres chroologques Rappel : Détermato de l équato d ue drote passat par pots. ( so équato peut se mettre sous la forme y ax + b ) ex : Détermato de l équato de la drote passat par les pots : A ( - ; -5

Plus en détail

MPSI du lycée Rabelais semaine du 11 septembre 2015 CALCULS ALGÉBRIQUES. Montrez que u k = u m +u n

MPSI du lycée Rabelais  semaine du 11 septembre 2015 CALCULS ALGÉBRIQUES. Montrez que u k = u m +u n MPSI du lycée Rabelas http://mps.satbreuc.free.fr semae du septembre 5 CALCULS ALGÉBRIQUES Sommes et produts fs Exercce : Parm les formules suvates, lesquelles sot vraes?.. 3. α+a α+ a +b αa α a + a a

Plus en détail

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée.

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée. Lycée Ib Khaldou Devor de cotrôle ème Maths Radès ( heure) Mr ABIDI Fard Mathématques Mercred 9 Novembre 0 Exercce : ( pots) Répodre par Vra au Faux aux questos propostos suvates Aucue justfcato est demadée

Plus en détail

Statistique. 3 ème Maths Mai 2010 A. LAATAOUI. I. Introduction :

Statistique. 3 ème Maths Mai 2010 A. LAATAOUI. I. Introduction : Statstque 3 ème Maths Ma 00 A LAATAOUI I Itroducto : La statstque est ue scece ayat pour objet l étude des phéomèes socau surtout ceu doat leu à des varatos ou ceu e pouvat être suffsammet maîtrsés que

Plus en détail

BACCALAURÉAT GÉNÉRAL BLANC MATHÉMATIQUES

BACCALAURÉAT GÉNÉRAL BLANC MATHÉMATIQUES BACCALAURÉAT GÉNÉRAL BLANC SESSION 06 MATHÉMATIQUES Sére STL Durée de l épreuve : 4 heures Coeffcet : 4 ENSEIGNEMENT OBLIGATOIRE Les calculatrces électroques de poche sot autorsées, coformémet à la réglemetato

Plus en détail

Chapitre I : Introduction à la résistance des matériaux & Rappel de statique. (August Wöhler)

Chapitre I : Introduction à la résistance des matériaux & Rappel de statique. (August Wöhler) Chaptre I : Itroducto à la résstace des matéraux & appel de statque (August Wöhler) Premer cours de ésstace des atéraux a été doé par August Wöhler à l'uversté de Göttge (Allemage) e 842. aculty of echacal

Plus en détail

Terminales S Exercices sur les nombres complexes Page 1 sur 6

Terminales S Exercices sur les nombres complexes Page 1 sur 6 Termales S Exercces sur les ombres complexes Page sur 6 Exercce : ) Calculer, et 5 6 7 ) E dédure, et ) Détermer les eters pour lesquels est a) u réel, b) est u magare pur, c) égal à Exercce : Ecrre sous

Plus en détail

EVALUATION D ACTIFS. Rappels d analyse. I. Fonctions convexes et concaves ( ) ( ) ( ) ( ) () () ()

EVALUATION D ACTIFS. Rappels d analyse. I. Fonctions convexes et concaves ( ) ( ) ( ) ( ) () () () EVAUATIN D ACTIFS Esegat : Carole Gresse, Proesseur Tpe de cours : Esegemet théorque (30h) Rappels d aalse Ces rappels sot, pour la plupart, etrats de RGER Patrck, 99, es outls de la modélsato acère, PUF,

Plus en détail

Les nombres complexes

Les nombres complexes haptre 6 termale S Les ombres complexes 1 hstorque et créato : N Z ID Q R es esembles ot été costruts au fl de l hstore grâce à u même problème : certaes équatos ot des solutos das u esemble doé mas d

Plus en détail

III GRANDEURS MOLAIRES

III GRANDEURS MOLAIRES Chaptre III GRNDEURS MOLIRES Gradeurs molares - Gradeur molare d u corps pur ou d u age de corps purs Sot u système thermodyamque costtué de moles d u même composé, o assoce à ue gradeur extesve de ce

