Chapitre 1.1a Les oscillations

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 1.1a Les oscillations"

Transcription

1 Chapre 1.1a Les oscllaons La cnémaque La cnémaque es l éue u mouvemen un obje en foncon u emps. Pour ce fare, nous avons recours au conceps e poson, vesse e accéléraon : Poson : ( uné : m Vesse : v ( uné : m/s ccéléraon : a ( uné : m/s L objecf e la cnémaque es e éfnr ces ros foncons u emps. Ces équaons formen ensemble les équaons u mouvemen. Grâce au calcul fférenel e négral, l ese les relaons mahémaques enre ces foncons 1 : Relaon avec la érvée : ( ( e a ( v v ( ( Relaon négrale : v ( v a ( e ( v ( La cnémaque avec une accéléraon consane Consérons une accéléraon consane e la forme ( a a. Nous pouvons reconsrure oues les équaons u MU à parr e l équaon fférenelle suvane : ( a e a (accéléraon consane 1 v ( v a ( v ( v a (Remplacer ( ( [ ] ( v v a v ( v a a a (Résoure l négrale (Évaluer l négrale + ( v ( ( ( v + a (Remplacer ( ( v [ ] ( v a + (Résoure l négrale 1 + v + a (Évaluer l négrale 1 Rappel e mécanque : Physque XXI Volume, chapre 1.13 e 1.1 Rappel e mécanque : Physque XXI Volume, chapre 1.6 Référence : Marc Ségun, Physque XXI Volume C Page 1 Noe e cours régée par : Smon Vézna

2 L oscllaeur harmonque smple (OHS L oscllaeur harmonque smple OHS es une équaon fférenelle 3 relan la poson à l accéléraon a e la façon suvane : a ω À l ae es relaons fférenelles relan (, v ( e ( pouvons évelopper l OHS e la façon suvane : a enre elles, nous v a ω ω (Défnon e l accéléraon, a v / ( / ω (Défnon e la vesse, / ω (Dérvée secone, ( v / / / Nous avons c une équaon conenan unquemen une référence au concep e poson ans que sa érvée secone par rappor au emps. La soluon e cee équaon fférenelle es une équaon u mouvemen ( assocé à un obje qu sub une accéléraon e la forme a ω. Pour soluonner cee équaon fférenelle parculère, l fau : rouver une équaon ( elle que «érvée eu fos» par rappor à, elle es égale à elle-même mulplée par la consane ω. Cho #1 : e ω e ωe ( ( ω Vérfcaon : e ω Concluson : Ce cho n es pas vale, car ω ω. Cho # : sn ( ω + φ ω ω ω Vérfcaon : Concluson : ( sn( ω + φ ( ω cos( ω + φ ω sn ( ω + φ ω Le cho # es juceu e la foncon es une soluon parculère e l équaon fférenelle e l OHS Cee soluon pore le nom e mouvemen harmonque smple (MHS. 3 Une équaon fférenelle es une relaon mahémaque enre une ou pluseurs foncons nconnues e leurs érvées. Référence : Marc Ségun, Physque XXI Volume C Page Noe e cours régée par : Smon Vézna

3 Le mouvemen harmonque smple (MHS L équaon u mouvemen harmonque smple MHS es la soluon à l équaon fférenelle e l oscllaeur harmonque smple OHS e elle es représenée mahémaquemen à l ae une foncon snusoïale. Les conons e poson nale e e vesse nale v nécessare à la escrpon complèe u mouvemen ( son écres à l néreur es paramères amplue e e consane e phase φ : ( ( ω +φ sn où ( : Poson e l obje selon l ae (m Preuve : : mplue u mouvemen (m ω : Fréquence angulare (ra/s : emps (s φ : Consane e phase (ra La preuve éallée relan le MHS ( ( ω +φ < > - Le sysème masse-ressor es un OHS, le mouvemen es onc un MHS. sn comme éan la soluon la plus générale à l OHS a ω es réalsée au chapre 1.1c. On y rouve égalemen les relaons relan e v au paramères e φ. Paramères e l équaon u mouvemen harmonque smple Le mouvemen harmonque smple ulse la foncon snus pour eprmer la poson en foncon u emps. Essayons e meu comprenre les paramères ulsés pour écrre ce mouvemen. mplue : L amplue es la poson mamale aene uran le mouvemen. Cee poson osclle snusoïalemen enre e +. E : ( m 1 1 ( 1sn ω ( s ( m ( m 5 5 sn ( ω ( 5sn ω ( s ( s Référence : Marc Ségun, Physque XXI Volume C Page 3 Noe e cours régée par : Smon Vézna

4 Péroe : La péroe représene le emps requs pour effecuer une oscllaon complèe. Cee conon es vérfée lorsque l obje reven à sa poson nale avec la même vesse (moule e orenaon. E : ( m ( m sn ( m 3 ( ω ( s ( s ( s 1 s 5 s Consane e phase φ : La consane e phase joue le rôle e conon nale sur la poson à. On ulse la consane e phase pour ajuser l argumen e la foncon snus afn e ben fare corresponre e v à. E : ( m sn ( ω ( m ( m φ sn sn ( ω + φ 3 ( ω + / ω ( ra ω ( ra / ω ( ra ( m sn ( ω + ( m sn( ω + 3 / ω ( ra 3 / ω ( ra ( m sn ( ω / ( m sn ( ω / ω ( ra ω ( ra Référence : Marc Ségun, Physque XXI Volume C Page Noe e cours régée par : Smon Vézna

5 Fréquence angulare ω : La fréquence angulare ω représene la vesse à laquelle une oscllaon complèe peu êre effecuée. Une oscllaon es compléée après raans parcourus ans la foncon snus uran une péroe complèe. ns, on peu reler la fréquence angulare ω e la péroe grâce à l epresson suvane : où ou ω ω ω : Fréquence angulare (ra/s : Cycle comple en raan e la foncon snus e l oscllaon (ra : Cycle comple emporel e l oscllaon, péroe (s Poson en foncon e : (secone ( m sn ( ω Poson en foncon e ω : (raan ( m sn ( ω 3 ( s 3 ω ( ra Suaon 1 : Du graphque à l équaon. Dans un sysème bloc-ressor, la poson u bloc es onnée par le graphque c-conre. On ésre éermner la valeur es paramères qu permeen e écrre le mouvemen u bloc à l ae e la foncon sn(ω.,1,1 (m 6 8 (s À parr u graphque, on peu lre l amplue e la péroe e l oscllaon :,1 m e 8 s On peu manenan évaluer la fréquence angulare : ω ω ω ra/s 8 ( Nous avons ans l équaon u mouvemen suvane : sn( ω,1sn Référence : Marc Ségun, Physque XXI Volume C Page 5 Noe e cours régée par : Smon Vézna

