Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté»

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté»"

Transcription

1 Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer MD 8-9 Chre IV es oscllons coulées «es oscllons lbres d un ssèe à luseurs degrés de lberé» Dns ce chre, nous llons coencer r éuder les oscllons lbres d un ssèe écnque à deu degrés de lberé, us on sser u cs de ros degré de lberé ensue on rer les oscllons orcées our on erner vec l ulson du clcul rcel our l éude des vbrons des ssèes à luseurs degré de lberé. IV. es oscllons lbres d un ssèe à DD : Consdérons le ssèe onré c-conre. Dérvons les équons dérenelles du ouveen ; c d d d d Ces deu équons euven êre écre sous l ore rcelle Suvne : reère rce es l rce des coecens d nere e l deuèe es l rce des coecens d élscé. Dns le cs générl, les deu rces récédenes euven êre sous l ore sndrd suvne : { } { } { } q B q Dvsons l reère équon r e l deuèe r on oben,, où e,,. Recherche des réquences rores : Cherchons les soluons des équons dérenelles sous l ore e,,, où,,, ϕ e son les ludes colees, relçons dns les équons dérenelles e dvsons r e on oben les équons u ludes :, qu es ssèe de deu équons lnéres hoogènes e l condon our que ce ssèe ossède une soluon non rvle non nulle,,, es donnée r :

2 Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer Déveloons le déernn on oben l équon u réquences rores : 4 K, où K, K es le coecen de coulge. orsque ; ; K : on un découlge << e : le coulge es d lâche >> e end vers l nn ; K : le coulge es d serré les deu sses se délcen coe une seule sse. es rcnes de l équon u réquences rores son les réquences rores du ssèe qu son données r :, [ ± 4K ] vron de en oncon de K es rerésenée sur l gure c-conre., < Recherche des odes rores : Pour chque réquence rore corresond un ode rore e dns chque ode rore du ouveen, chcune des deu sses eecue un ouveen hronque sle vec l êe réquence. K Mode : qu corresond à l réquence rore On oben ce ode en relçn r dns les équons u ludes : >, cr > MD 8-9

3 Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer e ror es réel e os, donc l dérence de hse enre e es nulle, c'es-àdre dns ce ode les deu sses e oscllen en hse. n, ϕ e ϕ ϕ e cos ϕ ϕ sn ϕ ϕ, s le ror es réel e os ϕ e lors l re gnre es nulle donc ϕ ϕ. es soluons des équons dérenelles du ouveen dns ce cs son : Re e cos α Re e cos α cos α Mode : qu corresond à l réquence rore On oben ce ode en relçn r dns les équons u ludes : <, cr < e ror es réel e nég, donc l dérence de hse enre e es égle à π c'es-à-dre dns ce ode les deu sses e oscllen en ooson de hse. es soluons des équons dérenelles du ouveen dns ce cs son : Re e cos α Re e cos α cos α soluon générle des deu équons dérenelles es l sueroson lnére des soluons dns les deu odes. cos α cos α cos α cos α es qure consnes rbrres,, α e α son déernées à rr des condons nles c'es-à-dre les vleurs de,, e. IV... ude du ssèe sérque C es le êe ssèe qu vn s vec e e. es équons dérenelles devennen : MD 8-9

4 Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer lors, e e le ceur de coulge réquences rores son : e K. es Mode :, les deu ludes son égles. Mode :, les deu ludes son égles, s les délceens son en ooson de hse. es soluons s écrven : cos α cos α cos α cos α ele our l déernon des consnes : Consdérons les condons nles suvnes :, e ; l sse es écrée d une dsnce us relâchée sns vesse nle r conre l sse es oble dns s oson d équlbre. es vesses son données r : sn α sn α sn α sn α lquons les condons nles données c-dessus, on oben : cosα cosα cosα cosα snα snα snα snα 4 e 4 snα snα snα snα snα α, n, π, s on, rendr α, n Donc,, lors. lors, cos cos cos cos cos cos sn sn, π our que les ludes soen réelles. MD 8-9 4

5 Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer es oscllons des deu sses son des ouveens de been. IV.. es coordonnées générlsées our un ssèe à deu degré de lberé Prenons le cs du ssèe sérque ré c-dessus e écrvons les équons dérenelles du ouveen sous l ore : MD 8-9 5

6 Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer 4 Dénssons deu nouveu rères q e q r : q q lors, les deu équons e 4 rennen les ores : q q q q q q q q, où e son les réquences rores du ssèe. Ces deu équons dérenelles son découlées e chcune d elles es une équon dérenelle d un osclleur hronque sle vec l une des réquences rore du ssèe. es soluons de ces équons son données r : q cos α q cos α es nouvelles coordonnées q e q son elées les coordonnées nurelles ou norles du ssèe e chcune d elles corresond à un ode rore du ssèe. Générlson : es coordonnées norles d un ssèe son des coordonnées dns lesquelles les équons dérenelles devennen des équons ndéendnes. IV..4. ressons des énerges cnéque e oenelle en oncon des coordonnées norles énerge cnéque : rr des eressons des coordonnées norles, on eu obenr les coordonnées générlsées : q q q q q q q q c q q c c où c e c énerge oenelle : son les énerges cnéques dns le ode e le ode resecveen. MD 8-9 6

7 Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer q q q q q énerge ole s écr : c c c où q q e q q Il es clr que l énerge ole es l soe des énerges dns le ode e le ode. Monrons nenn que e son consnes de ouveen, our cel clculons leurs dérvées e ulsons les équons dérenelles du ouveen: d q q q cons n e d d q q q cons n e d Cel veu dre que chcune des énerges qu corresonden u odes rores se conserven vec le es e leur soe es uss conservée. On dédu l ndéendnce des odes noru, c'esà-dre l n s d échnge d énerge enre eu. S l un des odes es ecé, oues les res consun le ssèe osclle vec l réquence corresondne à ce ode e l n rî s des oscllons vec le l ure ode ou les ures odes dns le cs génér rce que l s ne eu euven s obenr de l énerge du ode ecé. IV.. Vbrons lbres d un ssèe à ros degré de lberé Coe eele, on v rendre un ssèe coosé de ros sses chrgées sur une corde de sse néglgeble sérée r une dsnce denque e l enson de l corde es gure IV... d équlbre r b. de ouveen r r r r r γ β α Fgure IV.. : Ssèe à ros sses chrgéés sur un l sns sse ;. é d équlbre, b. é de ouveen MD 8-9 7

