Apprentissage: cours 3a Méthodes par moyennage local

Dimension: px
Commencer à balayer dès la page:

Download "Apprentissage: cours 3a Méthodes par moyennage local"

Transcription

1 Appretissage: cours 3a Méthodes par moyeage local Guillaume Oboziski 1 er mars 2012 Réferece : chap. 6 of [Hastie et al., 2009] ad chap. 6 of [Devroye et al., 1996]. Algorithmes par moyeage local O cosidère la régressio au ses des moidres carrés avec des etrées das X = R d et des sorties réelles borées : Y = [ B, B] pour B > 0 et l(y, y ) = (y y ) 2. Ue foctio cible est doc f (x) = E[Y X = x]. O cosidère u esemble d etraîemet D = {(X 1, Y 1 ),..., (X, Y )}. Pricipe des méthodes par moyeage local : Prédire par la moyee podérée des Y i pour des X i voisis de x. O cosidère les prédicteurs de la forme η : x W i (x) Y i Algorithme par partitio : méthode d histogrammes O se doe ue partitio {A 1, A 2,...} fiie ou déombrable de X. Soit A(x) l élémet de la partitio coteat x. O choisit les poids : 1 {Xi A(x)} W i (x) = l=1 1, {X l A(x)} avec la covetio 0 0 = 0. Algorithme des k plus proches voisis (k-p.p.v.) O suppose que X = R p. O défiit les k plus proches voisis de x comme u esemble de k élémets de X = {X 1,..., X } tel que (X i, X j ) V k (x) X \V k (x), X i x X j x. Ce sot exactemet les k-p.p.v. s il y a pas d ex æquo. O défiit alors les poids : W i (x) = 1 {X i V k (x)}. k Algorithme par oyau : méthode de Nadaraya-Watso O cosidère ue foctio K : R p R + appelé oyau de covolutio. Les oyaux de covolutio o d abord été utilisé par Parze et Roseblatt pour faire de l estimatio de desité (méthode des feêtres de Parze). O appelle h la largeur de bade du oyau. Les poids de la méthode sot alors défiis comme : W i (x) = K( x Xi h ) l=1 K( x X l h ) 1

2 Quelques oyaux classiques sur R : le oyau gaussie : t exp( t 2 ) le oyau quadratique d Epaechikov : t (1 t 2 ) + le oyau tricube : t (1 t 3 ) 3 + où o a oté la foctio partie positive par (x) + = max(0, x). Pour ue liste d autres oyaux o pourra cosulter E dimesio p o utilisera typiquemet des oyaux de la forme K : x K 1 ( x ) pour K 1 l u des oyaux défiis pour la dimesio 1. Exercice 1. A quoi correspod la méthode de Nadaraya-Watso pour u oyau gaussie lorsque h 0? Théorème de Stoe Théorème 1. (Stoe) Supposos que les poids W i et la loi des doées d etraîemet satisfot ] (i) c > 0, f : X R +, N, E W i (X) f(x i ) c E[f(X)], (ii) D > 0, N, (iii) a > 0, (iv) E W i (X) P 1, W i (X) D P-p.s., (v) E W i (X) 2] 0. W i (X) 1 { Xi X >a} ] 0, Alors ˆf : x W i(x) Y i est cosistat pour la loi des doées d etraîemet. Démostratio. Pour motrer la cosistace o veut motrer que l espérace de l excès de risque ted vers 0. O écrit η(x) η (X) = E[R ( η )] R (η ) = E[( η(x) η (X)) 2 ] W i (X)(Y i η (X i )) + W i (X)(η (X i ) η (X)) i } {{ } } {{ } α 2 α 3 + ( 1 + ) W i η (X). } {{ } α 1 Nous avos doc E[( η(x) η (X)) 2 ] = E[(α 1 + α 2 + α 3 ) 2 ] 3(E[α1] 2 + E[α2] 2 + E[α3]). 2 Nous allos motrer que ces trois termes tedet vers 0. Pour α 1, comme η P (X) [ B, B], (iv) motre que α 1 0. Mais o a la bore supérieure suivate α 2 1 = ( 1 + W i ) 2 η (X) 2 (D + 1) 2 B 2 qui doe ue hypothèse de domiatio. D après le théorème de covergece domiée de Lebesgue E[α 2 1] 0. Pour α 2, e développat o obtiet : E[α 2 2] = E[W i (X) 2 (Y i η (X i )) 2 ] + i j E[W i (X)W j (X)(Y i η (X i ))(Y j η (X j ))]. 2

