Limites de suites. Christophe ROSSIGNOL. Année scolaire 2013/2014

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Limites de suites. Christophe ROSSIGNOL. Année scolaire 2013/2014"

Transcription

1 Limites de suites Christophe ROSSIGNOL Année scolaire 2013/2014 Table des matières 1 Limite d une suite Limite finie Limite infinie Théorèmes de comparaison Opérations sur les ites Limite d une somme Limite d un produit Limite d un quotient Cas des suites géométriques 6 Table des figures 1 Suite de ite finie l Suite de ite Liste des tableaux 1 Limite d une somme Limite d un produit Limite d un quotient Ce crs est placé ss licence Creative Commons BY-SA 1

2 1 LIMITE D UNE SUITE Activités : Activité 1 1 et 2 2 page 22 [TransMath] 1 Limite d une suite 1.1 Limite finie Définition : On dit que la suite u n ) admet comme ite le réel l si tt intervalle contenant l contient ts les termes de la suite à partir d un certain rang voir figure 2). On dit alors que u n ) converge vers l et on note : u n = l n Figure 1 Suite de ite finie l Remarques : 1. Si elle existe, la ite l d une suite est unique. 2. Si une suite ne converge pas, on dit qu elle est divergente. 3. Les suites de terme général 1 n ; 1 n ; 1 n 2 et 1 n 3 ont pr ite zéro. Un exemple de suite divergente : Soit u n = 1) n 1 et 1 sont les deux seules valeurs possibles pr la suite. La ite éventuelle de la suite ne prrait être que 1 1. Or, aucun des intervalles ]0 ; 2[ et ] 2 ; 0[ ne contiennent ts les termes de la suite à partir d un certain rang les termes d indice pair sont dans ]0 ; 2[ et ceux d indice impair dans ] 2 ; 0[. Cette suite est divergente en fait, elle n a pas de ite). Exercice : 39 page page 48 4 [TransMath] 1.2 Limite infinie Définition : On dit que la suite u n ) admet comme ite si tt intervalle de la forme ]a ; [ contient ts les termes de la suite à partir d un certain rang voir figure 2). On note alors : n u n = Figure 2 Suite de ite Remarques : 1. Prolifération bactérienne. 2. Exode rural. 3. Au voisinage de la ite. 4. Unicité de la ite d une suite convergente. 2

3 1 LIMITE D UNE SUITE 1.3 Théorèmes de comparaison 1. Cette suite est divergente. 2. Les suites de terme général n ; n ; n 2 et n 3 admettent comme ite. 3. On définit de manière analogue une suite de ite : Définition : On dit que la suite u n ) admet comme ite si tt intervalle de la forme ] ; a[ contient ts les termes de la suite à partir d un certain rang. On note alors : n u n = Remarque : Les suites de terme général n ; n ; n 2 et n 3 admettent comme ite. Exercice : 38 page 38 5 [TransMath] 1.3 Théorèmes de comparaison Théorème 1 : Soient u n ) et v n ) deux suites et a n 0 un entier naturel. 1. Si, pr n n 0, on a u n v n et n v n = alors n u n = 2. Si, pr n n 0, on a u n v n et n v n = alors n u n = Démonstration exigible) : 1. Soit a un nombre réel. Comme n v n =, il existe un entier p tel que l intervalle ]a ; [ contienne ts les termes de v n ) à partir de l indice p. On note N le plus grand des nombres entiers n 0 et p. pr n N, l intervalle ]a ; [ contient ts les termes v n et, de plus, u n v n. Par suite, pr n N, l intervalle ]a ; [ contient ts les termes u n. Cette démonstration étant valable pr tt nombre réel a, on vient de montrer que n u n =. 2. Soit a un nombre réel. Comme n v n =, il existe un entier p tel que l intervalle ] ; a[ contienne ts les termes de v n ) à partir de l indice p. On note N le plus grand des nombres entiers n 0 et p. pr n N, l intervalle ] ; a[ contient ts les termes v n et, de plus, u n v n. Par suite, pr n N, l intervalle ] ; a[ contient ts les termes u n. Cette démonstration étant valable pr tt nombre réel a, on vient de montrer que n u n =. Exemple : Soit u n = n Pr tt entier n, n n 2. Comme la fonction racine carrée est croissante, elle conserve l ordre n n 2. Comme n est un entier positif, n 2 = n. On a n n. Comme n n =, on obtient n u n =. Théorème 1 : Théorème dit «des gendarmes» admis) Soient u n ), v n ) et w n ) trois suites ; n 0 un entier naturel et l un réel. Si, pr n n 0, on a v n u n w n et n v n = n w n = l alors : Exemple : Soit u n ) la suite définie par u n = cos n n. Comme 1 cos n 1 et n > 0, on a : u n = l n 1 n u n 1 n Comme n 1 n = 0, la suite u n ) converge vers zéro. 5. Dépasser un seuil. 3