8 Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer Pour éuder le ouveen des ros sses, on v re les slcons suvnes :. les sses vbren vercleen vec de bles ludes.. l enson du l rese consne u cours du ouveen. à l équlbre les sses resen dns une oson horzonle g << es équons dérenelles du ouveen : On lque le rnce ondenl our les ros sses on oben : snα sn β sn β sn γ sn γ snδ Coe les oscllons son de bles ludes, on : snα gα, sn β, sn γ lors les équons dérenelles devennen : Méhode de grnge : On v rer le cs générl, c es à dre lorsque l corde es chrgée vec n sses denques e on nuéroe les sse vec l ndce dscre,,,n r r r r α - Poson d équlbre Fgure IV.. : Ssèe à n sses chrgées sur un l sns sse α MD 8-9 8

9 Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer MD énerge cnéque es donnée r : n c. Pus clculons l énerge oenelle our l sse, schn que les orces qu gssen sur cee sse son les coosnes norles des ensons r, qu son données r : sn sn α α, donc, d d sn sn, α α, où sn α e sn α. lors, l eresson de l énerge oenelle deven : d d d,,, Pour n,, d rès les condons u les n le derner ere es nul. êe chose our n on oben our :,, c. D rès ces cs rculers, l énerge oenelle des n sses es donnée r :......, n n n Pour n, on : c e, lors les équons dérenelles son : d d d d d d Ces équons dérenelles euven êre écre sous l ore rcelle suvne : d'élscé des d'nere des coecens rce coecens rce reère rce es dgonle donc le coulge dns ce ssèe n es s un coulge d nere, r conre l deuèe n es s dgonle lors le coulge es un coulge élsque. Recherche des réquences rores Cherchons des soluons sous l ore hronque suvne : e, us on relce dns les équons dérenelles on oben rès vor sler r e :

10 Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer MD 8-9, l enseble de ces équons s elle les équons u ludes e de une soluon non-nulle non-rvle s le déernn de l rce suvne es nul : Déveloons le déernn, on oben l équon u réquences rores don les rcnes son les réquences rores du ssèe. Qu donne e les réquences rores son :, e. Recherche des odes rores Pour rouver le ode corresondn à l réquence rore on relce r dns les équons u ludes. Mode :, où dns j, désgne l sse e j désgne le ode. lors,

11 Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer équon ; les deu sses e vbren en hse, s l lude de l sse es suéreure à celle de l sse. équon. Rerque : dns le cs générl on ose égl à une consne r eele B qu eu êre déernée en ulsn des condons nles e on ere les ures ludes en oncon d elle. lors, B, donc les deu sses e vbren en hse e vec l êe lude vor gure IV... B B B Fgure IV.. : Conguron des sses dns le ode soluon dns ce ode es donnée r : cos ϕ Mode : On relce r dns les équons u ludes, on oben : j, où dns, désgne l sse e j MD 8-9

12 Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer équon ; l sse es oble. équon B ; l sse se délce vec l êe lude que celle de l sse s en ooson de hse vec cee dernère vor gure IV..4. B noeud B Fgure IV..4 : Conguron des sses dns le ode soluon dns ce ode es donnée r : cos ϕ Mode :, où dns désgne le ode. lors, MD 8-9 j, désgne l sse e j équon ; les deu sses e vbren en ooson de hse, s l lude de l sse es suéreure à celle de l sse. équon.

13 Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer MD 8-9 donc les deu sses e vbren en hse e vec l êe lude vor gure IV..5. soluon dns ce ode es donnée r : cos ϕ soluon générle s écr : cos cos cos cos cos cos ϕ ϕ ϕ ϕ ϕ ϕ B B B, qu on eu écrre sous l ore rcelle sous l ore suvne : q q q,où cos B q ϕ es l coordonnée norle. IV.. Vbrons orcées d un ssèe à deu degré de lberé. vbrons orcées non-ores : Un ssèe écnque coosé de deu osclleurs coulés. e reer ssèe e es sous à une orce hronque eéreure e le deuèe ssèe es sous seuleen u coulge. es équons dérenelles son données r : soluons de ces deu équons coulées es l soe des soluons hoogène e rculère, nous cherchons l deuèe. Coe cos qu eu êre écre sous l ore colee e, osons e e relçons dns les équons dérenelles du B B B Fgure IV..5 : Conguron des sses dns le ode F cos

14 Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer MD ouveen, on oben les deu équons lgébrques suvnes :, où e,. lors, es deu ludes colees e qu les ludes réelles e des ouveen des sses en oncon de l réquence de l orce ecrce ns que les leurs hses son données r en ulsn l éhode de Krer : On rerque que le dénoneur dns les eressons des deu ludes s l es s égl à zéro n es ure que l équon u réquences rores du ssèe. Vron de s ludes en oncon de l réquence de l orce ecrce :., délceen sque our chcune des deu sses.. les réquences our lesquelles e rennen des vleurs les résonnce dns ce cs e son e, où, son les réquences rores du ssèe. Ic, on deu cs de résonnce.. les réquences our lesquelles les deu sses son obles c'es-à-dre s ou e s. Pour l réquence qu es corse enre e, le délceen de l sse sur lquelle g l orce eéreure es nulle e l lude du ouveen de l sse, rend une vleur nle ;. Phsqueen, ce résul ndque que l orce l orce de rel du u ressor cenrle ressor de coulge es égle en grndeur à l orce ecrce s de sens oosé - ;. Donc l résulne des orces qu gssen sur es nulle lgré qu elle es souse à

15 Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer l orce ecrce u êe es l sse vbre en ooson de hse vec l orce. Ce hénoène es rès orne en rque ; bsoron des vbrons. φ -π φ -π Fgure IV.. : vron des ludes e e des dérences des hses φ e φ enre les ouveens des sses e e l orce ecrce resecveen. MD 8-9 5