3 Le deuxième terme est ul car η (X i ) = E[Y i X i ] (exercice). Pour le premier terme, d après l hypothèse (v) : E[W i (X) 2 (Y i η (X i )) 2 ] 4B 2 E W i (X) 2] 0. Fialemet pour α 3, ous allos ous rameer à ue somme sur i : ) 2 ] E[α3] 2 = E W i (X)(η (X i ) η (X)) Cauchy-Schwarz E Wi (X) 2 ] W i (X) η (X i ) η (X) ) )( E W i (X) W i (X) (η (X i ) η (X)) 2)] D E W i (X) (η (X i ) η (X)) 2)] O itroduit esuite ue foctio η cotiue à support compact qui approxime η das L 2 (P X ) où P X est la loi commue des doées d etrée. Ceci est effectivemet possible car les foctios cotiues à support compact de R d R sot deses das L q (P X ). Soit doc pour ε > 0 η L 2 (P ) cotiue à support compact telle que E[( η η ) 2 ] ε. Comme η est à support compact, elle est égalemet uiformémet cotiue, d après le théorème de Heie. Doc, il existe a > 0, tel que x, x R d, ( x x a) ( η(x) η(y) ε). Ecrivos doc : η (X i ) η (x) = η (X i ) η(x i ) + ( η(x i ) η(x))1 } {{ } { Xi X a} + ( η(x i ) η(x))1 { Xi X >a} + η(x) η (X) } {{ } } {{ } } {{ } β 1i β 2i β 3i β 4 D où E[α3] 2 D E W i(x) (β 1i + β 2i + β 3i + β 4 ) 2] 4D E W i(x) (β1i 2 + β2 2i + β2 3i + β2 4) ]. E appliquat (i) à f = (η η) 2, o a : E W i (X) β1i 2 ] = E W i (X)(η (X i ) η(x i )) 2] ce[(η (X) η(x)) 2 ] cε, puisque η approche η das L 2 (P ). Esuite la cotiuité uiforme de η et (ii) impliquet que E W i(x) β2i] 2 Dε 2. O a E W ] i(x) β3i 2 4B 2 E W i(x) 1 { Xi X >a}]. Et fialemet E W i(x) β4] 2 Dε puisque η approche η das L 2 (P X ). E réuissat les différet termes o a Eα3 2 D (cε + Dε 2 + E W i (X) 1 { Xi X >a}] + Dε). Comme par (iii) le troisième terme ted vers zéro quad, o a motré que pour tout ε > 0, le terme Eα3 2 est plus petit qu ue costate fois ε. O a doc motré Eα Le théorème de Stoe est prouvé. 3

4 Le théorème de Stoe s applique aux plus proches voisis, aux méthodes d histogrammes et au prédicteurs de Nadaraya-Watso. Nous allos motrer commet il s applique das le cas des plus proches voisis. Théorème 2. Soit P X ue loi commue de X, X 1,..., X i.i.d. telle que presque suremet les distaces X X i soiet toutes distictes (pas d ex æquos), alors l algorithme des k-p.p.v.est cosistet par rapport à P de margiale P X sur X si k et k 0. Démostratio. Théorème démotré e cours. pour cela ous auros besoi du lemme techique : Lemme 1. Soit ν ue probabilité sur R d et l évéemet { x R d ν ( B(x, x x ) ) a }. Il existe γ > 0 tel que pour tout a > 0 et tout x R d, ({ ( ν x R d ν B(x, x x ) ) }) a γa. Démostratio. Lemme admis (voir chap. 5.3 [Devroye et al., 1996]) Miimisatio du risque empirique local La régressio liéaire locale est u hybride etre les méthodes de moyeage local et les méthodes de miimisatio du risque empirique. Il s agit de faire de la miimisatio du risque local. Soit des poids W i (x) dot o suppose qu ils sommet à 1. O cosidère le risque empirique local (REL) : R,W (x) (f) = W i (x) l(f(x i ), y i ) Soit η x = argmi f S R,W (x) (f), alors le prédicteur miimisat le REL est η : x η x (x). Notos la double dépedace e x das η x (x). O retrouve le risque empirique classique lorsque l o preds des poids W i (x) = 1. Exercice 2. Si o restreit S à l esemble des foctios costates de la forme f x : z µ(x), motrer que pour la perte quadratique o retrouve les prédicteurs de Nadaraya-Watso. Régressio liéaire locale O cosidère le cas de la perte quadratique et des prédicteurs liéaires de la forme f θ : x θ x. O ote z ue ouvelle etrée, w(z) so vecteur de poids et W(z) = Diag(w(z)). O ote (x i, y i ) les paires de doées d etraîemet. R,w(z) (f θ ) = w i (z)(y i θ x i ) 2 = (y Xθ) W(z)(y Xθ) Le problème de miimisatio du risque local est doc u problème de miimisatio des moidres carrés podérés. Si la matrice X W(z)X est iversible o a η RLL (z) = (X W(z)X) 1 X W(z)y 4