Plus en détail

CORRIGÉ ESSEC 2008 Scientifique

CORRIGÉ ESSEC 2008 Scientifique CORRIGÉ ESSEC 28 Scetfque Premère parte 1. a) O vérfe asémet que est be ue applcato de das (pour tout polyôme P, (P) est be u polyôme) et qu elle est léare ( (P,Q) 2, λ, (λp+q)=λ (P)+ (Q)). Doc : est u

Plus en détail

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x Probabltés A) Varable aléatore et lo de probablté Varable aléatore Défto : O cosdère l'esemble E des ssues d'ue expérece aléatore Défr ue varable aléatore X sur cet esemble, c est assocer u ombre à chaque

Plus en détail

I. Introduction. Les constantes totales de stabilité des complexes respectifs sont: Marina Iliescu, C. Podina et Cristina Mandravel

I. Introduction. Les constantes totales de stabilité des complexes respectifs sont: Marina Iliescu, C. Podina et Cristina Mandravel L ÉTUDE DE L ÉTAT IONIQUE RÉEL DE CERTAINS IONS ÉTALLIQUES DANS DES SOLUTIONS AQUEUSES TRÈS DILUÉES. I. DETERINATION DES CONSTANTES TOTALES DE STABILITE DANS LE CAS OU LES IONS ETALLIQUES FORENT UN SEUL

Plus en détail

CHAPITRE VI. THÉORÈME DU CHANGEMENT DE VARIABLE. pour tout borélien B U. En particulier, on a λ (A) = µ ( φ 1 (A)) pour tout borélien A V, soit V U

CHAPITRE VI. THÉORÈME DU CHANGEMENT DE VARIABLE. pour tout borélien B U. En particulier, on a λ (A) = µ ( φ 1 (A)) pour tout borélien A V, soit V U CHAPITE I. THÉOÈME D CHANGEMENT DE AIABLE.. Itégrato par chagemet de varable... Itroducto. Soet, deux ouverts de et φ : u homéomorphsme de sur. Notos x (resp. y ) la varable de (resp. de ) et λ = dy la

Plus en détail

5. Variables aléatoires simultanées

5. Variables aléatoires simultanées 5. Varables aléatores smultaées 5.1 Coule de varables aléatores Défto 1 Pour tout dce das 1, sot X ue varable aléatore. O dt que X X 1 X est ue varable aléatore de dmeso. Nous ous téresseros rcalemet aux

Plus en détail

Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, )

Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, ) Polyése Ju 00 Sére S xercce Le pla complexe est rapporté à u repère orthoormal drect ( O; uv, ) Prérequs Parte A Resttuto orgasée de coassaces Sot u ombre complexe tel que = a+ b où a et b sot deux ombres

Plus en détail

Chapitre 4 Fonction de transfert

Chapitre 4 Fonction de transfert Chatre 4 Focto de trasfert Chatre 4 Focto de trasfert 4.. Exresso de la focto de trasfert Pour u système léare cotu et varat, ous avos vu que la relato etre la sorte s( et l etrée e( est doée ar ue équato

Plus en détail

EXERCICES CORRIGES. Partie 1 : Suites numériques = 4

EXERCICES CORRIGES. Partie 1 : Suites numériques = 4 EXERIES ORRIGES Parte : Sutes umérques Exercce : Ue sute arthmétque est telle que la somme de ses premers termes est égale à 8 et la somme de ses 6 premers termes est égale à 7 68. alculer le 5 ème terme

Plus en détail

M ( ) n,p. Chapitre 15 Matrices et systèmes linéaires. I Généralités. Dans tout le chapitre K désigne le corps R ou C.

M ( ) n,p. Chapitre 15 Matrices et systèmes linéaires. I Généralités. Dans tout le chapitre K désigne le corps R ou C. PSI 1 hatre 15 Matrces et systèmes léares Das tout le chatre K désge le cors R ou I Gééraltés 1 Défto Défto : Ue matrce est u tableau d élémets de K coteat lges et coloes Notatos : U matrce A est otée

Plus en détail

Bac blanc de mathématiques

Bac blanc de mathématiques Termale st2s le mercred 09/03/2016 Durée : 2 heures Bac blac de mathématques Exercce 1 : 6 pots Le tableau c-dessous doe le ombre d aboemets au servce de téléphoe moble e Frace etre f 2001 et f 2009, exprmé

Plus en détail

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position?