16 Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer MD e sens du ouveen de l sse vre vec l réquence, lorsque l lude es osve l dérence de hse enre le ouveen e l orce es nulle φ, r conre lorsqu elle es négve l dérence de hse es de π. b. vbrons orcées ores : On rerend le êe ssèe qu en. s on joue deu orsseurs α e α lés u sses e resecveen. es équons dérenelles s écrven : α α, qu on eu écrre sous l ore :, où α Ces deu équons rerésenen les vbrons des deu sses e. vec cee écrure, on eu nerréer l reère équon coe én l équon dérenelle du reer osclleur non-coulé vec le second, s sous à l orce e l êe chose our l deuèe elle donne le ouveen du second osclleur qu n es s coulé u reer s sous à l orce. Rége ernen : l es connu que l soluon rculère qu rerésene les oscllons lbres du ssèe es ore, c'es-à-dre qu dsrî rès un cern es susen grnd. On cherche l soluon rculère sous l ore : e,,, où e β es l lude colee de l sse. Subsuons les vesses e les ccélérons dns les équons dérenelles on oben :, e les ludes son données r : nnulon du dénoneur dns les eressons des ludes donne l équon u réquences rores don les rcnes son les réquences rores du ssèe or, ces dernères son dérenes de celles du ssèe non-or ; l équon u réquences rores es colee, donc on cherche des rcnes colees '', ',, ; l re réelle qu es néreure à l réquence rore en l bsence de l orsseen donne l réquence

17 Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer d oscllon r l re gnre donne l orsseen de l lude qu relèe l dnuon de l énerge. On eu rouver cleen l lude réelle e l dérence de hse enre le β * I ouveen de l sse e l orce, en ee : e e gβ Re e Re ndquen resecveen l re gnre e l re réelle., où I Pcs de résonnces lude Fgure IV.. : rerésenon de l vron des ludes en oncon de l réquence MD 8-9 7

18 Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer Fgure IV.. MD 8-9 8

République Algérienne Démocratique et Populaire Ministère de l Enseignement supérieur et de La Recherche Scientifique. Polycopie:

République Algérienne Démocratique et Populaire Ministère de l Enseignement supérieur et de La Recherche Scientifique. Polycopie: Réublque Algérenne Déocraque e Poulare Mnsère de l Ensegneen suéreur e de a Recherche Scenfque Unversé : Hassba BENBOUAI de CHEF Faculé : Scences Déareen : Physque Doane : ST-SM Polycoe: Vbraons e Ondes

Plus en détail

Mécanique: chapitre 2. Forces; Moments

Mécanique: chapitre 2. Forces; Moments écnique: chpitre orces; oents INTRDUCTIN Toute ction écnique s'eerçnt sur un objet pour eet soit: de odiier son ouveent ou de le ettre en ouveent, de le intenir en équilibre, de le déorer. Toute ction

Plus en détail

Chapitre 10 Le mouvement rectiligne uniformément accéléré Manuel, p. 221 à 242

Chapitre 10 Le mouvement rectiligne uniformément accéléré Manuel, p. 221 à 242 9. Ce problèe resseble u précéden su que les deu objes en oueen se déplcen en sens opposés. On chos coe ssèe de coordonnées un e des drgé de Monrél à Québec ec l orgne à Monrél. Ans pour le rn de rchndses

Plus en détail

PHENOMENES DEPENDANT DU TEMPS (Régime quasi-stationnaire)

PHENOMENES DEPENDANT DU TEMPS (Régime quasi-stationnaire) Chpre 3 : Phénomènes dépendn du emps CHPTRE PHEOMEES DEPEDT DU TEMPS (Régme qus-sonnre) Le Régme Qus-Sonnre ne concerne que les phénomènes vrn vec le emps. Eemple = snω sn f E= = jω j f E e = E e. LO DE

Plus en détail

Etude et Conception Assistée par Ordinateur d un Système de Réfrigération par Voie Solaire

Etude et Conception Assistée par Ordinateur d un Système de Réfrigération par Voie Solaire Rev. Energ. Ren. : Journées de hermue (200) 25-30 Eude e Concepon sssée pr Ordneur d un Sysème de Réfrgéron pr Voe Solre M. Belrb, F. Benyrou e B. Benyoucef Lborore des Méru e Energes Renouvelbles, Fculé

Plus en détail

Racines carrées d un nombre complexe

Racines carrées d un nombre complexe Rcnes crrées d un nombre complexe I Exemple Détermnons les rcnes crrées de 3 Les rcnes sont et 4 ' x x ou x On lors : (mpossble cr x ) ou x 4 On cherche les nombres complexes z tels que z 3 (E) On se grde

Plus en détail

Le «Scoring» LOGISTIQUE

Le «Scoring» LOGISTIQUE Le «Scorng» LOGISTIQUE Clre eler Acure ISFA 996 Le 7//009 _clre@yhoo.fr Dns leur qus olé, les nques e orgnsmes fnncers ulsen l nlyse our rédre s un emruneur fer défu ou non e rendre ensue l décson rorée

Plus en détail

MATRICES EXERCICES CORRIGES Exercice n 1.

MATRICES EXERCICES CORRIGES Exercice n 1. MATRICES EXERCICES CORRIGES Exercice n. 6 8 4 On considère l mrice A = 0 7 3. 7 0, 8 ) Donner le form de A ) Donner l vleur de chcun des élémens 4, 3, 33 3 3) Ecrire l mrice rnsposée A de A donner son

Plus en détail

Intérêts simples. Calcul de l intérêt

Intérêts simples. Calcul de l intérêt FORMULES DE M ATHEM ATIQUES FINANIERES Iérês sles lcul de l érê So I l érê ; le cl rêé lcé ; le ux d érê ; l durée e ées ; l durée e os ; j l durée e jrs 00 00 2 00 j 360 lcul de l vleur cquse So I l érê

Plus en détail

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie VARIABLES ALÉATOIRES déo oco de réro vrble léore dscrèe moyee - vrce - écr ye esérce mhémque vrble léore coue oco d ue vrble léore : rsormo combso lére de vrbles léores Déo E : eérece léore S : esce échllol

Plus en détail

Calcul différentiel. Chap. 14 : cours complet. fonction de classe C 2 de p dans

Calcul différentiel. Chap. 14 : cours complet. fonction de classe C 2 de p dans Clcul dérnl C 4 : cours coml oncons d clss C d dns Téorèm dénon : dérvés rlls d un oncon d dns n un on Dénon : oncon d clss C sur un ouvr d Téorèm : snc uncé d un dévlomn lmé n un on our un oncon d clss

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

Lorsqu un mobile se déplace avec une vitesse constante v, on dit que son mouvement est uniforme. (Attention aux unités!)