6 Suaon : De l équaon au graphque. La poson un moble en foncon u emps es onnée par l équaon,5 sn(,98 + 3/ où es en mères, es en secones e la phase u snus (la parenhèse es en raans. On ésre racer le graphque ( pour 1 s. À parr e l équaon, nous pouvons éfnr l amplue, la fréquence angulare e la consane e phase :,5 m ω,98 ra/s φ 3 / Nous pouvons évaluer manenan la péroe e l oscllaon : ω Évaluons la poson à : 6, s ω (,98,5sn(,98( + 3 /,5sn( 3 /,5 m ns, nous pouvons représener cee foncon grâce au graphque suvan : ( 1,6 s (m,5 Déphasage emporel, /,5 1,6 3,,8 6, 8 9,6 (s Remarque : Un éphasage e φ 3 / es équvalen à un éphasage e φ / (m,5 Déphasage angulare, Φ - /,5 ω (ra Référence : Marc Ségun, Physque XXI Volume C Page 6 Noe e cours régée par : Smon Vézna

Chapitre 1.14 L intégrale en cinématique

Chapitre 1.14 L intégrale en cinématique Chapre.4 L négrale en cnémaque L négrale En mahémaque, on éfn l négrale une foncon f ( el que F( f ( e '( ( F F où F ( es la foncon qu onne la valeur e l are sous la courbe e la foncon f ( ans l nervalle

Plus en détail

Condensateur. Relation entre la charge et la tension aux bornes d un condensateur :

Condensateur. Relation entre la charge et la tension aux bornes d un condensateur : Formulare d élecrcé Pons de cours Condensaeur Explcaons ou ulsaons Un condensaeur es composé de deux armaures méallques séparé par un solan appelé délecrque. S une armaure se charge posvemen, l aure es

Plus en détail

TD 2 Cinétique chimique

TD 2 Cinétique chimique TD Cnéque chmque Exercce Oxydaon de l ammonac L ammonac peu s oxyder ; l équaon sœchomérque de la réacon peu s écrre : 4 NH + 5 O NO + 6 H O S a un momen donné, l ammonac dsparaî à la vesse de, mol.l -.s

Plus en détail

q A q B B augmente dans le temps, ce qui signifie que A dt Quand le courant circule en sens inverse du sens choisi, l intensité est négative, les

q A q B B augmente dans le temps, ce qui signifie que A dt Quand le courant circule en sens inverse du sens choisi, l intensité est négative, les L essenel du cours proposé par Mahmoud Gazzah Le condensaeur, le dpôle Descrpon sommare d un condensaeur Défnon e symbole : Un condensaeur es consué de deux armaures méallques séparées par un solan appelé

Plus en détail

DYNAMIQUE EN REFERENTIEL TOURNANT : L EXEMPLE DE LA RESONANCE MAGNETIQUE

DYNAMIQUE EN REFERENTIEL TOURNANT : L EXEMPLE DE LA RESONANCE MAGNETIQUE DYNAMIQUE EN REFERENTIEL TOURNANT : L EXEMPLE DE LA RESONANCE MAGNETIQUE.- Hamlonen de spn On consdère une parcule de spn placée dans un champ magnéque saque B Bu e un champ ournan à la vesse angulare

Plus en détail

Chapitre 2. Le mouvement rectiligne

Chapitre 2. Le mouvement rectiligne Chapre Le mouvemen reclgne Objec nermédare 1. Employer les équaons du mouvemen reclgne unormémen accéléré (m.r.u.a.) à un corps lbre ou en chue lbre. Vesse moyenne La vesse moyenne v 1 (enre 1 e ) es déne

Plus en détail

Chapitre 3.10 L impulsion et la conservation de la quantité de mouvement

Chapitre 3.10 L impulsion et la conservation de la quantité de mouvement Chapre 3.10 L pulson e la conseraon de la quané de oueen L pulson d une orce consane L pulson correspond au ranser de quané de oueen causé par une orce F applquée duran un neralle de eps : J F J F où J

Plus en détail

Régimes transitoires

Régimes transitoires ÉLECTOCINÉTIQUE chapre 3 égmes ransores En régme connu, les composanes capacves e nducves d un crcu son analogues respecvemen à un crcu ouver e à un cour-crcu. Elles n on donc aucun nérê. Cependan, s un

Plus en détail

Courant continu et courants alternatifs

Courant continu et courants alternatifs Classe : 2ME BEP Méers de l élecroechnque Couran connu e couran alernaf Leu : Salle de cours & salle de mesures Objecf Dfférencer les caracérsques d un couran connu e d un couran alernaf,. Savors : S.2

Plus en détail

Interaction d un système quantique à deux états avec des ondes électromagnétiques

Interaction d un système quantique à deux états avec des ondes électromagnétiques Ineracon d un sysème quanque à deux éas avec des ondes élecromagnéques Exemple de l ammonac NH 3 - Influence d un champ élecrque saque sur les nveaux d énerge. - Influence d un champ élecrque nhomogène

Plus en détail

LES CIRCUITS A COURANT ALTERNATIF MONOPHASE

LES CIRCUITS A COURANT ALTERNATIF MONOPHASE LECON & : LES CRCS A CORAN ALERNAF MONOPHASE LES CRCS A CORAN ALERNAF MONOPHASE - Dfférens formes de courans (e de enson Dans l'ensemble des formes de courans, nous pouvons effecuer une premère paron :

Plus en détail

Laboratoire génie électrique 3Stech Série d exercices N 8 Moteur pas à pas Page 1 /10