5 Exercices pour le 8/3/2012 Exercice 3. (Fléau de la dimesio pour l algorithme du plus proche voisi) Soit X de loi uiforme sur l hypercube [ 1, 1] p et Y = f (X) pour f = exp( x 2 ). O cosidère la méthode k p.p.v. avec u seul voisi et o cosidère l excès de risque e x = 0. Quelle est l espérace de X 2? Utiliser u argumet de cocetratio et u bore d uio pour motrer qu à mois que le ombre de doées d etraîemet soit expoetiel e p le biais de la méthode e x = 0 ted rapidemet vers 1. Exercice 4. L estimateur de desité par feêtres de Parze est u estimateur classique de la desité d u variable aléatoire à valeurs das R d qui est costruit, comme les estimateurs de Nadarya-Watso avec des oyaux. Plus précisémet, état doé u échatillo X 1,..., X i.i.d. de loi P, u oyau K ormalisé de telle sorte que K(x)dx = 1 et ue largeur de bade h, l estimateur de la desité de Parze est défii par : ˆp(x) = 1 h d ( x xi ) K. h O cosidère le oyau gaussie (ormalisé) sur R d défii par K(x) = (2π) d/2 exp( 1 2 x 2 2). Soit X ue variable d etrée à valeurs das X = R d et Y ue variable de sortie à valeur das Y = R. O suppose que l o dispose d u esemble d etraîemet (X 1, Y 1 ),..., (X, Y ). Soit ˆp l estimateur de Parze de la desité joite de (X, Y ) das R d+1 pour le oyau gaussie. Motrer que l espérace coditioelle Eˆp [ Y X] sous la loi joite de desité ˆp aisi estimée est u prédicteur de Nadarya-Watso. (o pourra utiliser que xk(x µ)dx = µ) Etedez ce résultat à la classificatio biaire e proposat u oyau sur X Y das le cas où X = R d et Y = {0, 1}, de faço à retrouver le prédicteur de Nadarya-Watso pour la classificatio. Référeces [Devroye et al., 1996] Devroye, L., Györfi, L., ad Lugosi, G. (1996). A probabilistic theory of patter recogitio, volume 31. Spriger Verlag. [Hastie et al., 2009] Hastie, T., Tibshirai, R., ad Friedma, J. (2009). The elemets of statistical learig. Spriger. 5

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques

Agrégation externe de mathématiques, session 2008 Épreuve de modélisation, option A : Probabilités et Statistiques Agrégatio extere de mathématiques, sessio 2008 Épreuve de modélisatio, optio (public 2008) Mots clefs : Loi des grads ombres, espace des polyômes, estimatio o-paramétrique Il est rappelé que le jury exige

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

La classification de données quantitatives avec SPAD

La classification de données quantitatives avec SPAD La classificatio de doées quatitatives avec SPAD SPAD effectue toujours ue ACP de la matrice des doées quatitatives X " p avat de faire la classificatio des idividus. Les méthodes de classificatio s appliquet