Lorsqu un mobile se déplace avec une vitesse constante v, on dit que son mouvement est uniforme. (Attention aux unités!) Mouvemen uniforme (gleichmäβige Bewegung) 1 Définiion Lorsqu un mobile se déplce vec une viesse consne v, on di que son mouvemen es uniforme. Exemple: ) Cyclise rouln vec une viesse consne de 5 km/h. b)

Plus en détail

Jeu de Mississippi Module 3 : Des phénomènes mécaniques Objectif terminal 4 : La dynamique

Jeu de Mississippi Module 3 : Des phénomènes mécaniques Objectif terminal 4 : La dynamique De : No : Groupe : Résul : / 5 Jeu de Mississippi Module 3 : Des phénoènes écniques Objecif erinl 4 : L dynique Dns une prie de Mississippi, celui qui prien à fire glisser l rondelle le plus près du rou

Plus en détail

CAPES EXTERNE. Partie I : Première approche de la constante d Euler

CAPES EXTERNE. Partie I : Première approche de la constante d Euler SESSION 2 CAPES EXTERNE MATHÉMATIQUES Prie I : Preière roche de l cose d Euler Soi N L focio es coiue e décroisse sur ],+ [ e doc sur [,+] Doc our ou réel de [,+], o + D rès l iéglié, o O e dédui que +

Plus en détail

11 A11 12 A12 13 A13. r 13

11 A11 12 A12 13 A13. r 13 B. GRAFCET srucure 1. Srucures de bse ) Séquence unique (srucure linéire) Dns un cycle à séquence unique les épes e les rnsiions se succèden de mnière linéire. r 10 b) Sélecion de séquences Un GRAFCET

Plus en détail

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot I - PRECISION DES SYSTEMES ASSERVIS A. Poton du roblème 1. Préentton On vu que le rôle d un ytème erv et de fre uvre à l orte (t) une

Plus en détail

THE VOLATILITY OF THE FINANCIAL MARKET A QUANTITATIVE APPROACH

THE VOLATILITY OF THE FINANCIAL MARKET A QUANTITATIVE APPROACH Meşer Ion eodor HE VOLAILIY OF HE FINANCIAL MARKE A QUANIAIVE APPROACH Universiy of Orde, Fculy of Economics, imeser@uorde.ro Absrc: During he ls yers, he finncil mrkes hve been subjec o significn flucuions

Plus en détail

Outils de calcul pour la 3 ème

Outils de calcul pour la 3 ème Chpitre I Outils de clcul pour l Ce que nous connissons déjà :! Opértions sur les décimux, les reltifs et les quotients. Puissnces de dix. Nottions scientifiques. Clcul littérl simple. Objectifs de ce

Plus en détail

Revue des méthodes de mesure de la productivité multifactorielle

Revue des méthodes de mesure de la productivité multifactorielle s De s s u o u e rl su ué b d e e m de n e d u hu omes éonomues des revenus e déenses du uébe es e rl e b ué d h re rd ou Édon 29 «Insu our msson de fournr des nformons ssues u soen f bles e obeves sur

Plus en détail

Méthodes d'étude de la nature d'une intégrale généralisée et exercices

Méthodes d'étude de la nature d'une intégrale généralisée et exercices A 9- Méhodes d'éude de l ure d'ue iégrle géérlisée e eercices Pour déermier l ure d'ue iégrle géérlisée f()d, il fu d'bord déermier les ois "à roblème", c'es à dire les ois où f 'es s déie e les éveuelles

Plus en détail

Décomposition d un entier en produit de facteurs premiers avec TI nspire. Application au problème 1 du concours général 2012

Décomposition d un entier en produit de facteurs premiers avec TI nspire. Application au problème 1 du concours général 2012 Ecrt CAPES Mthémtques Décomoston d un enter en rodut de cteurs remers vec TI nsre. Alcton u rolème du concours générl 0. Décomoston d un nomre enter en rodut de cteurs remers.. Créton d une lste de nomres

Plus en détail

Cf. Document : Les différents modes de financement des entreprises

Cf. Document : Les différents modes de financement des entreprises / 7 3 e rtie : Les modes de finncement (à moyen et long terme) Cf. Document : Les différents modes de finncement des entrerises Cf. Fiche conseil.37 : Les modes de finncement des investissements - L utofinncement

Plus en détail

Lignes de transfert d Energie Electrique

Lignes de transfert d Energie Electrique Crcérso e oéso es ges - urée - G Cerc Lges e rsfer Eerge Eecrque 8 Moéso ue ge oopsée e ue ge rpsée Moéso ue ge oopsée c r g r c g Cu e, e, pour f ps rop gr so équo e Mwe Doc r c g Crcérso e oéso es ges

Plus en détail

Cours Thème VII "Systèmes linéaires" 2- Outil d'étude d'un système analogique linéaire

Cours Thème VII Systèmes linéaires 2- Outil d'étude d'un système analogique linéaire Cour Thèm VII "Syèm lnér" - Oul d'éud d'un yèm nlogqu lnér quon dérnll : C + v =.. d Soluon d l'équon : Tro comlqué cr l cond mmbr n' "conn". Pour évlur l gnl v () on v ulr un nouvl oul don l rnc d rnormr

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

Bureaux d études en traitement des images

Bureaux d études en traitement des images Bureau d éudes en raemen des mages ESERB Fère Téécommuncaons 3 ème année Opon SC ESERB Fère Eecronque 3 ème année Opon TS AEE 4-5 M. DOAS Bureau d éudes en raemen des mages PARTE REDRESSEMET Dans cee pare

Plus en détail

II- Estimation et prévision par intervalle

II- Estimation et prévision par intervalle Uversé rs -hé re UR 0 Lcece de ceces Ecqes TATITIQUE crs de Me RADEL II- Es e révs r ervlle Déf r re fxé ere 0 e à e réls (x... x de l'échll ssce ervlle I(x... x de elle fç qe r e vler θ d rère l rlé qe

Plus en détail

Les Intégrales Impropres

Les Intégrales Impropres Pge sur Les Inégrles impropres Les Inégrles Impropres 4 / 5 ) Voculire : L noion d'inégrle générlisée On essye ici d'éendre l'inégrion sur un segmen ( on prle lors d'une "inégrle propre" ) à l'inégrion

Plus en détail

Décomposition d une fraction rationnelle en éléments simples

Décomposition d une fraction rationnelle en éléments simples Décomposon d une fracon raonnelle en élémens smples I Premère éape Dvson eucldenne de polynômes On rappelle que procéder à la dvson eucldenne d un polynôme A par un polynôme B non nul, c es écrre A BQ

Plus en détail

Comparons, à la machine, 13 3 et 10 puis 20 6 et 14.