4 2 OPÉRATIONS SUR LES LIMITES Exercices : 11, 12, 13, 14, 15 page page 31 et 85 page page 33 et 81 page page 47 9 [TransMath] 2 Opérations sur les ites Dans tte cette section, l et l désignent deux nombres réels. 2.1 Limite d une somme Les résultats sont résumés dans le tableau 1. n u n l l l n v n l n u n + v n ) l + l F.I. Table 1 Limite d une somme Remarque : «F.I.» signifie «Forme Indéterminée». Ceci veut dire que l on ne peut pas conclure directement à l aide du tableau. Il faut étudier plus en détail les suites pr «lever l indétermination» et trver la ite. 1. n 1 n + n + 2 ) =? 2. n n 2 n ) =? n 1 n = 0 n n = n 2 = 2 n n 2 = n n) = Cette F.I. sera levée à la ss-section n n + ) n + 2 = On a une forme indéterminée 2.2 Limite d un produit Les résultats sont résumés dans le tableau n 3n 2 ) =? n 3 = 3 n n 2 = 3n 2 ) = n 6. Limites par comparaison. 7. Cas d une somme. 8. Avec des racines carrées. 9. Restitution organisée des connaissances. 4

5 2 OPÉRATIONS SUR LES LIMITES 2.3 Limite d un quotient n u n l l > 0 l > 0 l < 0 l < n v n l n u n v n ) l l F.I. F.I. Il s agit de la règle des signes Table 2 Limite d un produit 2. n n 2 n ) =? On a déjà vu à la ss-section 2.1 que cette ite présente une forme indéterminée. Or, si n 0, n 2 n = n 2 1 n n 2 ) = n n) et : On a levé l indétermination. n n 2 = n 1 1 n = 1 n 2 n ) = n Remarque : Pr lever une indétermination de la forme, il suffit svent de mettre en facteur le terme de plus haut degré. Exercices : 45, 46, 49, 50 page page [TransMath] 2.3 Limite d un quotient Les résultats sont résumés dans le tableau 3. x u n l l x v n l 0 x u n vn l l 0 l 0 règles des signes F.I. l il faut prendre en compte le signe de v n 0 F.I. Table 3 Limite d un quotient 1. n 5 2n 2 1 =? n 5 = 5 n 2n 2 1 = n 5 2n 2 1 = 0 2. n n 2 3n 1 =? n n 2 = n 3n 1 = 10. Limites «simples». 11. Lever une indétermination. On a une forme indéterminée 5

6 3 CAS DES SUITES GÉOMÉTRIQUES Remarques : On va mettre en facteur les termes de plus haut degré : n 2 3n 1 = n ) 1 2 n n ) 3 1 = 1 2 n 3 1 n n 3. n n2 + 1 n ) =? De plus : n2 + 1 n = n 1 2 n = 1 n 3 1 n = 3 n n2 + 1 = n n = n2 + 1 n ) n n ) n n n n 2 3n 1 = 1 3 On a une forme indéterminée = n2 + 1 ) 2 n 2 n n Comme n n n ) =, on a n n2 + 1 n ) = 0 = n2 + 1 n 2 n n = 1 n n 1. Pr lever une indétermination de la forme, il suffit svent de mettre en facteur le terme de plus haut degré au numérateur et au dénominateur, puis réduire la fraction obtenue. 2. Pr les suites s exprimant à l aide de racines carrées, on lève svent les indéterminations en utilisant la quantité conjuguée. Exercices : 47, 48, 51 page , 20 page , 23, 24 page , 66, 67, 69, 70, 72, 73, 74 page page [TransMath] 3 Cas des suites géométriques Propriété : Soit q un réel différent de zéro et de 1. Si q 1, la suite de terme général q n ) n a pas de ite elle est divergente). Si 1 < q < 1, la suite de terme général q n ) a pr ite zéro. Si q > 1, la suite de terme général q n ) admet comme ite elle est divergente). Démonstration partielle exigible) : Les 2 premiers résultats sont admis. On ne démontrera que le troisième. Comme q > 1, on peu noter q = 1 + a, avec a > 0. Montrons par récurrence que q n 1 + na. Initialisation : q 0 = 1 = a la propriété est vérifiée au rang zéro. On peut aussi remarquer que q 1 = q = 1 + a = a et q 2 = 1 + a) 2 = 1 + 2a + a a... Hérédité : On suppose que q n 1 + na et on veut monter que q n n + 1) a. Comme q n+1 = q n q et q > 0, on a : q n 1 + na q n q 1 + na) q q n na) 1 + a) q n na + a + na 2 q n n + 1) a + na 2 Comme na 2 0, on a q n n + 1) a. On a montré que, pr tt n, q n 1 + na. De plus, comme a > 0, n 1 + na) = n q n =. 12. Limites «simples». 13. Formes indéterminées. 14. Suite s exprimant avec des racines carrées. 15. Calculs de ites. 16. Un encadrement utile. 6

7 RÉFÉRENCES RÉFÉRENCES Remarque : Si q = 1, la suite de terme général q n ) est constante, égale à 1. Elle converge naturellement vers Soit u n ) la suite géométrique de premier terme u 0 = 3 et de raison q = 1 2. On a u n = 3 ) 1 n. 2 Comme 1 < 1 2 < 1, 1 n n 2) = 0 n u n = Soit u n ) la suite géométrique de premier terme u 0 = 1 et de raison q = 3. On a u n = 3 n. Comme 3 > 1, n 3 n = n u n =. 3. Soit u n ) la suite géométrique de premier terme u 0 = 1 et de raison q = 2. On a u n = 2) n. Comme 2 1, la suite u n ) n a pas de ite. Exercices : 44 page 42 et 18 page , 26, 28 page page 36 et 87, 88 page page page page page [TransMath] Références [TransMath] transmath Term S, programme 2012 Nathan) 2, 3, 4, 5, 6, Calculs de ites. 18. Somme de termes. 19. Suites arithmético-géométriques. 20. Algorithmique. Tableur. 21. Restitution organisée des connaissances. 22. Type BAC. 23. Pr aller plus loin. 7

Suites : Rappels, récurrence et limites

Suites : Rappels, récurrence et limites Suites : Rappels, récurrence et limites Christophe ROSSIGNOL Année scolaire 015/01 Table des matières 1 Généralités sur les suites 1.1 Modes de génération d une suite....................................