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position? Paramètres descrptfs Cours VETE043- Aée académque 06-07 Commet représeter les varables aléatores (doées)? Représetato sythétque Tables de fréqueces Représetato graphque Dagrammes de fréqueces Paramètres

Plus en détail

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2 Exercce Lba 6 4 pots O cosdère u solde ADECBF costtué de deux pyramdes detques ayat pour base commue le carré ABCD de cetre I. Ue représetato e perspectve de ce solde est doée e aexe (à redre avec la cope).

Plus en détail

I. Moyenne, variance et écart-type d une série statistique

I. Moyenne, variance et écart-type d une série statistique I Moyee, varace et écart-type d ue sére statstque Sére statstque dscrète : Eemple d ue sére statstque dscrète : Preos le cas d ue classe de élèves qu réalset u devor oté sur 5 La sére statstque dscrète

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 2. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 2. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 005 EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES Durée : 4 heures Les calculatrces sot terdtes * * * NB : Le caddat attachera la lus grade mortace à la clarté, à la récso et à la cocso de la rédacto

Plus en détail

Variables j.. p. Xij

Variables j.. p. Xij L alyse e Composates Prcpales (CP) O possède u tableau rectaulare de mesure dot les coloes sot des varables quattatves (mesuratos, taux, statos clmatques) et dot les les représetet des dvdus statstques

Plus en détail

Chapitre II : Application du second principe à l étude de la réaction chimique ; Potentiel chimique

Chapitre II : Application du second principe à l étude de la réaction chimique ; Potentiel chimique Chaptre II : Applcato du secod prcpe à l étude de la réacto chmque ; Potetel chmque Pla : ********************** I- Eocé du secod prcpe de la thermodyamque... 2 1- Eocé du secod Prcpe de la hermodyamque...

Plus en détail

Leçon 08 : Statistiques Terminale. Altitude (x i ) Températures ( y i )

Leçon 08 : Statistiques Terminale. Altitude (x i ) Températures ( y i ) Leço 08 : Statstques Termale E premer leu, l te faut relre les cours de premère sur les statstques à ue varable, l a tout u lagage à se remémorer : étude d u échatllo d ue populato, mode, moee et médae

Plus en détail

2. On présente ensuite une proposition : l'équiprobabilité à chaque étape entraîne l'équiprobabilité sur l'ensemble des résultats.

2. On présente ensuite une proposition : l'équiprobabilité à chaque étape entraîne l'équiprobabilité sur l'ensemble des résultats. rbre de déombremet et arbre de probablté Pla du documet. O présete tout d'abord la règle du produt pour les arbres de déombremet avec, e cas partculer, le cardal d'u produt cartése d'esembles fs.. O présete

Plus en détail

Une urne contient 5 boules rouges, 5 boules blanches et 6 boules bleues.

Une urne contient 5 boules rouges, 5 boules blanches et 6 boules bleues. Lycée Paul Gaugu CPGE-EC Aée 04/05 Exercces «basques» Fche N : Exercces sur les varables aléatores réelles dscrètes Exercce. : O cosdère deux dés dscerables be équlbrés. O ote X la varable aléatore égale

Plus en détail

EXERCICES DE. Serveur d'exercices 1/25

EXERCICES DE. Serveur d'exercices 1/25 Sceces.ch lgèbre Léare EXERCICES DE LGÈBRE LINÉIRE Serveur d'exercces /5 Sceces.ch lgèbre Léare EXERCICE. Nveau : Deuxème Cycle uteur : Rube Rcchuto (3..4) Mots Clés : Matrces à coeffcets das u aeau Éocé

Plus en détail

( (p, q) IN 2 ) A p A q = A p+q ( (p, q) IN 2 ) (A p ) q = A pq ( k IN) (A ) k = (A k ) ( k IN) Dét (A k ) = (Dét A) k

( (p, q) IN 2 ) A p A q = A p+q ( (p, q) IN 2 ) (A p ) q = A pq ( k IN) (A ) k = (A k ) ( k IN) Dét (A k ) = (Dét A) k Algèbre Chaptre 6 Les matrces carrées Hypothèses : est u eter strctemet postf I est la -matrce uté I La trace d ue matrce carrée La trace d ue -matrce est la somme de ses termes dagoaux O ote la trace