Comparons, à la machine, 13 3 et 10 puis 20 6 et 14. CHAPITRE 6 RACINES CARREES (PARTIE 2 SUR 2) I. LES RACINES CARREES ET LES QUATRE OPERATIONS Essyons de répondre ux questions suivntes : + est-il égl à +? est-il égl à? est-il égl à? est-il égl à? A. RACINES

Plus en détail

GESTION DE STOCKS AVEC TRANSSHIPMENT DANS UN RESEAU DE DISTRIBUTION MULTI SITES ET MULTI ECHELONS

GESTION DE STOCKS AVEC TRANSSHIPMENT DANS UN RESEAU DE DISTRIBUTION MULTI SITES ET MULTI ECHELONS 8 e Conférence Inernonle de MOdélson e SIMulon - MOSIM - u m - Hmmme - unse «Evluon e opmson des sysèmes nnovns de producon de ens e de servces» GESION DE SOCKS AVEC RANSSHIPMEN DANS UN RESEAU DE DISRIBUION

Plus en détail

c.jossin J:\TRAVAIL\AUTOM\Algèbre_de_Boole\_Algèbre_de_Boole.doc Algèbre de BOOLE

c.jossin J:\TRAVAIL\AUTOM\Algèbre_de_Boole\_Algèbre_de_Boole.doc Algèbre de BOOLE cjossin J:\TRAVAIL\AUTOM\Algère_de_Boole\_Algère_de_Booledoc Algère de BOOLE SOMMAIRE : 1 Présenion, hisorique 2 Propriéés; 21 Ideniés remrqules; 22 Théorèmes de DE MORGAN 3 Représenions grphiques : 31

Plus en détail

Connaissez-vous vos difficultés?

Connaissez-vous vos difficultés? Connissez-vous vos difficulés? Ce TD v vous permere de eser vos connissnces e cerner vos difficulés. A Représenion e riemen des données Exercice : Rppeler l définiion d un courn élecrique. Un signl de

Plus en détail

LES CIRCUITS A COURANT ALTERNATIF MONOPHASE

LES CIRCUITS A COURANT ALTERNATIF MONOPHASE LECON & : LES CRCS A CORAN ALERNAF MONOPHASE LES CRCS A CORAN ALERNAF MONOPHASE - Dfférens formes de courans (e de enson Dans l'ensemble des formes de courans, nous pouvons effecuer une premère paron :

Plus en détail

Intégration sur un intervalle quelconque

Intégration sur un intervalle quelconque [hp://mp.cpgedupuydelome.fr] édié le ocobre 5 Enoncés Inégrion sur un inervlle quelconque Inégrbilié Eercice [ 657 ] [Correcion] Éudier l eisence des inégrles suivnes : Eercice 5 [ 66 ] [Correcion] Monrer

Plus en détail

, où E est un espace vectoriel réel de dimension finie et φ une forme bilinéaire symétrique sur E définie positive : φ (i)

, où E est un espace vectoriel réel de dimension finie et φ une forme bilinéaire symétrique sur E définie positive : φ (i) Esaces vecorels eucldes Groue orhogoal ESPACES VECTORIELS EUCLIDIENS GROUPE ORTHOGONAL Produ scalare Défo O aelle esace euclde ou coule ( E, φ, où E es u esace vecorel réel de dmeso fe e φ ue forme bléare

Plus en détail

Prospection électrique. Guy Marquis, EOST Strasbourg

Prospection électrique. Guy Marquis, EOST Strasbourg Prospection électrique Guy Mrquis, EOST Strsbourg Le 9 Avril 005 Chpitre Bses physiques L prospection électrique est l une des plus nciennes méthodes de prospection géophysique. S mise en oeuvre est reltivement

Plus en détail

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b Les intégrles Introduction Etnt donnée une fonction positive f définie sur un intervlle borné [, b], on veut évluer l ire comprise entre l e des bscisses, l courbe représentnt f et les verticles = et =

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

On voit que même pour les nombres premiers la situation n est pas claire, néanmoins c est le cas le plus simple et donc on va l étudier en premier.

On voit que même pour les nombres premiers la situation n est pas claire, néanmoins c est le cas le plus simple et donc on va l étudier en premier. Chitre 3 : Résidus qudrtiques Dns ce chitre on v essyer d extrire des rcines crrés dns ZnZ. Dns le cors des nombres réels tous les nombres ositifs sont des crrés et les nombres négtifs ne le sont s, dns

Plus en détail

q A q B B augmente dans le temps, ce qui signifie que A dt Quand le courant circule en sens inverse du sens choisi, l intensité est négative, les

q A q B B augmente dans le temps, ce qui signifie que A dt Quand le courant circule en sens inverse du sens choisi, l intensité est négative, les L essenel du cours proposé par Mahmoud Gazzah Le condensaeur, le dpôle Descrpon sommare d un condensaeur Défnon e symbole : Un condensaeur es consué de deux armaures méallques séparées par un solan appelé

Plus en détail

Résumé sur les Intégrales Impropres & exercices supplémentaires

Résumé sur les Intégrales Impropres & exercices supplémentaires L-MATH II-(25-26). Résumé sur les Intégrles Impropres & eercices supplémentires Une fonction définie sur un intervlle I est dite loclement intégrble sur I si f est Riemnnintégrble sur tout intervlle [,

Plus en détail

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006

Majorations de l erreur dans les calculs classiques de valeurs approchées d intégrale. Notes pour la préparation au CAPES - Strasbourg- février 2006 Mjortions de l erreur dns les clculs clssiques de vleurs pprochées d intégrle Notes pour l préprtion u CAPES - Strsbourg- février 00 On trouve dns différents ouvrges élémentires des démonstrtions à coup

Plus en détail

1 ière Partie: VIBRATIONS

1 ière Partie: VIBRATIONS ière Parie: VIRTIONS haire 5: Mouveen à lusieurs degrés de liberé Dr Fouad OUKI HENE E P S T T E M E N N N É E 5-6 Objecifs:. es équaions différenielles d un ouveen coulé. es différenes soluions du roblèe.