Plus en détail

Limites Comportement asymptotique

Limites Comportement asymptotique Limites Comportement asymptotique Christophe ROSSIGNOL Année scolaire 2009/200 Table des matières Limite d une fonction en, en 3. Limite infinie en, en...................................... 3.2 Limite

Plus en détail

Limites Droites asymptotes

Limites Droites asymptotes Limites Droites asymptotes Christophe ROSSIGNOL Année scolaire 2009/200 Table des matières Rappels : Limites des fonctions usuelles 2 2 Opérations sur les ites 2 2. Somme de deux fonctions........................................

Plus en détail

Continuité Compléments de dérivation

Continuité Compléments de dérivation Continuité Compléments de dérivation Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Notion de continuité 1.1 Limite finie en un réel a......................................... 1. Définitions

Plus en détail

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme :

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme : Chapitre I : Raisonnement par récurrence et comportement des suites Extrait du programme : 1 I Rappels sur les suites Il existe deux façons de définir une suite : 1 Formule explicite Il existe une fonction

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques 0 - - de terminale S Suites s LPO de Chirongui 20 mai 2016 1 - Introduction- Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel

Plus en détail

TS Limites de suites Cours. Exemples : Ex 3 page 45 ; suite (2n²)+algo dépassement. I. Définitions 1. Limite infinie. 2. Limite finie.

TS Limites de suites Cours. Exemples : Ex 3 page 45 ; suite (2n²)+algo dépassement. I. Définitions 1. Limite infinie. 2. Limite finie. TS Limites de suites Cours I. Définitions 1. Limite infinie Définition Dire qu une suite (u n ) a pour limite + signifie que tout intervalle ouvert de la forme [A ; + [ contient tous les termes de la suite

Plus en détail

Fonctions : Limites et asymptotes

Fonctions : Limites et asymptotes Fonctions : Limites et asymptotes Christophe ROSSIGNOL Année scolaire 205/206 Table des matières Limite à l infini 3. Limite infinie en, en...................................... 3.2 Limite finie en, en

Plus en détail

Terminale S Suites numériques

Terminale S Suites numériques Terminale S Suites numériques Raisonnement par récurrence. Introduction En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel n. Par exemple, la n(n + ) somme des entiers naturels

Plus en détail

LIMITES DE SUITES ET DE FONCTIONS

LIMITES DE SUITES ET DE FONCTIONS LIMITES DE SUITES ET DE FONCTIONS I. Définitions des ites en l infini. - Limite infinie. a) Limite de suites. Définition : On dit que la suite (U n ) tend vers + lorsque pour tout réel A, l intervalle

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS LIMITES DE FONCTIONS I- Limites à l infini. Limites infinies Définition Soit f une fonction définie sur un intervalle ]A; + [. On dit que f a pour ite + quand x tend vers + lorsque pour tout réel M, fx)

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

Suites numériques. Christophe ROSSIGNOL. Année scolaire 2012/2013

Suites numériques. Christophe ROSSIGNOL. Année scolaire 2012/2013 Suites numériques Christophe ROSSIGNOL Année scolaire 01/013 Table des matières 1 Suites géométriques : Rappels et compléments 1.1 Définition, exemples........................................... 1. Expression

Plus en détail

Chapitre I : LES SUITES

Chapitre I : LES SUITES Chapitre I : LES SUITES I- Généralités sur les suites 1) Définition et notations Définition 1 : 1) Définir une suite par une formule explicite, c est donner une relation entre le terme et l entier, pour

Plus en détail

Limites de suites. Révisions

Limites de suites. Révisions Limites de suites Révisions Soit ( ) une suite définie pour tout n N par = n 2 + n Exprimer en fonction de n : a b + c + 2 La suite ( ) est-elle arithmétique? 3 Quel est le sens de variation de ( )? 2

Plus en détail

Limites de fonctions

Limites de fonctions DERNIÈRE IMPRESSIN LE 9 octobre 204 à 9:32 Limites de fonctions Table des matières Limite finie ou infinie à l infini 2. Limite finie à l infini........................... 2.2 Limite infinie à l infini..........................

Plus en détail

Chapitre II : Limites de fonctions et continuité

Chapitre II : Limites de fonctions et continuité Chapitre II : Limites de fonctions et continuité Cité Scolaire Gambetta Année scolaire 0-03 I Limite à l infini : ) Limite finie en Définition : Dire qu une fonction f a pour limite le réel l en signifie

Plus en détail

Suites. 1.1 Définition Variations Représentation graphique d une suite Suite arithmétiques et géométriques...