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6

Corrigés TD Chapitre 2 : Variables aléatoires sur un univers fini 0 0 0 1/6 0 0 1 0 1/4 0 1/4 0 4 1/6 0 0 0 1/6 Corrigés TD Chapitre : Variables aléatoires sur u uivers fii Exercice : Soit X la VAR défiie par le tableau suivat : x i - - 0 p 6 4 6 4 6 i O ote Y = X ) Détermier la loi cooite de X et Y ) Détermier

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

CHAPITRE 2 : Estimation non-paramétrique 1. Estimateurs empiriques

CHAPITRE 2 : Estimation non-paramétrique 1. Estimateurs empiriques CHAPITRE 2 : Estimatio o-paramétrique 1. Estimateurs empiriques Soit u échatillo i.i.d. de durées T i i1,..., de foctio de survie S Défiitio: L estimateur empirique de la foctio de survie est S x 1 i1

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

Séries entières. Chap. 09 : cours complet.

Séries entières. Chap. 09 : cours complet. Séries etières Chap 9 : cours complet Rayo de covergece et somme d ue série etière Défiitio : série etière réelle ou complee Théorème : lemme d Abel Théorème : itervalle des valeurs positives où ue série

Plus en détail

PROJET DE MONTE CARLO SUJET 1: LE PRICING

PROJET DE MONTE CARLO SUJET 1: LE PRICING LE Age KHOURI Nadie M MMD PROJE DE MONE ARLO SUJE : LE PRIING Selim ZOUGHLAMI QUESION : Supposos d abord que X est u mouvemet browie W t G([ 0, ]) Alors W0 G( 0 ) suit ue loi N(0,0) et doc W 0ps 0 Esuite,

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france. Exo7 Applicatios liéaires cotiues, ormes matricielles Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr Exercice * * très facile ** facile *** difficulté moyee **** difficile

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

Université Pierre et Marie Curie Licence de Mathématiques (3ème année) Année 2004/2005. Probabilités Pierre Priouret

Université Pierre et Marie Curie Licence de Mathématiques (3ème année) Année 2004/2005. Probabilités Pierre Priouret Uiversité Pierre et Marie Curie Licece de Mathématiques (3ème aée) Aée 2004/2005 Probabilités Pierre Priouret Mode d emploi Ce polycopié est destié aux étudiats de la Licece (3ème aée) de Mathématiques

Plus en détail

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1 IUT HSE Itroductio aux probabilités et statistiques Variables aléatoires Philippe Jamig Istitut Mathématique de Bordeaux PhilippeJamig@gmailcom http://wwwmathu-bordeaux1fr/ pjamig/ X variable aléatoire

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

Exercices - Lois discrètes usuelles : corrigé

Exercices - Lois discrètes usuelles : corrigé www.almohadiss.com Exercice - Avio - L2/Prépa Hec - O ote X la variable aléatoire du ombre de moteurs de A qui tombet e pae, et Y la variable aléatoire du ombre de moteurs de B qui tombet e pae. X suit

Plus en détail

Estimation paramétrique

Estimation paramétrique Retour au pla du cours Soit Ω, A, P u espace probabilisé et X ue v.a. de Ω, A das E, E. La doée d u modèle statistique c est la doée d ue famille de probabilités sur E, E, {P θ, θ Θ}. Le modèle état doé,

Plus en détail

Soit E un ensemble. On appelle classe de parties de E un sous-ensemble non vide de P(E).

Soit E un ensemble. On appelle classe de parties de E un sous-ensemble non vide de P(E). Chapitre 1 Tribus 1.1 Défiitios Soit E u esemble. O appelle classe de parties de E u sous-esemble o vide de P(E). Défiitio 1.1.1. Ue tribu A sur E est u sous-esemble o vide de P(E) tel que : (i) la partie

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

L3 MFA, Probabilités, 2010-2011 Université Paris-Sud 11. Feuille de TD n o 1

L3 MFA, Probabilités, 2010-2011 Université Paris-Sud 11. Feuille de TD n o 1 L3 MFA, Probabilités, 00-0 Uiversité Paris-Sud Exercice.. Jea, Luc et Marc lacet chacu u dé. Feuille de TD o (a) Doer u espace de probabilité (Ω, F, P) associé à cette expériece aléatoire. (b) Soiet i,

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Annexe : Leçon 10 - Échantillonnage