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

LASTO Appuis élastomère

LASTO Appuis élastomère LASTO Appuis élsomère LASTO BLOCK F Appuis de déformion non-rmés Swizerlnd www.mgeb.ch Chmps d pplicion e specs imporns Chmps d pplicion LASTO BLOCK F es un ppui de déformion non-rmé en élsomère qui es

Plus en détail

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 +

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 + Universié Pierre e Marie Curie Licence de Mahéaiques Séries e inégrales généralisées - Approfondisseen (2M26) Janvier-Juin 25. Devoir Maison n o Exercice : Convergence e calcul d inégrales. Éudier la naure

Plus en détail

Exercices sur le mouvement rectiligne uniformément accéléré (MRUA) Module 3 : Des phénomènes mécaniques Objectif terminal 3 : La cinématique

Exercices sur le mouvement rectiligne uniformément accéléré (MRUA) Module 3 : Des phénomènes mécaniques Objectif terminal 3 : La cinématique De : No : Goupe : Réul : / 90 Execce u le oueen eclgne unoéen ccéléé (MRUA) Module 3 : De phénoène écnque Objec enl 3 : L cnéque. Voc le gphque de l poon en oncon du ep d un oble. / ) Quel é le déplceen

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - c E Etude du signe d une eression - igne de + b ( 0) On détermine l vleur de qui nnule + b, uis on lique l règle : "signe de rès le 0". +b b/ + signe de ( ) signe de - igne de + b + c (

Plus en détail

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états. ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie

Plus en détail

Etude et réglage des systèmes asservis 1

Etude et réglage des systèmes asservis 1 ude e réglge des sysèes sservis I Rel sur les sysèes sservis Oje d un sservisseen Srucure de se d un sysèe sservi 3 Foncion de rnsfer en oucle ferée 4 Foncion de rnsfer en oucle ouvere 5 Cs riculier du

Plus en détail

Cours de Mathématique - Statistique Calcul Matriciel

Cours de Mathématique - Statistique Calcul Matriciel L - Mth Stt Cours de Mthémtique - Sttistique Clcul Mtriciel F. SEYTE : Mître de conférences HDR en sciences économiques Université de Montpellier I M. TERRZ : Professeur de sciences économiques Université

Plus en détail

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie

Zéros des fonctions. 1. La dichotomie. Exo7. 1.1. Principe de la dichotomie Exo7 Zéros des fonctions Vidéo prtie 1. L dichotomie Vidéo prtie. L méthode de l sécnte Vidéo prtie 3. L méthode de Newton Dns ce chpitre nous llons ppliquer toutes les notions précédentes sur les suites

Plus en détail

TH R. 220V 50Hz. i a. chronogrammes : V GK. φ+2π

TH R. 220V 50Hz. i a. chronogrammes : V GK. φ+2π edressemen monophasé commandé C.P.G.E-SI-SAFI edressemen monophasé commandé Inroducon : Un monage redresseur commandé perme d obenr une enson connue réglable à parr d une enson alernave snusoïdale. L ulsaon

Plus en détail

Amis de tous les enfants du monde

Amis de tous les enfants du monde s de tus es enfnts du nde en Huenry Vx p 3 f4 4 - s, - s, - u- 7 f - reux de ve, nus s-es es - s, de tus es en-fnts du n - de. U - ns, u- z 13 f z - ns, ce es dgts de n, nus vu -ns pur de -n, px pur tut

Plus en détail

TRAITEMENT des IMAGES. VISION par MACHINE

TRAITEMENT des IMAGES. VISION par MACHINE TRAITEENT des IAGES et VISION pr ACHINE ASTER PRO INFO / Jen-rc Vézen Jen-rc.Vezen@lms.fr Jen-rc Vezen Vson pr chne IV. CORRECTION D IAGES Jen-rc Vezen Vson pr chne IV. CORRECTION D IAGES Avnt trtement

Plus en détail

CHAPITRE 4 DÉTERMINANTS ET INVERSION DE MATRICES

CHAPITRE 4 DÉTERMINANTS ET INVERSION DE MATRICES HAPITRE DÉTERMINANTS ET INVERSION DE MATRIES Introduction Dns l lgèbre mtricielle, les déterminnts occupent une plce d importnce tnt en théorie qu en prtique est que l vleur numérique du déterminnt d une

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

Savoir-faire expérimentaux.

Savoir-faire expérimentaux. LYCEE LOUIS DE CORMONTAIGNE. 12 Plce Cormontigne BP 70624. 57010 METZ Cedex 1 Tél.: 03 87 31 85 31 Fx : 03 87 31 85 36 Sciences Appliquées. Svoir-fire expérimentux.. Référentiel.. :. S5 Sciences. Appliquées......