Laboratoire génie électrique 3Stech Série d exercices N 8 Moteur pas à pas Page 1 /10 Laboraore géne élecrque ech ére d exercces Moeur pas à pas Page /0 Exercce Un moeur pas à pas à aman permanen ayan les caracérsques suvanes : phases au saor, deux pôles au roor, sa commuaon es bdreconnelle

Plus en détail

2 LES DIPOLES PASSIFS ELEMENTAIRES

2 LES DIPOLES PASSIFS ELEMENTAIRES ES DPOES PASSFS EEMENTAES. nroducon es composans ulsés en élecronque présenen des bornes élecrques ou pôles permean leur connexon dans un réseau. On dsngue : - les dpôles ( pôles) comme les réssances,

Plus en détail

Plan. Définition, Historique, Régression Linéaire Multiple. Interprétation géométrique de la solution, Lien avec l analyse de Corrélation Canonique,

Plan. Définition, Historique, Régression Linéaire Multiple. Interprétation géométrique de la solution, Lien avec l analyse de Corrélation Canonique, Plan Défnon, Régresson Lnéare Mulple Massh-Réza Amn Technques d Analyse de Données e Théore de l Informaon Maser M IAD Parcours Recherche amn@polea.lp6.fr Hsorque, Inerpréaon géomérque de la soluon, Len

Plus en détail

TD2 Ener3 Exercices : hacheurs

TD2 Ener3 Exercices : hacheurs Exercces : hacheurs 1 217-218 Hacheur quare quadrans Une machne à couran connu es almenée par le conversseur don le schéma es représené cdessous. Les ordres d'ouverures e de fermeures des nerrupeurs commandés

Plus en détail

Lycée Galilée Gennevilliers. chap. 2. Jallu Laurent

Lycée Galilée Gennevilliers. chap. 2. Jallu Laurent ycée Gallée Gennevllers e dpôle, sére chap. Jallauren I. e solénoïde... résenaon... uo nducon... 3 Tenson aux bornes du solénoïde... 3 Symbole... 3 II. e dpôle, sére... 4 échelon de enson... 4 Inerpréaon

Plus en détail

INF135 Travail Pratique #1 Remise le 16 octobre 2012

INF135 Travail Pratique #1 Remise le 16 octobre 2012 École de Technologe Supéeue Pa : Fancs Boudeau, ÉcThé Révson : Aïda Ouangaoua INF35 Taval Paque # Remse le 6 ocobe 0 Inaon à la pogammaon en géne mécanque Taval ndvduel. Objecfs - Mee en applcaon des noons

Plus en détail

Décomposition d une fraction rationnelle en éléments simples

Décomposition d une fraction rationnelle en éléments simples Décomposon d une fracon raonnelle en élémens smples I Premère éape Dvson eucldenne de polynômes On rappelle que procéder à la dvson eucldenne d un polynôme A par un polynôme B non nul, c es écrre A BQ

Plus en détail

BILAN EN ELECTRICITE : RC, RL ET RLC

BILAN EN ELECTRICITE : RC, RL ET RLC IN N TIIT :, T I. INTNSIT : = dq d en couran varable I = Q en couran connu Méhode générale d éablssemen des équaons dfférenelles : lo d addvé des ensons pus relaons dq caracérsques :, lo d Ohm u = aux

Plus en détail

Chapitre 1 Convertisseurs alternatif/continu

Chapitre 1 Convertisseurs alternatif/continu Lycée La Fayee Page CPGE AS cours de scences ndusrelles géne élecrque Chapre Conversseurs alernaf/connu. GENERALIES n conversseur alernaf/connu perme d almener une arge sous une enson connue évenuellemen

Plus en détail

Hacheur série. 1. Présentation. 2. Principe de fonctionnement. Le hacheur est un convertisseur statique continu-continu. Symbole synoptique :

Hacheur série. 1. Présentation. 2. Principe de fonctionnement. Le hacheur est un convertisseur statique continu-continu. Symbole synoptique : Termnale STI hacheur sére Hacheur sére. Présenaon e hacheur es un conersseur saque connu-connu Symbole synopque : Tenson connue fxe Tenson connue réglable Ou plus exacemen : enson oujours de même sgne,

Plus en détail

PRODUITS DE TAUX D INTERET Modèles de marché ENSAE - DEA MASE Université Paris IX Dauphine- Séance 7. Moez MRAD. Société Générale - R&D

PRODUITS DE TAUX D INTERET Modèles de marché ENSAE - DEA MASE Université Paris IX Dauphine- Séance 7. Moez MRAD. Société Générale - R&D PRODUIS DE AUX D IERE oèles e marché ESAE - DEA ASE Unversé Pars IX Dauphne- Séance 7 oez RAD Socéé Générale - R&D oez RAD / SG R&D Fxe Income 5//5 PA oèle bor Forwar ognormal G ou F. Défnon u moèle. Passage

Plus en détail

Plan du chapitre 3 (suite):

Plan du chapitre 3 (suite): 4//5 Chapre3: Modèles non lnéares de la Fnance (sue) Plan du chapre 3 (sue): Modèles ARCH e prévsons Varanes des processus ARCH: ARCH-M (AuoRegressve Condonnal Heeroscedascy-n Mean) GARCH-M 4//5 Modèles

Plus en détail

AUTO INDUCTION ET BOBINES

AUTO INDUCTION ET BOBINES AUT INDUCTIN T BBINS I ) Inducon ) Mse en évdence du phénomène d'nducon e phénomène d nducon es l apparon d un couran élecrque à l néreur d un crcu ne comporan pas de généraeur. N S orsqu'on déplace un

Plus en détail

VITESSE DE RÉACTION I. INTRODUCTION II. VITESSE DE RÉACTION POUR UN SYSTÈME FERMÉ

VITESSE DE RÉACTION I. INTRODUCTION II. VITESSE DE RÉACTION POUR UN SYSTÈME FERMÉ VITESSE DE ÉCTION I. INTODUCTION I. Équlbre e évoluon vers l équlbre On consdère une réacon chmque noée de façon générale : ν + ν +... + ν ν ' ' + ν ' ' +... + ν ' '. P P On peu la noer égalemen : ν +