Suites. 1.1 Définition Variations Représentation graphique d une suite Suite arithmétiques et géométriques... Lycée Paul Doumer 3-4 TS- Cours Suites Contents Généralités. Définition........................................ Variations........................................3 Représentation graphique d une suite.........................4

Plus en détail

Continuité sur un intervalle

Continuité sur un intervalle Continuité sur un intervalle Christophe ROSSIGNOL Année scolaire 2012/2013 Table des matières 1 Continuité : une approche graphique 2 2 Théorème des valeurs intermédiaires 3 2.1 Cas des fonctions continues.......................................

Plus en détail

Limite de suites. I Introduction 1. II Définitions 1 1 Limite finie Limite infinie III Limites usuelles 2

Limite de suites. I Introduction 1. II Définitions 1 1 Limite finie Limite infinie III Limites usuelles 2 Limite de suites Table des matières I Introduction II s Limite finie............................................ 2 Limite infinie.......................................... III Limites usuelles 2 IV Opérations

Plus en détail

Inégalités Valeur absolue

Inégalités Valeur absolue Inégalités Valeur absolue Christophe ROSSIGNOL Année scolaire 2008/2009 Table des matières 1 Intervalles de R 2 2 Comparaison de deux réels. 3 2.1 Inégalités.................................................

Plus en détail

Limites : Résumé de cours et méthodes 1 Limite d une fonction en + et en

Limites : Résumé de cours et méthodes 1 Limite d une fonction en + et en - Limite infinie en + et en Limites : Résumé de cours et méthodes Limite d une fonction en + et en Soit f une fonction définie sur un intervalle admettant + comme borne supérieure.on dit que f a pour ite

Plus en détail

Chapitre 2 : Limites de suites

Chapitre 2 : Limites de suites Chapitre 2 : Limites de suites I Suite convergeant un réel l Définition Soient (u n ) une suite numérique et l un nombre réel. On dit que (u n ) admet pour limite l (ou converge vers l) lorsque tout intervalle

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TS - Chap2 1 Limites de suites et de fonctions 1 Limite d une suite u est une suite notée aussi (u n ) ; u n est son terme général ou terme d indice n. 1.1 Limite finie Soit l un nombre réel. Dire que

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS T ale S LIMITES DE FONCTIONS Analyse - Chapitre 6 Table des matières I Limite d une fonction à l infini 2 I Limite finie à l infini........................................ 2 I a..........................................

Plus en détail

TS Limites de fonctions Cours

TS Limites de fonctions Cours TS Limites de fonctions Cours I. Limites à l infini. Limite infinie en + ( 3 ) Définition Une fonction f a pour limite + en + si pour toute valeur réelle A, on a f() > A pour assez grand c est à dire pour

Plus en détail

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12 Terminale S Chapitre : Fonctions, variations et ites Page sur I) Dérivation Ce que dit le programme : Nouveautés par rapport à la première : Dérivée de la composée et écriture différentielle (pour la physique)

Plus en détail

Mathématiques 11ème Sciences Production de Mathematikos Votre Ticket pour l Excellence en Maths. Exemple. Exemple

Mathématiques 11ème Sciences Production de Mathematikos Votre Ticket pour l Excellence en Maths. Exemple. Exemple Classe : 11 ème Sciences CHAPITRE 5 SUITES NUMÉRIQUES Domaine : Sciences, Mathématiques et Technologies Compétences : Résoudre une situation problème Composantes : Diagnostiquer la situation problème,

Plus en détail

Cours de terminale S - Généralités sur les fonctions

Cours de terminale S - Généralités sur les fonctions les fonctions LPO de Chirongui - Exercices : Savoir Faire (livre)- Déterminer une ite Interprétation graphique Livre Indice BORDAS - Page 45 Exercice 34, 35, 36 et 37 page 56 - Limite finie à l infini

Plus en détail

Etude de limites de suites monotones

Etude de limites de suites monotones Etude de ites de suites monotones I) Définition On dit que la suite ( ) est majorée lorsqu il existe un nombre réel M tel que, pour tout entier naturel n, M. On dit que M est un majorant de la suite (

Plus en détail

Chapitre 6 Comportement asymptotique et limites de fonctions Limites de suites

Chapitre 6 Comportement asymptotique et limites de fonctions Limites de suites Chapitre 6 Comportement asymptotique et ites de fonctions Limites de suites 1. Limite d une fonction en ou en. 1.1 Limite infinie d une fonction en ou en Cadre : Soit I=]a ; [, où a est un réel fixé (NB

Plus en détail

TS Rappels sur les suites Cours. Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m

TS Rappels sur les suites Cours. Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m 1 TS Rappels sur les suites Cours I. Définitions Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m L image u(n) de l entier n est notée

Plus en détail

Limites et asymptotes

Limites et asymptotes Chapitre 3 Limites et asymptotes Sommaire 3. Définitions, propriétés........................... 87 3.. Limite finie en un point........................... 87 3..2 Limite infinie en un point..........................