Plus en détail

Chapitre 9: Primitives et intégrales

Chapitre 9: Primitives et intégrales PRIMITIVES ET INTEGRALES 7 Chpitre 9: Primitives et intégrles Prérequis: Limites, dérivées Requis pour: Emen de mturité 9. «À quoi ç sert?» Un peu d histoire Isc Newton (64-77) Les clculs d ire de figures

Plus en détail

Chapitre 7- Analyse des systèmes asservis linéaires et continus

Chapitre 7- Analyse des systèmes asservis linéaires et continus Chire 7 Alyse des sysèes sservis liéires e coius Chire 7- Alyse des sysèes sservis liéires e coius Plusieurs roriéés rerqules eree de crcériser les erforces d u sysèe sservi liéire e coiu L roriéé l lus

Plus en détail

Réponse temporelle : solution de l'équation d'état

Réponse temporelle : solution de l'équation d'état uoqu V uoqu Cours 9 Répos porll : soluo d l'équo d'é SI Cou! Répos porll à prr d l oco d rsr! Clcul d l répos porll à prr du odèl d'é " Résoluo d l'équo d'é # Cs sclr # Cs rcl # Ms évdc d l rc d rso "

Plus en détail

Calcul de primitives et d'intégrales : f C(R +, R) f F(R +, R) f T(R +, R) f S(R +, R) f M n (C)

Calcul de primitives et d'intégrales : f C(R +, R) f F(R +, R) f T(R +, R) f S(R +, R) f M n (C) Clcul de primiives e d'inégrles : f CR, R f FR, R f TR, R f SR, R f M n C Clcul de primiives e d'inégrles Primiives de frcions rionnelles : On clculer une primiive d'une frcion rionnelle simples sur R.

Plus en détail

Planche 2. z ), où γ = 1 µ/σ2 ; ou encore :

Planche 2. z ), où γ = 1 µ/σ2 ; ou encore : Plnche Exercice 1 On considère un mrché nncier de ux d'inérê r e une cion de dynmique risque neure ds = S µd + σdw, S = x Soi une brrière hue ; on considère une opion brrière Up In qui délivre l'cion S

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

CHAPITRE 9 : PRIMITIVES - INTEGRALES

CHAPITRE 9 : PRIMITIVES - INTEGRALES Primitives et intégrles Cours CHAPITRE 9 : PRIMITIVES - INTEGRALES. Primitives d une fonction Définition Soit f une fonction définie sur un intervlle I. Une fonction F est une primitive de f sur I, si

Plus en détail

EXERCICES AVEC SOLUTIONS (STATIQUE)

EXERCICES AVEC SOLUTIONS (STATIQUE) EXEIES VE SLUINS (SIQUE) Eercce 1 : Détermner les tensons des câbles dns les fgures suvntes : 4 7 4N 1 Soluton : Fgure 1 : u pont nous vons : + + L projecton sur les es donne : cos 4 + cos sn 4 + sn 6Kg

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers.

Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers. CHAP: 8 Objecifs de ce chpire : Clculer comme se cosiuer u cpile ; Clculer comme rembourser ue dee e effecu des versemes réguliers. RAPPELS : Qu'es-ce qu'ue vleur cquise? Qu'es-ce qu'ue vleur cuelle? Le

Plus en détail

Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état)

Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état) oqe V oqe Cor e ere foco de rfer e repréeo dé d èe fore coqe de l repréeo dé SI Coe oqe! Irodco! e ere le dfféree decrpo d èe! Pge odèle dé " foco de rfer # C d èe oovrle # C d èe lvrle! Pge foco de rfer

Plus en détail

ANNEXE I TRANSFORMEE DE LAPLACE

ANNEXE I TRANSFORMEE DE LAPLACE ANNEE I TRANSFORMEE DE LAPLACE Perre-Smon Lalace, mahémacen franças 749-87. Lalace enra à l unversé de Caen a 6 ans. Très ve l s néressa aux mahémaques e fu remarqué ar d Alember. En analyse, l nrodus

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Intégrales convergentes

Intégrales convergentes Universié Joseph Fourier, Grenoble Mhs en Ligne Inégrles convergenes L plupr des inégrles que vous renconrerez ne son ps des ires de domines bornés du pln. Nous llons pprendre ici à clculer les inégrles

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

Institut de démographie

Institut de démographie our nlye e odèle déogrphque pour Mer de déogrphe pr.vdeev 5/0/013 Unveré Pr 1 Pnhéon Sorbonne, Inu de déogrphe I D U P our d nlye déogrphquenveu : Mer de déogrphepr lexndre vdeev, hpre 4 nlye de ux : copron,

Plus en détail

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x.

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x. MP Jnson DS6 du 7 jnvier 24/25 Problème (CCP) Toutes les fonctions de ce problème sont à vleurs réelles. PARTE PRÉLMNARE Les résultts de cette prtie seront utilisés plusieurs fois dns le problème.. Fonction

Plus en détail

Correction examen Automates

Correction examen Automates Coecon exmen Auomes 011-01 1e jun 01 - heues Les documens son neds. Les execces son ndéendns. On ou dmee l éonse à une ueson ou sse à l ueson suvne. Execce 1. 1. Clcule l uome mnml du lngge comlémene de

Plus en détail

Théorie des Langages Formels Chapitre 5 : Automates minimaux

Théorie des Langages Formels Chapitre 5 : Automates minimaux 1/29 Théorie des Lngges Formels Chpitre 5 : Automtes minimux Florence Levé Florence.Leve@u-picrdie.fr Année 2014-2015 2/29 Introduction Les lgorithmes vus précédemment peuvent mener à des utomtes reltivement

Plus en détail

2. Formules d addition.

2. Formules d addition. IX. Trigonométrie 1. Rppels 1.1 Définitions : Dns le cercle trigonométrique C ( O, 1 ), si nous fixons un point P correspondnt à un ngle d mplitude nous vons défini : = bscisse du point P sin = ordonnée

Plus en détail

Modélisation semi-analytique et choix optimal des procédés CRTM

Modélisation semi-analytique et choix optimal des procédés CRTM 9 ème Congrès Franças de Mécanque Marselle, 4-8 aoû 9 Modélsaon sem-analyque e chox opmal des procédés CRTM A. MAMONE a, A. SAOAB a, C. H. PARK a,t. OAHBI a a. Laboraore d Ondes e Mleux Complexes, FRE

Plus en détail

Fractions et calculs. Objectifs du chapitre. Énigme du chapitre.

Fractions et calculs. Objectifs du chapitre. Énigme du chapitre. C H A P I T R E Frctions et clculs 2 Énigme du chpitre. Fleur et Florie décident d pporter un pnier rempli de fruits à mémé Hugette. Le pnier contient un tiers de mirbelles, un qurt de prune et des cerises.