Annexe : Leçon 10 - Échantillonnage Aexe : Leço 10 - Échatilloage Clémet BOULONNE pour la sessio 01 I Niveau, prérequis, référeces Niveau BTS Prérequis Probabilités, lois discrètes et cotiues Référeces [1,,, 4, 5] II Coteu de la leço 1 Approximatio

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Prévision pac-bayésienne pour le modèle additif sous contrainte de parcimonie

Prévision pac-bayésienne pour le modèle additif sous contrainte de parcimonie Prévisio pac-bayésiee pour le modèle additif sous cotraite de parcimoie Bejami Guedj 1, Pierre Alquier 2, Gérard Biau 1 3 et Éric Moulies 1 LSTA, Uiversité Pierre et Marie Curie Paris VI Boîte 158, Tour

Plus en détail

TD Modélisation Statistique

TD Modélisation Statistique Licece 3 Mathématiques TD Modélisatio Statistique Ex 1. Soit X ue variable aléatoire réelle de desité f cotiue et de foctio répartitio F. 1. Calculer la foctio de répartitio de Y = αx + β pour α, β R,

Plus en détail

Partie I : Résultats généraux sur les matrices stochastiques - Illustrations

Partie I : Résultats généraux sur les matrices stochastiques - Illustrations 8-8- JFC p EM LYON S JF COSSUTTA Lycée Marceli BERTHELOT SAINT-MAUR jea-fracoiscossutta@waadoofr PROBLÈME Partie I : Résultats gééraux sur les matrices stochastiques - Illustratios Remarque Das la suite

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

STATISTIQUE AVANCÉE : MÉTHODES

STATISTIQUE AVANCÉE : MÉTHODES STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................

Plus en détail

Suites de variables aléatoires.

Suites de variables aléatoires. Uiversité Pierre et Marie Curie 200-20 Probabilités et statistiques - LM345 Feuille 8 Suites de variables aléatoires.. Soit Ω, F, P u espace de probabilités. Détermier pour chacue des covergeces suivates

Plus en détail

Chapitre 16 : Espaces vectoriels

Chapitre 16 : Espaces vectoriels PCSI Préparatio des Khôlles -4 Chapitre 6 : Espaces vectoriels Exercice type Soit E=R[X] et F ={P E, P(X)=XP (X)+P()}, motrer que F est u sous-espace vectoriel de E. : O a bie F E. Si P =est le polyôme

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

On obtient la formule de Pascal en prenant le cardinal :

On obtient la formule de Pascal en prenant le cardinal : Colles du 3 ovembre 014 Solutio de la questio de cours 1. (i) Soit E u esemble de cardial. L esemble (E) peut alors être partitioé comme suit : (E) (E), où (E) est l esemble des parties de E de cardial.

Plus en détail

TP R : méthodes statistiques élémentaires

TP R : méthodes statistiques élémentaires M2 IFMA et MPE TP R : méthodes statistiques élémetaires À la fi de la séace vous déposerez vos scripts R das la boîte de dépôt de votre espace Sakai : http://australe.upmc.fr/portal. 1 Importatio des doées

Plus en détail

SESSION DE 2004 CA/PLP

SESSION DE 2004 CA/PLP SESSION DE 4 CA/PLP CONCOURS EXTERNE Sectio : MATHÉMATIQUES SCIENCES PHYSIQUES COMPOSITION DE MATHÉMATIQUES Durée : 4 heures L usage des calculatrices de poche est autorisø (coformømet au directives de

Plus en détail

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de "Processus Stochastiques"

Master 1ère année spécialité IMIS et Mathématiques Contrôle continu de Processus Stochastiques Master ère aée spécialité IMIS et Mathématiques Cotrôle cotiu de "Processus Stochastiques" 8 octobre 00 - Durée h Calculatrices et documets autorisés Exercice Jacques va tous les jours à so travail e emprutat

Plus en détail

Polynômes de Bernstein

Polynômes de Bernstein Polyômes de Berstei Sergei Nataovic Berstei est é e 1880 et est mort e 1968. 1) Défiitio. Soit f ue foctio défiie et cotiue sur [0, 1] à valeurs das. Pour etier aturel o ul doé, le -ième polyôme de Berstei