Plus en détail

Exemple :La fonction définie par f (x) 2 1 x

Exemple :La fonction définie par f (x) 2 1 x LIMITES de FONCTIONS I. Limite d'une fonction à l'infini 1) Limite finie à l'infini Définition : Soit f une fonction définie sur un intervalle de la forme [ ; + [. On dit que la fonction f admet pr ite

Plus en détail

Limites de fonctions. I) Limite et opérations. 1) Limite d une somme. 2) Limite d un produit. 3) Limite d un quotient. Si g a pour limite: l + +

Limites de fonctions. I) Limite et opérations. 1) Limite d une somme. 2) Limite d un produit. 3) Limite d un quotient. Si g a pour limite: l + + Limites de fonctions I) Limite et opérations ) Limite d une somme Si f a pour l l + + Si g a pour l + + Alors f(x) + g(x) a pour l + l + + 2) Limite d un produit Si f a pour l l > 0 l < 0 ± 0 Si g a pour

Plus en détail

Chapitre II : Limite de fonctions

Chapitre II : Limite de fonctions Chapitre II : Limite de fonctions Etrait du programme : I Limite d une fonction en l infini Limite finie en + Définition f () = L si tout intervalle ouvert contenant L contient toutes les valeurs f ()

Plus en détail

Résumé du cours sur les suites.

Résumé du cours sur les suites. Résumé du cours sur les suites. 1 Suites numériques réelles et principe de récurrence 1.1 Les deux façons de définir une suite numérique réelle Définition. On note n 0 un entier naturel (en général n 0

Plus en détail

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 11

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 11 Terminale S Chapitre : Fonctions, variations et ites Page sur I) Dérivation ) Définition et interprétation géométrique : Soient f une fonction définie sur un intervalle I de R et a I. La fonction est dérivable

Plus en détail

Étude de fonctions Limites et continuité

Étude de fonctions Limites et continuité Chapitre 3 Term.S Étude de fonctions Limites et continuité Ce que dit le programme : CONTENUS Limites de fonctions Limite finie ou infinie d une fonction à l infini. Limite infinie d une fonction en un

Plus en détail

Terminale ES Rappels sur les suites I Qu est-ce qu une suite? Définition : liste ordonnée de nombres réels,

Terminale ES Rappels sur les suites I Qu est-ce qu une suite? Définition : liste ordonnée de nombres réels, I Qu est-ce qu une suite? Définition : Rappels sur les suites Une suite de nombres réels est une liste ordonnée de nombres réels, finie ou infinie. On note ( ) la suite u 0, u 1, u 2,..,, +1, Le nombre

Plus en détail

Limites et continuité

Limites et continuité 1 Limites et continuité Table des matières 1 Limites - Rappels de première 2 1.1 Définition................................. 2 1.2 Asymptotes parallèles aux axes..................... 3 1.3 Limites des

Plus en détail

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2 TS Suites récurrentes Exercices Exercice. Soit u la suite définie par u 0 = 3 et pour tout entier n, + = 4un +.. Démontrer que pour tout entier n, >.. On définit la suite v pour n N par v n = un. Montrer

Plus en détail

Interprétation graphique ] [ + tous les termes de la suite à partir d un certain rang appartiennent à cet intervalle ]a;b[ b) Limite infinie

Interprétation graphique ] [ + tous les termes de la suite à partir d un certain rang appartiennent à cet intervalle ]a;b[ b) Limite infinie SUITES NUMERIQUES 2 ème partie I- Limite d une suite a) Limite finie Définition Soit (U n ) une suite de nombres réels. On dit que la suite (U n ) admet pour limite, si tout intervalle ]a ;b[ contenant

Plus en détail

Suites numériques : Définitions, suites arithmétiques et géométriques

Suites numériques : Définitions, suites arithmétiques et géométriques Suites numériques : Définitions, suites arithmétiques et géométriques Christophe ROSSIGNOL Année scolaire 013/014 Table des matières 1 Notion de suite numérique 1.1 Définition.................................................

Plus en détail

Convergence des suites

Convergence des suites Convergence des suites Cours maths Terminale S Dans ce module consacré à l étude de la convergence d une suite, on commence par redéfinir rigoureusement la notion de limite finie d une suite. Ensuite,

Plus en détail

(exercice : calculer u 2 puis u 5 )

(exercice : calculer u 2 puis u 5 ) Suites Prérequis : Division euclidienne Soient a et b deux entiers avec b 0. Il existe un unique couple (q, r) Z N tel que a = q b + r et 0 r < b. q s appelle le quotient de la division enclidienne de

Plus en détail

Cours de mathématiques (Terminale S)

Cours de mathématiques (Terminale S) Terminale Scientifique (S) : Cours de mathématiques (Terminale S) I. Chapitre 01 : Les suites 1. Etude globale d une suite A. Les suites majorées, minorées, bornées La suite ( ) est majorée si et seulement

Plus en détail

Fonctions puissances Croissances comparées

Fonctions puissances Croissances comparées Fonctions puissances Croissances comparées Christophe ROSSIGNOL Année scolaire 200/20 Table des matières Puissances réelles 2. Définition Premières propriétés.................................... 2.2 Propriétés

Plus en détail

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie Finance et Gestion L1-S1 : MATH101 : Pratique des Fonctions numériques Notes de cours : Chapitre II : Limites Notations