Plus en détail

Régimes transitoires

Régimes transitoires égmes ransores 1. nroducon 'éude des régmes permanens qu'ls soen connus ou pérodques ne suff pas à défnr complèemen un sysème élecronque. eranes ransons de sgnaux, par exemple le basculemen de l'éa bas

Plus en détail

Nous considérons une petite portion de paroi de surface S. La pression est le quotient de l intensité moyenne de cette force par la surface S :

Nous considérons une petite portion de paroi de surface S. La pression est le quotient de l intensité moyenne de cette force par la surface S : Comlémen VI. age /v Presson cnéque Nous allons rerendre le calcul de la resson cnéque en consdéran un modèle mons smlse que celu du chare VI. C es-à-dre en ne smlfan as l agaon moléculare. Nous commençons

Plus en détail

Chapitre 9 : Redressement

Chapitre 9 : Redressement Cors 9 M 2 Préamble 1. défnons 2. le hyrsor Chapre 9 : Redressemen pon de graez 4 Dodes 1. sr charge résse a. monage b. obseraon c. analyse de fonconnemen d. granders caracérsqes 2. monage sr charge RL

Plus en détail

Gestion de production court terme en contexte incertain. Gestion de production à court terme. EDF R&D École Centrale Paris

Gestion de production court terme en contexte incertain. Gestion de production à court terme. EDF R&D École Centrale Paris Geson de producon cour erme en conee nceran EDF R&D École enrale Pars Geson de producon à cour erme Encadrans ndusrels : Gérald Vgnal - Jérôme Quenu Encadran académque : Yves Dallery-Mchel Mnou Snda Ben

Plus en détail

CH V Mouvements. Deux personnes A et B se trouvent immobiles sur un escalier roulant. Sol

CH V Mouvements. Deux personnes A et B se trouvent immobiles sur un escalier roulant. Sol CH V Mouvemens I) Mouvemens e référeniel : Pour éudier un mouvemen, il fau définir : - le mobile (obje qui es en mouvemen) - le référeniel (sysème par rappor auquel le mobile se déplace) 1) Siuaion : Deux

Plus en détail

Exercices sur la valeur moyenne, la valeur efficace et la puissance

Exercices sur la valeur moyenne, la valeur efficace et la puissance Exercces sur la valeur moyenne, la valeur cace e la pussance Ce documen es une complaon des exercces posés en devors survellés d élecrcé au déparemen Géne Elecrque e Informaque Indusrelle de l IU de Nanes.

Plus en détail

t = effectif de la partie 100 effectif total

t = effectif de la partie 100 effectif total Chapre I : Pourcenages Exra du programme : - Coecen mulplca assocé à un pourcenage - Iéraon de pourcenages - Analyse des varaons de pourcenages - Comparason de pourcenage - Approxmaon lnéare dans le cas

Plus en détail

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Universié de Savoie DEUG STPI Unié U32 Sysèmes linéaires - Auomaique CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Le sysème es mainenan mis en équaion, il es donc beaucoup plus

Plus en détail

Techniques d extensométrie

Techniques d extensométrie TRAVAUX PRATIQUES DE DIMENSIONNEMENT DES STRUCTURES Technques d eensoére TP n 1 : Module d Young e Coeffcen de Posson TP n 1 : Module d Young e coeffcen de conranes 1 Module d Young e coeffcen de Posson

Plus en détail

II. Observation d une seule courbe à l oscilloscope

II. Observation d une seule courbe à l oscilloscope PC - Lycée Dumon D Urville TP 1 : uilisaion de l oscilloscope numérique I. Compéences à acquérir Les compéences évaluées au cours de ce TP son: - Uiliser un GBF - Uiliser un oscilloscope : Afficher des

Plus en détail

Chapitre 3.1c La nature ondulatoire de la lumière : interférence en deux dimensions

Chapitre 3.1c La nature ondulatoire de la lumière : interférence en deux dimensions Chape 3.c La naue ondulaoe de la lumèe : neféence en deux dmenon L neféence L neféence e la upepoon de deux onde de même longueu d onde. Loque la upepoon addonne complèemen, on d que l neféence e conucve.

Plus en détail

TH R. 220V 50Hz. i a. chronogrammes : V GK. φ+2π

TH R. 220V 50Hz. i a. chronogrammes : V GK. φ+2π edressemen monophasé commandé C.P.G.E-SI-SAFI edressemen monophasé commandé Inroducon : Un monage redresseur commandé perme d obenr une enson connue réglable à parr d une enson alernave snusoïdale. L ulsaon

Plus en détail

Interpolation de positions-clefs

Interpolation de positions-clefs Inerpolaion de posiions-clefs François Faure able des maières rajecoires. Inerpolaion linéaire...............................2 Inerpolaion cubique...............................3 Courbes en dimension n............................

Plus en détail

Annexe A: dérivées et intégrales : un bref survol

Annexe A: dérivées et intégrales : un bref survol Annexe A: érivées e inégrales : un bref survol Bien que vous ayez éjà vu une parie e ces sujes au niveau collégial e qu'en MAT-5 ils seron revus en éails, on peu néanmoins examiner rapiemen ce que représene

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 2015-2016 Devoir n 6 CNVERSIN DE PUISSANCE L obje de ce problème consise à éudier la producion d énergie élecrique à parir d une éolienne. Le disposiif pore alors le nom d «aérogénéraeur» e es consiué

Plus en détail

Régime transitoire. 4.2 Aspect énergétique Décharge d un condensateur - Régime libre Régime libre d un circuit R,C...

Régime transitoire. 4.2 Aspect énergétique Décharge d un condensateur - Régime libre Régime libre d un circuit R,C... égme ransore Table des maères 1 Crc C sére soms à n échelon de enson 2 1.1 chelon de enson............................. 2 1.2 Charge d n condensaer......................... 2 1.2.1 Condons nales.........................