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

= exportations du pays i en produit k

= exportations du pays i en produit k CHELE, Comptes harmosés sur les échages et l écoome modale LES INDICATEURS Les dcateurs reteus ot été choss e se fodat sur l'expérece acquse das les travaux du CEPII, et après avor cofroté les méthodes

Plus en détail

.Il existe dans C un nombre non réel, noté i, vérifiant i 1

.Il existe dans C un nombre non réel, noté i, vérifiant i 1 Esemble C des ombres complexes 4 ème mth HHmmoud Feth )Forme lgébrque d u ombre complexe : Il exste u esemble oté C, de ombres ppelés ombre complexe, tel que : C cotet IR ; C est mu d ue ddto et d ue multplcto

Plus en détail

a. Le symbole se lit «sigma» ; l écriture Ex : 2 Fréquences en % ( f i x 100) 11,1 % 29,6 % 59,3 % 100 %!!!!

a. Le symbole se lit «sigma» ; l écriture Ex : 2 Fréquences en % ( f i x 100) 11,1 % 29,6 % 59,3 % 100 %!!!! Cours : Statstques I. Itroducto Classe de ère S O a vu que our caractérser ue sére statstque, o utlse des : - aramètres de tedace cetrale : - la moyee ; - la médae. Ils ermettet d dquer la «osto» de la

Plus en détail

Limites de fonctions (1) Approche intuitive ; limites des fonctions de référence. 1 ère S. II. La fonction carrée. 1 ) Tableau de variation

Limites de fonctions (1) Approche intuitive ; limites des fonctions de référence. 1 ère S. II. La fonction carrée. 1 ) Tableau de variation ère S Lmtes de foctos () Approche tutve ; tes des foctos de référece II. La focto carrée ) Tableau de varato Das ce chaptre, o lasse provsoremet de côté les dérvées. I. Itroducto ) Rappel Déà vu : oto

Plus en détail

Lois de probabilités liées aux tirages de boules dans une urne Approche sondage : échantillonnage et estimation dans une population finie

Lois de probabilités liées aux tirages de boules dans une urne Approche sondage : échantillonnage et estimation dans une population finie Los de probabltés lées aux trages de boules das ue ure Approche sodage : échatlloage et estmato das ue populato fe Das le ouveau programme de secode, retrée 2009, sot scrtes les otos d'tervalle de fluctuato

Plus en détail

EXERCICES RÉDIGÉS SUR LES NOMBRES COMPLEXES. et z 2 = e. Z i ( Z = 0 ou arg(z) = π 2 [π] ) Z imaginaire pur Z + Z = 0

EXERCICES RÉDIGÉS SUR LES NOMBRES COMPLEXES. et z 2 = e. Z i ( Z = 0 ou arg(z) = π 2 [π] ) Z imaginaire pur Z + Z = 0 EXERCICES RÉDIGÉS SUR LES NOMRES COMPLEXES Exercce 1 Valeur exacte du us et du sus de /1 O dère les deux ombres complexes suvats : 1. Écrre z 1 et z sous forme algébrque. z 1 = e 3 et z = e. Détermer les

Plus en détail

SCHEMA DE BERNOULLI ET LOI BINOMIALE. EXEMPLES

SCHEMA DE BERNOULLI ET LOI BINOMIALE. EXEMPLES SCHEMA DE BERNOULLI ET LOI BINOMIALE EXEMPLES Nveau : termale Pré-requs : Espace probablsé Varable aléatore réelle sur u espace probablsé f Lo de probablté de X Espérace mathématque Varace O se place das

Plus en détail

PRINCIPES DES STATISTIQUES INFERENTIELLES

PRINCIPES DES STATISTIQUES INFERENTIELLES Chaptre 3 PRINCIPES DES STATISTIQUES INFERENTIELLES Bases de la statstque féretelle PLPSTA0 0 Chaptre 3 1. Problématque. Objectfs des statstques féretelles.1 Estmato poctuelle. Estmato par tervalles.3

Plus en détail

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale Cotrôle de gesto Budget des vetes Module 4 - Leço - Budget des vetes Itroducto - Recherche de la tedace géérale - Itroducto Le budget des vetes est le premer budget opératoel à établr. Il est cosdéré comme