Plus en détail

TERMINALE S Chapitre: LIMITES DE FONCTIONS

TERMINALE S Chapitre: LIMITES DE FONCTIONS 1. Limites à l infini Limite réelle ( ou finie) en + et - Dire qu une fonction f a pour limite le nombre l en + signifie que tout intervalle ouvert de centre l contient toutes les valeurs f() prises pour

Plus en détail

Documents pour l étudiant : Chapitre II : Limites

Documents pour l étudiant : Chapitre II : Limites 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Gestion MATH101 : Pratique des Fonctions numériques Documents pour l étudiant : Chapitre II : Limites Notations : Dans

Plus en détail

FONCTIONS : Limites Continuité Dérivée Trigonométrie

FONCTIONS : Limites Continuité Dérivée Trigonométrie FONCTIONS : Limites Continuité Dérivée Trigonométrie I) PRELIMINAIRES Voir activité II) LIMITE D UNE FONCTION EN + et ) Limite infinie en + et Soit f une fonction définie sur un intervalle de la forme

Plus en détail

Suites. 1 Suite géométrique. Chapitre I. 1.1 Définition. 1.2 Propriétés

Suites. 1 Suite géométrique. Chapitre I. 1.1 Définition. 1.2 Propriétés Chapitre I Suites Exercices 8, 9, 0, 3, 4, 6, 3, 3, 34 page 34 pour revoir les notions de première sur les suites (récurrence, sens de variation...) Suite géométrique. Définition Définition Une suite u

Plus en détail

Comportement asymptotique d une fonction

Comportement asymptotique d une fonction Chapitre 5 Comportement asmptotique d une fonction Programme Contenus Capacités attendues Commentaires Limites de fonctions Limite finie ou infinie d une fonction à l infini. Limite infinie d une fonction

Plus en détail

Suites arithmétiques Suites géométriques

Suites arithmétiques Suites géométriques Suites arithmétiques Suites géométriques Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Suites arithmétiques 2 1.1 Définition, exemples........................................... 2

Plus en détail

Chapitre 3 : Limites de fonctions Terminale ES 2, , Y. Angeli

Chapitre 3 : Limites de fonctions Terminale ES 2, , Y. Angeli Chapitre 3 : Limites de fonctions -28-09-- Terminale ES 2, 20-202, Y. Angeli. Notion de ite : les différentes situations. Le plan est muni d un repère orthogonal (; ı, j). Dans ces illustrations, a et

Plus en détail

Giuseppe Peano ( )

Giuseppe Peano ( ) Giuseppe Peano (1858-1932) Mathématicien et philosophe italien, il est l'un des premiers à avoir compris l'importance de fonder les mathématiques sur quelques axiomes précis, et d'en déduire ensuite théorèmes...

Plus en détail

Continuité et limites

Continuité et limites Continuité et ites Nous entamons à présent le programme de Terminale Economique et Sociale. Cette année c est le bac! Alors Concentrezvous bien sur chacun des chapitre et tacher de tout retenir. Nous avions

Plus en détail

Fonctions dérivées Applications

Fonctions dérivées Applications Fonctions dériées Applications Christophe ROSSIGNOL Année scolaire 04/05 Table des matières Quelques rappels. Nombre dérié Tangente......................................... Notion de fonction dériée.........................................3

Plus en détail

Fonctions Affines Problèmes du premier degré

Fonctions Affines Problèmes du premier degré Fonctions Affines Problèmes du premier degré Christophe ROSSIGNOL Année scolaire 2016/2017 Table des matières 1 Fonctions Affines 2 1.1 Définition Représentation graphique.................................

Plus en détail

Fonctions exponentielles

Fonctions exponentielles Fonctions exponentielles Christophe ROSSIGNOL Année scolaire 2012/2013 Table des matières 1 Fonctions x q x, avec q > 0 2 1.1 Fonction exponentielle de base q.................................... 2 1.2

Plus en détail

Probabilités conditionnelles

Probabilités conditionnelles Probabilités conditionnelles Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Probabilités conditionnelles 2 1.1 Un exemple pour comprendre...................................... 2 1.2

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions Limites de suites et de fonctions Le chapitre précédent traitait des suites numériques. On avait, en particulier, dit qu elles avaient des variations tout comme les fonctions. Il est rare de devoir calculer

Plus en détail

Les suites - Partie II : Les limites

Les suites - Partie II : Les limites Terminale S Les suites - Partie II : Les limites 1.0 OLIVIER LECLUSE Juillet 2013 Table des matières 3 Limites et comparaison I - Limites et comparaison 5 A. Théorème d'encadrement dit "des gendarmes"...5

Plus en détail

CHAPITRE 4 : LIMITES

CHAPITRE 4 : LIMITES CHAPITRE 4 : LIMITES La lettre grecque α désigne soit +, soit, soit a un réel ini ( a R. LIMITES Le plan est muni d un repère ( O; i ; j, et on note C la courbe représentative de la onction dans ce repère..