Plus en détail

Modélisation, Simulation et Commande des systèmes électriques

Modélisation, Simulation et Commande des systèmes électriques Modélsaon, Smulaon e Commande des sysèmes élecrques runo FRANCOIS runo.francos@ec-llle.fr Plan Cours: Généralé sur les sysèmes physques Cours: Le Graphe Informaonnel de Causalé Cours: Modélsaon de la machne

Plus en détail

Etude d un onduleur de tension autonome monophasé :

Etude d un onduleur de tension autonome monophasé : L ONDULUR AUONOM de d n ondler de enson aonome monophasé Défnon Un ondler es n conversser saqe conn alernaf. L ondler es d aonome qand l mpose sa propre fréqence à la charge (ce q es dfféren de l ondler

Plus en détail

ANNEXE I TRANSFORMEE DE LAPLACE

ANNEXE I TRANSFORMEE DE LAPLACE ANNEE I TRANSFORMEE DE LAPLACE Perre-Smon Lalace, mahémacen franças 749-87. Lalace enra à l unversé de Caen a 6 ans. Très ve l s néressa aux mahémaques e fu remarqué ar d Alember. En analyse, l nrodus

Plus en détail

EXERCICES DIRIGES 7 et 8 Synchronisation de processus CORRECTION. Exécution. Boucle. Prélever Requête Exécuter Requête Déposer Ordre.

EXERCICES DIRIGES 7 et 8 Synchronisation de processus CORRECTION. Exécution. Boucle. Prélever Requête Exécuter Requête Déposer Ordre. Méhodes de Programmaon sysème 2001-2002 EXERCICES DIRIGES 7 e 8 Synchronsaon de processus CORRECTION Exercce 1 Acquson Exécuon Impresson Boucle Boucle Boucle Acquérr Requêe Déposer Requêe REQUETE M cases

Plus en détail

EC 4 Circuits linéaires du second ordre en régime transitoire

EC 4 Circuits linéaires du second ordre en régime transitoire 4 ircuis linéaires du second ordre en régime ransioire PSI 016 017 I Réponse d un circui RL série à un échelon de ension 1. ircui R L i() u G () +q ¹ 1 u R () u L () u () On ferme l inerrupeur K à = 0,

Plus en détail

TP 7 : Numérisation d un signal : quantification et traitement numérique

TP 7 : Numérisation d un signal : quantification et traitement numérique Parie I : Élecronique TP TP 7 : Numérisaion d un : quanificaion e raiemen numérique I Inroducion Lors du précéden TP, nous avons éudiée une éape de la numérisaion d un : l éape d échanillonnage. Il ne

Plus en détail

L équation de Schrödinger dépendante du temps

L équation de Schrödinger dépendante du temps Universié Pierre e Marie Curie, Paris VI Licence de physique ENS Cachan PHYTEM PHYSIQUE NUMÉRIQUE TD 10 L équaion de Schrödinger dépendane du emps La résoluion de l équaion de Schrödinger indépendane du

Plus en détail

F2SMH. Biomécanique L1 UE11 TOULOUSE. Julien DUCLAY. Pôle Sport - Bureau 301

F2SMH. Biomécanique L1 UE11 TOULOUSE. Julien DUCLAY. Pôle Sport - Bureau 301 FSMH TOULOUSE Biomécanique L1 UE11 Suppor de cours Amaranini Waier Duclay Laurens Julien DUCLAY julien.duclay@univ-lse3.fr Pôle Spor - Bureau 31 z (m) Exemple 1 : équaions horaires O ez Chue libre vericale

Plus en détail

ANNEXE 1 - LE POIDS DES HYPOTHESES DANS LE CALCUL DES QUOTIENTS

ANNEXE 1 - LE POIDS DES HYPOTHESES DANS LE CALCUL DES QUOTIENTS ANNEXE - LE POIDS DES HYPOTHESES DANS LE CALCUL DES QUOTIENTS L'hypohèse d'une réparon des événemens démographques unforme sur l'année gnore la sasonnalé des décès e des nassances qu peu êre déermnée ans

Plus en détail

I. PRINCIPE FONDAMENTAL DE LA DYNAMIQUE

I. PRINCIPE FONDAMENTAL DE LA DYNAMIQUE P-P DYNQUE DE LDE PNCPE FNDENTL DE L DYNQUE Prncpe = théore vérfée par l epérence onc valable ans un omane étue précs PBLETQUE Cnématque : étue u mouvement un ou pluseurs soles sans se poser la queston

Plus en détail

MESURES CHRONOMETRIQUES

MESURES CHRONOMETRIQUES Chapire 8 I- FRQUNCMR : MSURS CRONOMRIQUS Le schéma de principe d un fréquencemère numérique es donné par la figure 36. Signal de fréquence f Circui de mise en Base de emps X() Y() & Compeur orloge RAZ

Plus en détail

Econométrie. F. Karamé

Econométrie. F. Karamé Economére F. Karamé Inroducon Qu es-ce que l économére?. Défnon Léralemen : c es la mesure en économe. Mas un peu large car cela nclu alors oues les défnons d agrégas macro-économque de la compablé naonale.

Plus en détail

Courant continu et courants alternatifs

Courant continu et courants alternatifs Classe : 2ME BEP Méers de l élecroechnque Couran connu e couran alernaf Leu : Salle de cours & salle de mesures Objecf Dfférencer les caracérsques d un couran connu e d un couran alernaf,. Savors : S.2

Plus en détail

LES COMPTEURS 3. COMPTEURS ET DECOMPTEURS ASYNCHRONES :

LES COMPTEURS 3. COMPTEURS ET DECOMPTEURS ASYNCHRONES : ISET de Nabeul ours de Sysème logique (2) hapire 3. OBJETIFS LES OMPTEURS Eudier les différens ypes de compeurs. omprendre le principe de foncionnemen de chaque ype. Mairiser les éapes de synhèse d un

Plus en détail

Modélisation et simulation de l hydroformage de liners métalliques pour le stockage d hydrogène sous haute pression

Modélisation et simulation de l hydroformage de liners métalliques pour le stockage d hydrogène sous haute pression Modélsaon e smulaon de l hydroformage de lners méallques pour le sockage d hydrogène sous haue presson J.C. Geln, C. Labergère,. Boudeau, S. Thbaud Insu FEMTO-ST, Déparemen Laboraore de Mécanque Applquée

Plus en détail

Représentations multiples d un signal électrique triphasé

Représentations multiples d un signal électrique triphasé Représenaions muliples d un signal élecrique riphasé Les analyseurs de puissance e d énergie Qualisar+ permeen de visualiser insananémen les caracérisiques d un réseau élecrique riphasé. Représenaion emporelle

Plus en détail

IUT GEII Nîmes. DUT 2 - Alternance Représentation fréquentielle - Séries de Fourier. Yaël Thiaux

IUT GEII Nîmes. DUT 2 - Alternance Représentation fréquentielle - Séries de Fourier. Yaël Thiaux 1 héorie DU2-Al IU GEII Nîmes DU 2 - Alernance Représenaion fréquenielle - Séries de Fourier Yaël hiaux yael.hiaux@iu-nimes.fr Janvier 2015 2 DU2-Al héorie 1 héorie 2 3 3 DU2-Al Une somme de sinusoïdes?