Plus en détail

Développement d une fonction en série entière. Exemples et applications

Développement d une fonction en série entière. Exemples et applications Développemet d ue foctio e série etière Exemples et applicatios Das ce chapitre, K désigera R ou C B(; R) désigera la boule ouverte de cetre et de rayo R > 1 Gééralités Défiitio 1 Soit f ue applicatio

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Mots de longueur donnée à base de P lettres, et fonction génératrice

Mots de longueur donnée à base de P lettres, et fonction génératrice Mots de logueur doée à base de lettres, et foctio géératrice Cosidéros les mots de logueur à base de lettres, avec etier positif. ) Combie existe-t-il de tels mots? La première lettre du mot est l ue des

Plus en détail

Estimation par vraisemblance

Estimation par vraisemblance Chapitre 4 Estimatio par vraisemblace Le procédé de costructio des estimateurs par isertio a été itroduit das le chapitre 2. L objectif de ce chapitre est d étudier ue autre méthode de costructio, basée

Plus en détail

CORRIGE DE L'EXAMEN DU 4 DECEMBRE 2002

CORRIGE DE L'EXAMEN DU 4 DECEMBRE 2002 CORRIGE DE L'EXAMEN DU 4 DECEMBRE EXERCICE. Notos X la variable aléatoire décrivat l'idetificatio des pièces défectueuses. Le ombre de valeurs possibles de X correspod au ombre de cofiguratios possibles

Plus en détail

Texte Filtre de Kalman-Bucy

Texte Filtre de Kalman-Bucy Page 1. Texte Filtre de Kalma-Bucy 1 e modèle U avio se déplace etre Paris et odres. Il suit ue trajectoire théorique appelée trajectoire omiale dot les coordoées sot coues de tous. a trajectoire de l

Plus en détail

Exercices de Khôlles de Mathématiques, second trimestre

Exercices de Khôlles de Mathématiques, second trimestre Exercices de Khôlles de Mathématiques, secod trimestre Lycée Louis-Le-Grad, Paris, Frace Igor Kortchemski HX 2-2005/2006 Exercices particulièremet itéressats : - Exercices 2., 2.2 - Exercice 3. - Exercice

Plus en détail

Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015

Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015 Uiversité de Bordeaux - Master MIMSE - 2ème aée Scorig Marie Chavet http://www.math.u-bordeaux.fr/ machave/ 2014-2015 1 Itroductio L idée géérale est d affecter ue ote (u score) global à u idividu à partir

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

Reconnaissance des formes: Fenêtre de Parzen

Reconnaissance des formes: Fenêtre de Parzen Préom Nom Recoaissace des formes: Feêtre de Parze Pricipes de l'appretissage o paramétrique Estimatio o paramétrique de la desité Feêtres de Parze vs. k plus proches voisis Feêtres de Parze Réseau de euroes

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Modélisation stochastique

Modélisation stochastique Uiversité de Lorraie Master 2 IMOI 2014-2015 Modélisatio stochastique Madalia Deacou 2 Table des matières Itroductio 5 1 Simulatio de variables aléatoires 7 1.1 Itroductio............................ 7

Plus en détail

x + (2 α) y = 0 3 L donc P

x + (2 α) y = 0 3 L donc P 1 Corrigé ESC 009 par Pierre Veuillez Exercice 1 O cosidère les matrices A, B, D, P, E de M (R) suivates : ( ) 5 1 4 ( ) A B 3 3 1 3 0 7 D P 3 3 ( ) { x (1 α) x y 0 1) a: (A αi) 0 y x + ( α) y 0 ( 1 )

Plus en détail

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001

BTS BIOCHIMIE & ANALYSES BIOLOGIQUES 2001 Exercice 1 : ( 12 poits ) Les parties A et B peuvet être traitées idépedammet l ue de l autre. O se propose d étudier l évolutio e foctio du temps des températures d u bai et d u solide plogé das ce bai.