Plus en détail

TERMINALE S Chapitre 2 : LIMITES DE FONCTIONS

TERMINALE S Chapitre 2 : LIMITES DE FONCTIONS SOMMAIRE LIMITES DE FONCTIONS *. 1. LIMITES D UNE FONCTION... 2 LIMITES A L INFINI... 2 LIMITE REELLE ( OU FINIE) EN + ET -... 2 LIMITE INFINIE EN + ET -... 2 LIMITES EN UN REEL A... 3 LIMITE INFINIE EN

Plus en détail

Fonctions convexes. Christophe ROSSIGNOL. Année scolaire 2012/2013

Fonctions convexes. Christophe ROSSIGNOL. Année scolaire 2012/2013 Fonctions convexes Christophe ROSSIGNOL Année scolaire 2012/2013 Table des matières 1 Convexité Point d inflexion 2 1.1 Notion de convexité, de concavité.................................... 2 1.2 Point

Plus en détail

Suites numériques. Exemples élémentaires de suites

Suites numériques. Exemples élémentaires de suites MTA - ch5 Page 1/12 Suites numériques Notion de suite : Une suite numérique est une application de N (ou parfois de N ) à valeurs dans R ou dans C. La suite u : N C est notée de plusieurs façons : n u(n)

Plus en détail

TERMINALE S Chapitre 1 : Les suites

TERMINALE S Chapitre 1 : Les suites Généralités 1. Mode de génération ( ) ( ) La La ( ) définie par ( ) définie par 2. Monotonie REMARQUE5 Si une suite ( ) est définie de maniére explicite telle que ( ) suivent celles de f =f(n) pour tout

Plus en détail

Cours de Terminale S / Fonctions : limites et continuité. E. Dostal

Cours de Terminale S / Fonctions : limites et continuité. E. Dostal Cours de Terminale S / Fonctions : ites et continuité E. Dostal Août 204 Table des matières 2 Fonctions : ites et continuité 2 2. Limites.............................................. 2 2.2 Théorèmes.............................................

Plus en détail

Université MONTPELLIER 3 UFR 4. Notes de Cours. Mathématiques M1 MRHDS Laurent Piccinini. version du 5 octobre 2011.

Université MONTPELLIER 3 UFR 4. Notes de Cours. Mathématiques M1 MRHDS Laurent Piccinini. version du 5 octobre 2011. Université MONTPELLIER 3 UFR 4 Notes de Cours Mathématiques M1 MRHDS 2011-2012 Laurent Piccinini version du 5 octobre 2011. M1 MRHDS 1 Table des matières I Les suites numériques 2 I.1 Généralités..............................................

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de u n et v n Déterminer si possible,

Plus en détail

Généralités sur les fonctions

Généralités sur les fonctions Généralités sur les fonctions Limite d une fonction à l infini. Limite finie à l infini Définition : Dire qu une fonction f a pour ite le nombre réel l en + signifie que tout intervalle ouvert contenant

Plus en détail

Exercices type bac sur les suites.

Exercices type bac sur les suites. Exercices type bac sur les suites Corrigés NB : On ne donne dans ce document que des indices, la preuve complète reste à faire Exercice D après sujet du baccalauréat Centres étrangers, juin 003 On définit,

Plus en détail

RAISONNEMENT PAR RECURRENCE

RAISONNEMENT PAR RECURRENCE Exemple: RAISONNEMENT PAR RECURRENCE Montrons par récurrence que pour tout n N *, P (n) : i=n i = 1 + + 3 +...+ ( n -1) + n = n n1 n n1 Initialisation : pour n = 1 i =1 et = 111 =1 donc P(1) est vraie.

Plus en détail

Suites de nombres réels

Suites de nombres réels Suites de nombres réels I Généralités 1.1 propriété vraie à partir d un certain rang Définition 1.1 On dit qu une propriété P (n) est vraie à partir d un certain rang N N si et seulement s il existe un

Plus en détail

Chapitre 1 : Les suites

Chapitre 1 : Les suites Chapitre : Les suites I. Exercices supplémentaires Partie A : Récurrence Exercice La suite est définie par et +2+ pour tout entier naturel. Démontrer par récurrence que pour tout. La suite est définie

Plus en détail

La continuité. signifie lim x a

La continuité. signifie lim x a La continuité I Définitions et exemples. 1 Continuité en a D f Définition La fonction f est continue en a D f signifie x a f x = f a D'après la définition de la ite en TS, il ne peut y avoir que deux cas,

Plus en détail

Généralités sur les suites : Ce module revient sur le programme de première : les différents types de suites,

Généralités sur les suites : Ce module revient sur le programme de première : les différents types de suites, Généralités sur les suites Cours maths Terminale S Généralités sur les suites : Ce module revient sur le programme de première : les différents types de suites, la monotonie, la convergence des suites,

Plus en détail

1 ) Limite d une somme. Exemples : f x. Si lim f x 2. x a. Si lim f x et lim g x. Si lim f. et lim g x x a. 2 ) Limite d un produit. x a. x a.

1 ) Limite d une somme. Exemples : f x. Si lim f x 2. x a. Si lim f x et lim g x. Si lim f. et lim g x x a. 2 ) Limite d un produit. x a. x a. ère S Limites de fonctions () Calculs de ites Les calculs de ites déduites des ites des fonctions de référence sont codifiés par des règles de calcul précises. Propriétés des ites et calculs de ites Le

Plus en détail

Inégalités Valeur absolue

Inégalités Valeur absolue Inégalités Valeur absolue Année scolaire 2006/2007 Table des matières 1 Intervalles de R 2 2 Comparaison de deux réels. 3 2.1 Différentes méthodes de comparaison.................................. 3 2.2

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Généralités 1.1 Définitions................................................. 1. Règles de calcul dans C.........................................