Plus en détail

Représentations multiples d un signal électrique triphasé

Représentations multiples d un signal électrique triphasé Représenaions muliples d un signal élecrique riphasé Les analyseurs de puissance e d énergie Qualisar+ permeen de visualiser insananémen les caracérisiques d un réseau élecrique riphasé. Les Qualisar+

Plus en détail

Intégrateur. v e. 20log T 0

Intégrateur. v e. 20log T 0 G. Pnson - Physque Applquée Foncons négraon e dérvaon - A22 / A22 - Foncons négraon e dérvaon τ = = τ ( )d éponse à un échelon (réponse ndcelle) Inégraeur : = E < : = = E τ E -a. éponse en fréquence =

Plus en détail

U, I [V] [A] Il existe plusieurs types de courants ou de tensions pour lesquels nous pouvons tracer ces représentations :

U, I [V] [A] Il existe plusieurs types de courants ou de tensions pour lesquels nous pouvons tracer ces représentations : Régme alernaf snusoïdal Chapre 13 Régme alernaf snusoïdal Sommare Défnons des valeurs de courans alernafs Producon d une enson alernave Valeurs de crêe, moyenne e effcace Représenaons emporelles e vecorelles

Plus en détail

BEAT : UN SIMULATEUR VIRTUEL DE DEFAUTS DE ROULEMENTS

BEAT : UN SIMULATEUR VIRTUEL DE DEFAUTS DE ROULEMENTS BEAT : UN SIMULATEUR VIRTUEL DE DEAUTS DE ROULEMENTS Béchr Badr, Marc Thomas e Sadok Sass Déparemen de géne mécanque, École de echnologe supéreure, Monréal Marc.homas@esml.ca aculy of Engneerng, Sohar

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Secion : S Opion : Sciences de l ingénieur Discipline : Génie Elecrique Caracérisiques des signaux élecriques Domaine d applicaion : raiemen du signal ype de documen : Cours Classe : Première Dae : I Définiion

Plus en détail

MODELES DE LA COURBE DES TAUX Université d Evry Séance 8. Moez Mrad / Philippe Priaulet

MODELES DE LA COURBE DES TAUX Université d Evry Séance 8. Moez Mrad / Philippe Priaulet MODEES DE A COURE DES AUX Unveré Evry Séance 8 Moez Mra / Phlppe Prale PA Rappel r le moèle Heah-Jarrow-Moron Changemen e nmérare. Généralé. Mere orwar 3 Evalaon e coverre e pro e ax 3. Opon r n zéro-copon

Plus en détail

UNIVERSITE DE PARIS X Année universitaire

UNIVERSITE DE PARIS X Année universitaire UNIVERSITE DE PARIS X Année unversare 008-009 UFR SEGMI L Econome & Geson Travau drgés Sasques Economques Fasccule 3 N. CHEZE e D. ABECASSIS Eercces reprs ou adapés de G. NEUBERG RÉGRESSION Eercce Graphque

Plus en détail

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N ECOLE SUPÉRIEURE EN SCIENCES APPLIQUÉES --T L E M C E N- FORMATION PRÉPARATOIRE NIVEAU : IEME ANNÉE MODULE: VIBRATIONS Chapire 4: Mouvemen forcé à un degré de liberé Dr. Fouad BOUKLI HACENE E S S A - T

Plus en détail

Chapitre 1.3 La vitesse instantanée

Chapitre 1.3 La vitesse instantanée Chapire.3 La iesse insananée La iesse dans un graphique de posiion On peu obenir une iesse moyenne en foncion du emps en effecuan un calcul de pene. Puisqu une pene es une rappor enre une ariaion selon

Plus en détail

Conversion analogique numérique (CAN)

Conversion analogique numérique (CAN) Conversion analogique numérique (CAN) Schéma foncionnel d un sysème de raiemen numérique de l informaion : Grandeur physique Capeur Filrage Passe bas Amplificaion Echanillonnage Conversion analogique numérique

Plus en détail

اهتحانات الشهادة الثانىية العاهة الفرع : علىم الحياة مسابقة في مادة الفيزياء المدة ساعتان

اهتحانات الشهادة الثانىية العاهة الفرع : علىم الحياة مسابقة في مادة الفيزياء المدة ساعتان العادية وزارة التربية والتعلين العالي الوديرية العاهة للتربية دائرة االهتحانات الجوعة في 8 حسيراى اهتحانات الشهادة الثانىية العاهة الفرع : علىم الحياة مسابقة في مادة الفيزياء المدة ساعتان االسن: الرقن:

Plus en détail

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction.

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction. Chap Chapire 9 e Chues vericales e mouvemens plans DM8 : Eude de mouvemens plans - Correcion Dae : Un cascadeur doi sauer avec sa voiure sur la errasse d un immeuble. Pour cela, il uilise un remplin disan

Plus en détail

Leçon 15 Les formes des signaux électriques Page 1/7

Leçon 15 Les formes des signaux électriques Page 1/7 Leçon 15 Les formes des signaux élecriques Page 1/7 1. Les différenes formes de ension ou de couran élecriques 1.1 Signal unidirecionnel C es un signal qui circule oujours dans le même sens Couran unidirecionnel

Plus en détail

Détermination de la primitive d une fonction trigonométrique à l aide de la V200

Détermination de la primitive d une fonction trigonométrique à l aide de la V200 Déerminaion de la primiive d une foncion rigonomérique à l aide de la V00. Formules élémenaires Dans les formules suivanes, u u ( ) es une foncion de. sin cos k u'sinu cosu cos sin k u'cosu sinu k k sin