Plus en détail

Aide Mémoire de Statistique

Aide Mémoire de Statistique Aide Mémoire de Statistique (E, E, P) modèle statistique (E, E, P) modèle probabiliste E probabilité, o coaît la loi P et o fait des calculs E statistique, o e coaît pas la loi (seulemet ue famille de

Plus en détail

CONVERGENCE ET APPROXIMATION

CONVERGENCE ET APPROXIMATION 11-2- 2010 J.F.C. Cov. p. 1 CONVERGENCE ET APPROXIMATION I CONVERGENCE EN PROBABILITÉ 1. Défiitio 2. Ue coditio suffisate de covergece e probabilité 3. La loi faible des grads ombres 4. Ue coséquece de

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que [http://mp.cpgedupuydelome.fr] édité le 6 octobre 05 Eocés Suites umériques Covergece de suites Exercice [ 047 ] [Correctio] Soiet u ) et v ) deux suites réelles covergeat vers l et l avec l < l. Motrer

Plus en détail

CH V : Variables aléatoires - généralités

CH V : Variables aléatoires - généralités CH V : Variables aléatoires - gééralités I. Notio de variable aléatoire réelle Soit (Ω, A ) u espace probabilisable. O dit que X est ue variable aléatoire réelle défiie sur (Ω, A ) si : (i) X est ue applicatio

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

Temps moyen de lecture par page (exercice compris) : 10 minutes

Temps moyen de lecture par page (exercice compris) : 10 minutes MOTS BINAIRES Mots biaires de logueur 2 Rappel : le logarithme e base b 3 Le choix de la logueur des mots biaires 4 Calculs avec les mots de logueur 5 Le poids d u mot biaire de logueur 6 La distace de

Plus en détail

LES PROBABILITÉS POUR LES OPTIONS B, C ET D

LES PROBABILITÉS POUR LES OPTIONS B, C ET D LES PROBABILITÉS POUR LES OPTIONS B, C ET D PRÉPARATION À L AGRÉGATION EXTERNE DE MATHÉMATIQUES DE L UNIVERSITÉ RENNES 1 1 ANNÉE 2009/2010 1. ESPACE PROBABILISÉ - VARIABLE ALÉATOIRE 1.1 ESPACE PROBABILISÉ

Plus en détail

MATHEMATIQUES 2. Fonctions de matrices

MATHEMATIQUES 2. Fonctions de matrices SESSION 2004 EPREUVE SPECIFIQUE FILIERE MP MTHEMTIQUES 2 Durée : 4 heures Les calculatrices sot iterdites * * * NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

Estimation fonctionnelle dans les modèles de durée : Méthode des fonctions orthogonales

Estimation fonctionnelle dans les modèles de durée : Méthode des fonctions orthogonales Estimatio foctioelle das les modèles de durée : Méthode des foctios orthogoales Ouafae Yazourh Résumé O défiit u estimateur o paramétrique de la desité devariales aléatoires positives Xi soumises à des

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ 01529 ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F?

Plus en détail

MATHÉMATIQUES I. degré inférieur ou égal à q et IC q, p [ X ] celui constitué des éléments de IC q [ X ] divisibles par X p.

MATHÉMATIQUES I. degré inférieur ou égal à q et IC q, p [ X ] celui constitué des éléments de IC q [ X ] divisibles par X p. MATHÉMATIQUES I Objectifs O se roose, das ce qui suit, de détermier l esemble des solutios d ue équatio différetielle liéaire à coefficiets costats lorsqu elle est homogèe, uis lorsque celle-ci admet u

Plus en détail

Probabilités et Statistiques

Probabilités et Statistiques Préparatio à l Agrégatio Probabilités et Statistiques Fascicule d Exercices gééraux de Probabilités (iveaux L3-M1) Uiversité Pierre et Marie Curie - Paris VI Aée 2008-2009 Lauret MAZLIAK U certai ombre

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Valeurs absolues. Partie etière. Iégalités Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très

Plus en détail

Cours de calcul stochastique Master M2 IRFA

Cours de calcul stochastique Master M2 IRFA 1 Cours de calcul stochastique Master M2 IRFA Christophe Chorro Septembre 26 $!!!$!!&!!(!!*!!#!!!#$!!#&!!"!!"#!"$!"%!"&!"'!"(!")!"*!"+ #"! #"# Les évetuelles fautes d orthographe, coquilles ou erreurs

Plus en détail

[M. Gubinelli - Processus discrets - M1 MMD 2009/ v.6] IV Martingales

[M. Gubinelli - Processus discrets - M1 MMD 2009/ v.6] IV Martingales Filtratios et martigales 1 [M. Gubielli - Processus discrets - M1 MMD 2009/2010-20100113 - v.6] IV Martigales 1 Filtratios et martigales O cosidère u espace probabilisé (Ω, F, P). Défiitio 1. Ue filtratio