Plus en détail

TS Les nombres complexes (1)

TS Les nombres complexes (1) TS Les omres complexes () Chptre d lgère I Itroducto ) ref hstorque Nomres mpossles omres mgres (Descrtes) omres complexes ) Esemles de omres x 7 0 x 7 0 x 0 L équto x ps de soluto ds ( x ou x ) x chque

Plus en détail

sont distincts 2 à 2.

sont distincts 2 à 2. Lycée Thers CORRIGÉ TP PYTHON - 09 L algorthme des k-meas pour partager u uage de pots e u ombre doé de classes peu dspersées 1 - La méthode de Forgy [Qu. 1] 1) Cette double somme comporte termes pusque

Plus en détail

LOI NORMALE ET LOIS DERIVEES

LOI NORMALE ET LOIS DERIVEES Prcpes et Méthodes de la Bostatstque Chaptre 5 LOI NORMALE ET LOIS DERIVEES A-LA LOI NORMALE Présetato La dstrbuto ormale, dte ecore de Laplace-Gauss, est pour des rasos qu apparaîtrot plus lo, la plus

Plus en détail

Arithmétique. Divisibilité. PGCD et PPCM. Division euclidienne. [http://mp.cpgedupuydelome.fr] édité le 24 septembre 2016 Enoncés 1

Arithmétique. Divisibilité. PGCD et PPCM. Division euclidienne. [http://mp.cpgedupuydelome.fr] édité le 24 septembre 2016 Enoncés 1 [http://mp.cpgedupuydelome.fr] édté le 24 septembre 206 Eocés Arthmétque Exercce 7 [ 025 ] [Correcto] O cosdère la sute (ϕ ) N défe par Dvsblté Exercce [ 087 ] [Correcto] Résoudre das Z les équatos suvates

Plus en détail

IFT1575 Modèles de recherche opérationnelle (RO) 2. Programmation linéaire b. Méthode du simplexe c. Dualité d. Analyse de sensibilité

IFT1575 Modèles de recherche opérationnelle (RO) 2. Programmation linéaire b. Méthode du simplexe c. Dualité d. Analyse de sensibilité IFT575 Modèles de recherche opérationnelle (RO) 2. Programmation linéaire b. Méthode du simplee c. Dualité d. Analyse de sensibilité Interprétation des variables d écart Dans la solution optimale du problème

Plus en détail

Concours général 2014 pb 3 : chiffres et lettres

Concours général 2014 pb 3 : chiffres et lettres Cocours gééral 014 pb 3 : chffres et lettres 1 Le sujet U mot de logueur est ue sute de lettres choses parm les l0 lettres A, B, C, D, E, F, G, H, I, J Par exemple, BEC, IJCD, AFFICHAGE, ABCDEFGHIJ sot

Plus en détail

Annexe 2 Note méthodologique sur le calcul des évolutions de bases, taux et produits de la fiscalité directe locale

Annexe 2 Note méthodologique sur le calcul des évolutions de bases, taux et produits de la fiscalité directe locale Mstère de l téreur, de l outre-mer ublcato : «le gude statstque de et des collectvtés terrtorales la fscalté drecte locale 2007» Aexe 2 Note méthodologque sur le calcul des évolutos de bases, taux et produts

Plus en détail

XVII. Les nombres complexes.

XVII. Les nombres complexes. XVII. Les ombres complexes.. Itroducto Progressvemet, ous avos agrad les esembles de ombres e passat de N à Z pus à Q et ef à R. Ces agradssemets ot doé la possblté de résoudre de plus e plus d'équatos.

Plus en détail

Analyse de régression

Analyse de régression Itroducto à la régresso Aalyse de régresso La régresso est utlsée pour estmer ue focto f( ) décrvat ue relato etre ue varable explquée cotue,, et ue ou pluseurs varables explcatves,. = f(,, 3,, )+ε Remarque

Plus en détail

ε : force électromotrice induite instantanée ou en abrégé f.é.m induite instantanée

ε : force électromotrice induite instantanée ou en abrégé f.é.m induite instantanée Lo de l ducto électromagétque (Lo de faraday) Pla, résumé 1 1. Lo de Faraday = Flux du champ magétque : Φ = = cos ou Φ = : force électromotrce dute stataée ou e abrégé f.é.m dute stataée dφ : force électromotrce

Plus en détail

- x)(y i. - y) (x i. r = - x) 2 (y i. - y) 2. (x- a) (d - c) + c b- a. + a (0.1) (1,1) C.L. (0.0) (1,0) Masse salairiale des x % gagnant le moins.