Plus en détail

Bureaux d études en traitement des images

Bureaux d études en traitement des images Bureau d éudes en raemen des mages ESERB Fère Téécommuncaons 3 ème année Opon SC ESERB Fère Eecronque 3 ème année Opon TS AEE 4-5 M. DOAS Bureau d éudes en raemen des mages PARTE REDRESSEMET Dans cee pare

Plus en détail

Utilisation des fonctions B-splines pour modéliser la survie relative non proportionnelle

Utilisation des fonctions B-splines pour modéliser la survie relative non proportionnelle Ulsaon des foncons -splnes pour modélser la surve relave non proporonnelle Roch Gorg Laboraore d Ensegnemen e de Recherche sur le Traemen de l Informaon Médcale Faculé de médecne de Marselle - Unversé

Plus en détail

CHAPITRE 4 HACHEURS. Convertisseur Continu (DC) - Continu (DC) Figure 4-1. Schéma de principe du hacheur. R 1. I d. U d

CHAPITRE 4 HACHEURS. Convertisseur Continu (DC) - Continu (DC) Figure 4-1. Schéma de principe du hacheur. R 1. I d. U d nversé e Savoe Lcence EEA Moue 6 Énerge e conversseurs 'énerge CHAPRE 4 HACHERS 1. nroucon - nérê es hacheurs Les hacheurs son es conversseurs saques connu-connu permean e fabrquer une source e enson connue

Plus en détail

GRANDEURS PERIODIQUES CIRCUITS LINEAIRES EN REGIME

GRANDEURS PERIODIQUES CIRCUITS LINEAIRES EN REGIME GANDS PIODIQS CICIS LINAIS N GIM SINSOIDAL I. Propréés des granders pérodqes A avec A : are comprse enre le sgnal e l'axe des emps pendan la pérode. emarqe : s le sgnal es alernavemen posf e négaf sr la

Plus en détail

Chapitre 4.9 La conservation du moment cinétique

Chapitre 4.9 La conservation du moment cinétique Chap 4.9 a consvaon du momn cnéqu Momn cnéqu d un pacul slon l a momn cnéqu d un pacul msu la quané d mouvmn dans l plan qu s n oaon auou d un pon d éénc. modul du momn cnéqu s égal à la dsanc dans l plan

Plus en détail

Le Principe de PASCAL

Le Principe de PASCAL Hydraulique LES LOIS D HYDROSTATIQUE N 1/8 LA FORCE. On appelle FORCE oue acion qui end à modifier l éa d un corps. Elle s exprime en NEWTON (symbole N). La force es définie par son sens, son inensié,

Plus en détail

ASSERVISSEMENT DE VITESSE D UN MOTEUR A COURANT CONTINU. PREMIERE PARTIE / ETUDE DU HACHEUR ( voir fig 1 page 4 ) ( 5 points environ )

ASSERVISSEMENT DE VITESSE D UN MOTEUR A COURANT CONTINU. PREMIERE PARTIE / ETUDE DU HACHEUR ( voir fig 1 page 4 ) ( 5 points environ ) SESSION 1998 Page 1/5 Examen : BTS Coef. : 2 Spécialié : MECANIQUE ET AUTOMATISME INDUSTRIEL Durée : 2h Epreuve : U.32 SCIENCES PHYSIQUES Code : MSE 3 SC ASSERVISSEMENT DE VITESSE D UN MOTEUR A COURANT

Plus en détail

UN AUTRE PARADOXE : équation horaire du mouvement d un point

UN AUTRE PARADOXE : équation horaire du mouvement d un point UN AUTRE PARADOXE : équaion horaire du mouvemen d un poin. - INTRODUCTION La relaivié resreine es l obje de nombreu paradoes comme on a pu le consaer dans d aures ees proposés dans ce dossier. La majorié

Plus en détail

Volatilité locale et la formule de Dupire

Volatilité locale et la formule de Dupire Chapre 4 Volalé locale e la formule de Dupre Modèle à volalé locale. Modèle CEV. Valorsaon d opons dans les modèles à volalé locale. EDP e formule de Dupre (en ermes des prx d opons). Formule de Dupre

Plus en détail

CAP C.C.F. Académie de BORDEAUX ÉTUDE DU MOUVEMENT D UN SOLIDE FICHE DESCRIPTIVE DU SUJET DESTINÉE AU PROFESSEUR

CAP C.C.F. Académie de BORDEAUX ÉTUDE DU MOUVEMENT D UN SOLIDE FICHE DESCRIPTIVE DU SUJET DESTINÉE AU PROFESSEUR Ce documen comprend : une fiche descripive du suje desinée au professeur. une siuaion d évaluaion desinée au candida. une grille d'évaluaion / noaion desinée au professeur. FICHE DESCRIPTIVE DU SUJET DESTINÉE

Plus en détail

Simulation numérique de la convection naturelle tridimensionnelle par une méthode Meshless dans la formulation vitesse-vorticité

Simulation numérique de la convection naturelle tridimensionnelle par une méthode Meshless dans la formulation vitesse-vorticité Smulaon numérque de la convecon naurelle rdmensonnelle par une méhode Meshless dans la formulaon vesse-vorcé Eyad DABBORA * Hamou SADA Laboraore des éudes hermques Esp 40 Av du Receur Pneau - 860 Poers

Plus en détail

Chapitre 4.8 L énergie, le travail et la puissance en rotation

Chapitre 4.8 L énergie, le travail et la puissance en rotation Chaptre 4.8 L énerge, le traval et la pussance en rotaton Une roue qu roule sans glsser Une roue qu roule sans glsser sur une surace de contact peret à celle-c d eectuer une translaton et une rotaton.

Plus en détail

PRODUITS DE TAUX D INTERET Pricing et couverture de produits de taux ENSAE - DEA MASE Université Paris IX Dauphine- Séance 6.

PRODUITS DE TAUX D INTERET Pricing et couverture de produits de taux ENSAE - DEA MASE Université Paris IX Dauphine- Séance 6. PRODUIS D AU D IR Prcng e coverre e pro e ax SA - DA MAS Unveré Par I Daphne- Séance 6 Moez MRAD SG - R&D AU/CRDI Moez MRAD / Socéé Générale R&D AU/CRDI 8//5 PLA Rappel r le moèle Heah-Jarrow-Moron Changemen

Plus en détail

Ch.5 : LE REGIME SINUSOIDAL.