Plus en détail

est la fréquence empirique des succès lors des 10 premières expériences.

est la fréquence empirique des succès lors des 10 premières expériences. Pierre Veuillez Statistiques iféretielle Sources, et pour e savoir plus : http://www.math-ifo.uiv-paris5.fr/smel 1 Problématique : Exemple ue ure cotiet des boules rouges et blaches dot o e coaît pas la

Plus en détail

Estimation Fonctionnelle: Applications aux Tests d Adéquation et de Paramètre Constant

Estimation Fonctionnelle: Applications aux Tests d Adéquation et de Paramètre Constant Carlos Mauel Rebelo Tereiro da Cruz Thèse présetée à la Faculdade de Ciêcias e Tecologia da Uiversidade de Coimbra, pour obteir le grade de Doutor em Matemática Matemática Aplicada. Estimatio Foctioelle:

Plus en détail

École de technologie supérieure

École de technologie supérieure École de techologie supérieure Mat 165-04 Algèbre liéaire et aalyse vectorielle A-015 Michel Beaudi michel.beaudi@etsmtl.ca Liste d exercices à faire e T.P./Caledrier des évaluatios Itroductio au cours

Plus en détail

Équations différentielles - Cours no 6 Approximation numérique

Équations différentielles - Cours no 6 Approximation numérique Équatios différetielles - Cours o 6 Approximatio umérique 1 Itroductio De très ombreux problèmes scietifiques sot mis e équatio à l aide d u système d équatios différetielles ẋt) = ft, xt)) voir par exemple

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

Séance 2 : Estimateurs convergents, non biaisés et exhaustifs.

Séance 2 : Estimateurs convergents, non biaisés et exhaustifs. Exercice Séace 2 : Estimateurs covergets, o biaisés et exhaustifs. Soiet les variables aléatoires X i i =,..., i.i.d. Motrez que S 2 = X i X 2 est u estimateur o biaisé de σ 2, où σ 2 = V ar[x ]. O utilise

Plus en détail

E(X i ) par linéarité de l espérance.

E(X i ) par linéarité de l espérance. Statistiques appliquées. L3 Iterrogatio Questios de cours. 3 poits 1) Eocer le théorème cetral limite (1 pt). Si (X ) est ue suite de v.a. idépedates et de même loi, admettat des momets d ordre u et deux

Plus en détail

Notions de base pour l analyse d un tableau de contingence

Notions de base pour l analyse d un tableau de contingence Uiversité de Bordeaux - Master MIMSE - 2ème aée Notios de base pour l aalyse d u tableau de cotigece Marie Chavet http://wwwmathu-bordeauxfr/ machave/ 204-205 Notatios et défiitios U tableau de cotigece

Plus en détail

Approximation de la solution d une équation différentielle ordinaire avec impulsions qui dépendent de l état

Approximation de la solution d une équation différentielle ordinaire avec impulsions qui dépendent de l état Approximatio de la solutio d ue équatio différetielle ordiaire avec impulsios qui dépedet de l état F. Dubeau A. Ouasafi A. Sakat CRM-276 Jauary 21 Départemet de mathématiques et d iformatique, Uiversité

Plus en détail

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse UNIVERSITÉ MOHAMMED V - AGDAL Faculté des Scieces Départemet de Mathématiques Filière Scieces de Matières Physiques (SMP4) Module Mathématiques : Aalyse (S4) Cours d Aalyse Séries umériques Suites et Série

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Séries entières. Préparation au Capes de Mathématiques

Séries entières. Préparation au Capes de Mathématiques Séries etières Préparatio au Capes de Mathématiques I - Covergece des séries etières Notatios Pour tout élémet r de R +, o ote D r = fz 2 C / jzj < rg et D r = fz 2 C / jzj rg Déitio 1 O appelle série

Plus en détail

Développement en série de Fourier

Développement en série de Fourier [http://mp.cpgedupuydelome.fr] édité le septembre 6 Eocés Développemet e série de Fourier Exercice [ 95 ] [Correctio] Soit f ue foctio cotiue périodique. O suppose que la série de Fourier de f coverge

Plus en détail