- x)(y i. - y) (x i. r = - x) 2 (y i. - y) 2. (x- a) (d - c) + c b- a. + a (0.1) (1,1) C.L. (0.0) (1,0) Masse salairiale des x % gagnant le moins. Résumé statstque.6 Le coeffcet de corrélato Corrélato etre deux composats: pod/talle d'u dvdu. r = å å =1 x - xy - y å x - x y - y =1 =1 La valeur se stuera etre -1 corrélato égatve/versée et 1corrélato

Plus en détail

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x Probabltés A) Varable aléatore et lo de probablté Varable aléatore Défto : O cosdère l'esemble des ssues d'ue expérece aléatore Défr ue varable aléatore X sur cet esemble, c est assocer u ombre à chaque

Plus en détail

CHAPITRE 6 : LE BIEN-ETRE. Durée : Objectif spécifique : Résumé : I. L agrégation des préférences. Cerner la notion de bien-être et sa mesure.

CHAPITRE 6 : LE BIEN-ETRE. Durée : Objectif spécifique : Résumé : I. L agrégation des préférences. Cerner la notion de bien-être et sa mesure. TABLE DES MATIERES Durée...2 Objectf spécfque...2 Résumé...2 I. L agrégato des préféreces...2 I. Le système de vote à la majorté...2 I.2 Vote par classemet...3 I.3 Codtos de décso socale et théorème d

Plus en détail

Module 4: Corrigé des Cas pratiques Exercices Annuités

Module 4: Corrigé des Cas pratiques Exercices Annuités L. Bofs - F. Le Coru Module 4: Corrgé des Cs prtques Exercces Autés Exercce 1 : Rppel des forules : Sot ue sute de utés costtes de ott O ote : - lors : : leur cquse pr ces utés costtes à l dte du deer

Plus en détail

Chapitre III : Les caractéristiques de dispersion

Chapitre III : Les caractéristiques de dispersion Chaptre III : Les caractérstques de dsperso Les caractérstques de tedace cetrale e sot pas toujours suffsates pour caractérser ue sére statstque, car séres peuvet avor Mo= Me = x alors qu elles sot dstrbuées

Plus en détail

Coefficient de partage

Coefficient de partage Coeffcet de partage E chme aque, la sythèse d'u composé se fat e pluseurs étapes : la réacto propremet dte (utlsat par exemple u motage à reflux quad la réacto dot être actvée thermquemet), les extractos

Plus en détail

CHAPITRE 2. Les carrés dans (Z/nZ) 2.1 Carrés et non carrés dans le corps Z/pZ

CHAPITRE 2. Les carrés dans (Z/nZ) 2.1 Carrés et non carrés dans le corps Z/pZ CHAPITRE Les carrés das (Z/Z Das ce chatre o s téresse à l esemble des carrés das le cors Z/Z, mas auss das certas aeaux Z/Z avec o remer O todut le symbole de Legedre qu caractérse les carrés O trodut

Plus en détail

COUPLE DE VARIABLES ALEATOIRES. On considère deux variables aléatoires X et Y. On aimerait connaitre s il y a influence entre ces deux variables.

COUPLE DE VARIABLES ALEATOIRES. On considère deux variables aléatoires X et Y. On aimerait connaitre s il y a influence entre ces deux variables. COUPLE DE VARIABLES ALEATOIRES O cosdère deux varables aléatores et. O amerat coatre s l y a fluece etre ces deux varables. I Coule de varables dscrètes : 1) Lo ote : Soet et deux varables dscrètes, à

Plus en détail

CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4

CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4 page1/6 CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4 Dosser "Défcece" 1) = 30 pour les groupes. Les classes sot d'ampltudes dfféretes doc...utlser la desté (rappel : desté = effectf/ampltude). Durée

Plus en détail