Ch.5 : LE REGIME SINUSOIDAL. e_ch(le régime sinsoïdal).od Marie Pierro Lycée d Rempar //9 Ch. : LE REGIME SINUSOIDAL.. Définiions... Les valers insananées. Les valers insananées d'ne ension e d'n coran son des foncions sinsoïdales

Plus en détail

PONDÉRATIONS LONGITUDINALES

PONDÉRATIONS LONGITUDINALES PONDÉRATIONS LONGITUDINALES DANS L ENQUÊTE EMPLOI DE L INSEE Pascal Ardlly Insee, Déparemen des méhodes sasques Conexe e objecfs Source Enquêe Emplo rmesrelle en France Objecf Sur une pérode donnée, esmer

Plus en détail

Formalisme des processus aléatoires

Formalisme des processus aléatoires HAPITRE Formalisme des processus aléaoires. - Signal déerminise e signal aléaoire.. - Signal déerminise Les signaux déerminises son connus par leur représenaion emporelle e specrale. Dans le domaine emporel,

Plus en détail

e θ CHAPITRE III : DIPOLE ELECTROSTATIQUE -q O +q H q BM

e θ CHAPITRE III : DIPOLE ELECTROSTATIQUE -q O +q H q BM CHITR III : DIOL LCTROSTTIQU I. Déntons On appelle pôle électrostatue eu charges opposées ( et ) séparées par une sce a très pette evant la sce observaton (sce à lauelle champ et potentel sont étués).

Plus en détail

Les Compteurs. A). Présentation : I ). Introduction :

Les Compteurs. A). Présentation : I ). Introduction : Les Compeurs A) Présenaion : I ) Inroducion : Un compeur es un ensemble de bascules qui serven à comper les impulsions mises en enrées (Horloge) Le compage peu-êre fai dans différens codes : Binaires,

Plus en détail

Décharge d un condensateur dans une bobine

Décharge d un condensateur dans une bobine HAPITRE 8 OSIATIONS IBRES DANS UN IRUIT R Décharge un conensateur ans une bobne. Prncpe et schéma u montage nterrupteur () étant sur la poston (), le conensateur e capacté se charge. a charge est termnée

Plus en détail

Jeux stratégiques de marché dans le modèle à générations imbriquées.

Jeux stratégiques de marché dans le modèle à générations imbriquées. Jeux sraégques de marché dans le modèle à généraons mbrquées Francs de MOROGUES GREQAM (UMR CRS 6579), rue de la Charé 300 Marselle Tél: 0494077 e-mal: dmorogue@ehesscnrs-mrsfr Documen de raval du GREQAM

Plus en détail

Exercices sur les courbes paramétrées dans le plan

Exercices sur les courbes paramétrées dans le plan Exercices sur les courbes paramérées dans le plan Dans le plan P muni d un repère orhonormé O, i, j, on considère la courbe C définie par les équaions x paramériques y ) Eudier les variaions de x e y Donner

Plus en détail

POLARISATION DE LA LUMIERE

POLARISATION DE LA LUMIERE TP PHYSQU POLARSATON D LA LUMR OBJCTFS : Obtenton d'une lumère polarsée. Acton des lames λ/4 et λ/2. Polarsaton de la lumère par réflexon. BOGRAPH : H prépa optque (Hachette) - TUD THORQU. 1- Descrpton

Plus en détail

Chapitre 3.11a Les collisions élastiques frontales

Chapitre 3.11a Les collisions élastiques frontales Chatre.a Les collsons élastques rontales Les los de conseraton dans une collson élastque en une denson Chaque lo hysque nous aorte une équaton qu eut être utlsée our résoudre un roblèe. Dans le cas d une

Plus en détail

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité PROPORTIONNALITES ET POURCENTAGES I-La proporionnalié -Acivié préparaoire n : Suies de nombres proporionnelles -l indicaion «0,88 /L» perme de calculer les pri manquans dans le ableau ci-dessous. Indiquer

Plus en détail

Concours Ecole Nationale de la Statistique et de l Analyse Informatique. Deuxième composition de Mathématiques PARTIE I. et comme la fonction t f(t)

Concours Ecole Nationale de la Statistique et de l Analyse Informatique. Deuxième composition de Mathématiques PARTIE I. et comme la fonction t f(t) SESSION Concours Ecole Naionale de la Saisique e de l Analyse Informaique Deuième composiion de Mahémaiques PARTIE I. Soien f E e >. La foncion f( es coninue sur ], [ en an que quoien de foncions coninues

Plus en détail

Cours 2: Flots et couplages

Cours 2: Flots et couplages Cour : Flo e couplage Flo e coupe Algorhme de calcul du flo maxmal Modélaon par flo Couplage e graphe de augmenaon Marage able - Réeau de ranpor e flo Donnée: Un graphe orené G = (X, A), une valuaon c

Plus en détail

APPRENTISSAGE PAR COMBINAISON DE CLASSIFIEURS ELEMENTAIRES («dopage» ou «Boosting»)

APPRENTISSAGE PAR COMBINAISON DE CLASSIFIEURS ELEMENTAIRES («dopage» ou «Boosting») APPRENISSAGE PAR COMBINAISON DE CLASSIFIEURS ELEMENAIRES («dopage» ou «Boosng») Pr. Faben Mouarde Cenre de Roboque (CAOR) MINES Pars ech (ENSMP) PSL Research Unversy Faben.Mouarde@mnes-parsech.fr hp://people.mnes-parsech.fr/faben.mouarde

Plus en détail

CINEMATIQUE : MOUVEMENTS PARTICULIERS

CINEMATIQUE : MOUVEMENTS PARTICULIERS Cinémaique Analyique CINEMATIQUE : MUVEMENTS PARTICULIERS 1. Mouvemen de ranslaion : Définiions 1.1. Translaion d un solide Tous les poins d'un solide en ranslaion on : - Des rajecoires ideniques - La

Plus en détail