Plus en détail

LOIS A DENSITE (Partie 1)

LOIS A DENSITE (Partie 1) LOIS A DENSITE (Prtie ) I. Loi de probbilité à densité ) Rppel Eemple : Soit l'epérience létoire : "On lnce un dé à si fces et on regrde le résultt." L'ensemble de toutes les issues possibles Ω = {; ;

Plus en détail

2 Nature (convergence ou divergence) d une intégrale impropre

2 Nature (convergence ou divergence) d une intégrale impropre Lycée Dominique Villrs ECE INTEGRALES IMPROPRES ou GENERALISEES COURS Jusqu à présen l noion d inégrle d une foncion f se ie u cs d une foncion coninue sur un inervlle fermé, ppelé segmen, [,b] vec e b

Plus en détail

Mémo de cours n 4. Intégrales

Mémo de cours n 4. Intégrales Mémo de cours n 4 Intégrles v.0 4. Primitive 4.. Définition Si l fonction f (x) est l dérivée de l fonction F(x), c est à dire que f (x) = df(x) dx, lors nous ppelons l fonction F une primitive de f. On

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

Circuits linéaires en régime transitoire

Circuits linéaires en régime transitoire MPSI - Élecrocnée I - rcs lnéares en régme ransore page 1/8 rcs lnéares en régme ransore 1 ondons nales e conné On va éder ce se passe enre enre dex régmes conns = régme ransore. es granders élecres ne

Plus en détail

Chapitre 1.1a Les oscillations

Chapitre 1.1a Les oscillations Chapre 1.1a Les oscllaons La cnémaque La cnémaque es l éue u mouvemen un obje en foncon u emps. Pour ce fare, nous avons recours au conceps e poson, vesse e accéléraon : Poson : ( uné : m Vesse : v ( uné

Plus en détail

Le système à étudier (connu) = Un ensemble des éléments. Associer un modèle de connaissance au système

Le système à étudier (connu) = Un ensemble des éléments. Associer un modèle de connaissance au système PGE A Marrakech Les sysèes asseris Traail roosé ar :LAAMIMI Dans cee conribuion, j ai résené deux séries d exercices our illusrer cerains conces héoriques concernan la hase de odélisaion des sysèes asseris

Plus en détail

TP 10 : Lois de Kepler

TP 10 : Lois de Kepler TP 10 : Lois de Kepler Objectifs : - Estimer l msse de Jupiter à prtir de l troisième loi de Kepler. - Utiliser Stellrium, un simulteur de plnétrium «photo-réel». Compétences trvillées : - Démontrer que,

Plus en détail

Chapitre 1.13 La dérivée en cinématique

Chapitre 1.13 La dérivée en cinématique Chpire.3 L dérivée en cinémique L dérivée En mhémique, on défini l dérivée d une foncion f ( ) el que d f ( ) f ( + ) f ( ) f '( ) = d où f '( ) correspond à l foncion qui évlue l pene de l ngene en poin

Plus en détail

Corrigé devoir 1. Définition Un entier a Z est dit un résidu quadratique modulo n si l image a Z/nZ y est un carré.

Corrigé devoir 1. Définition Un entier a Z est dit un résidu quadratique modulo n si l image a Z/nZ y est un carré. Université Pierre et Mrie Curie MASTER 1 Unités MO1 MU11 Année 004-005 Les eercices étoilés * s dressent u seuls étudints inscrits à l unité MO1 Corrigé devoir 1 L loi de récirocité udrtiue Définition

Plus en détail

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE 1GEN ciences et Techniques Industrielles Pge 1 sur 7 Automtique et Informtiques Appliquées Génie Énergétique Première 1 - LA VARIABLE BINAIRE L électrotechnique, l électronique et l mécnique étudient et

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n es pas nécessairemen le graphe d une foncion ; c es pourquoi on parle de courbe paramérée e non pas

Plus en détail

S B T T R B C H N. Réponses : Groin, soies, croc, sabot, queue en tirebouchon. 2007, Fédération des producteurs de porcs du Québec

S B T T R B C H N. Réponses : Groin, soies, croc, sabot, queue en tirebouchon. 2007, Fédération des producteurs de porcs du Québec Une photo de fmi le Au Quéec, les rces de porcs utilisées pour produire une femelle hyride sont les Lndrce et les Yorkshire. Le mâle est un Duroc. On utilise ces croisements pour produire des nimux vigoureux.

Plus en détail

Travaux Dirigés de Langages & XML - TD 2

Travaux Dirigés de Langages & XML - TD 2 TD Lngges - XML Exercices Corrigés TD 2 Trvux Dirigés de Lngges & XML - TD 2 Automtes deterministes Exercice Dns chcun des cs suivnts, donner un utomte déterministe reconnissnt le lngge sur l lphet {,

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON Durée : 4 heures Les clcultrices sont utorisées. Le sujet comprend qutre exercices indépendnts qui peuvent être trités dns l'ordre que

Plus en détail

MECANIQUE QUANTIQUE Chapitre 6 : Oscillateur Harmonique Quantique

MECANIQUE QUANTIQUE Chapitre 6 : Oscillateur Harmonique Quantique MECANIQUE QUANTIQUE Cpitre 6 : Oscillteur Hroique Qutique Pr. M. ABD-LEFDIL Uiversité Moed V- Agdl Fculté des Scieces Déprteet de Pysique Aée uiversitire 6-7 Filières SM-SMI Itroductio L'oscillteur roique

Plus en détail

INF135 Travail Pratique #1 Remise le 16 octobre 2012

INF135 Travail Pratique #1 Remise le 16 octobre 2012 École de Technologe Supéeue Pa : Fancs Boudeau, ÉcThé Révson : Aïda Ouangaoua INF35 Taval Paque # Remse le 6 ocobe 0 Inaon à la pogammaon en géne mécanque Taval ndvduel. Objecfs - Mee en applcaon des noons

Plus en détail

Exercices sur les forces, 2 e partie Module 3 : Des phénomènes mécaniques Objectif terminal 4 : La dynamique

Exercices sur les forces, 2 e partie Module 3 : Des phénomènes mécaniques Objectif terminal 4 : La dynamique Dte : No : Groupe : Résultt : / 76 Exercices sur les orces, e prtie Module 3 : Des phéoèes éciques Objecti teril 4 : L dyique. Quelle est l ccélértio de cet objet tiré obliqueet, si o élie le rotteet?

Plus en détail