Plus en détail

Terminale S Chapitre 2 «Fonctions : limites, continuité et dérivabilité» Page 1. si pour tout M > 0, on a f x < M "pour x assez grand"

Terminale S Chapitre 2 «Fonctions : limites, continuité et dérivabilité» Page 1. si pour tout M > 0, on a f x < M pour x assez grand Terminale S Capitre «Fonctions : ites, continuité et dérivabilité» Page I) Limites ) Limites à l infini a) Limite finie Définition : Etant donnée une fonction f et un réel α, on dira quelle tend vers α

Plus en détail

Suites. Chapitre 2. 1 Généralités sur les suites. Sommaire. 1.1 Définition d une suite. 1.2 Suites arithmétiques et suites géométriques

Suites. Chapitre 2. 1 Généralités sur les suites. Sommaire. 1.1 Définition d une suite. 1.2 Suites arithmétiques et suites géométriques Chapitre 2 Suites Sommaire 1 Généralités sur les suites....................................... 1.1 Définition d une suite...................................... 1.2 Suites arithmétiques et suites géométriques..........................

Plus en détail

3 Limites de suites. Manuel Repères p.12.

3 Limites de suites. Manuel Repères p.12. 3 Limites de suites Manuel Repères p.12. Objectifs : Comprendre les notions de suites divergentes, convergentes Savoir déterminer un rang à partir duquel les termes d une suite dépassent un certain seuil

Plus en détail

SUITE. Il existe deux grands moyens de dénir une suite : 2. Représentation graphique,variation, suite majorée, minorée

SUITE. Il existe deux grands moyens de dénir une suite : 2. Représentation graphique,variation, suite majorée, minorée SUITE I ) Rappels et dénition 1. N est l'ensemble des entiers naturels : 0,1,2... Une suite numérique est une fonction de N (ou une partie de N) dans R u : N R n u n Exemple : suite de Fibonnacci : 1,

Plus en détail

Limites à l infini d une fonction

Limites à l infini d une fonction 9 Limites à l infini d une fonction On garde les notations du chapitre précédent en supposant ici que a = ou a = + est adhérent à l ensemble I, ce qui signifie que : ou : m R, ], m[ I M R, ]M, + [ I ce

Plus en détail

Suites Réelles. Aptitudes à développer :

Suites Réelles. Aptitudes à développer : Suites Réelles Aptitudes à développer : Suites * Reconnaître qu un réel est un majorant ou un minorant d une suite du programme. * Etudier les variations d une suite du programme. * Représenter graphiquement

Plus en détail

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6.

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6. Exercice 1 : Dire en justifiant si les suites (u n ) définies ci-dessous sont arithmétiques, géométriques ou ni l'un ni l'autre. Dans le cas où elles sont arithmétiques ou géométriques, préciser le premier

Plus en détail

5 Limites de fonctions

5 Limites de fonctions 5 Limites de fonctions Manuel Repères p.54. Objectifs : Comprendre les notions de ite finie ou infinie d une fonction, en un point ou à l infini Savoir déterminer la ite d une somme, d un produit, d un

Plus en détail

2 Fonctions : limites et continuité

2 Fonctions : limites et continuité capitre Fonctions : ites et continuité Activités (page ) ACTIVITÉ Dans le cas, f est continue sur [ ; ] puisqu elle est d un seul morceau. Dans le cas, f est discontinue en, donc n est pas continue sur

Plus en détail

I. Les fonctions de référence

I. Les fonctions de référence I. Les fonctions de référence. Fonctions affines, affines par morceau Une fonction affine est croissante lorsque., décroissante lorsque... Sa représentation graphique est la droite d équation y = a b,

Plus en détail

Chapitre 3. Suites récurrentes

Chapitre 3. Suites récurrentes Chapitre 3 Suites récurrentes 3.1 Suites numériques Définition 3.1 On appelle suite de terme général u n et on note (u n ) n 0 ou plus simplement u la liste ordonnée des nombres u 0, u 1, u 2, u 3,....

Plus en détail

LIMITES ET CONTINUITE

LIMITES ET CONTINUITE LIMITES ET CONTINUITE I) LIMITES A L'INFINI ) Limite infinie à l'infini Si tout intervalle ]A;+ [ contient tous les f(x) pour x assez grand, on dit que f a pour ite + en +. on écrit f x = f x = A > 0,

Plus en détail

Limites et comportement asymptotique

Limites et comportement asymptotique Limites et comportement asymptotique T.S. Introduction : Notion intuitive de ites (finies et infinies, en un point et à l infini) sur des exemples. Étudier la ite de f (x) [qui se lit comme toujours sur

Plus en détail

soit confondu avec son cercle circonscrit C (par définition un polygone est un polygone et non pas un cercle). Or, si l on trace P

soit confondu avec son cercle circonscrit C (par définition un polygone est un polygone et non pas un cercle). Or, si l on trace P Limite d une fonction Approche intuitive de la notion de limite Dans ce chapitre, nous avons besoin d un outil mathématique appelé «Limite» qui est une notion fort nécessaire pour la compréhension et la

Plus en détail

Principe d une démonstration par récurrence :

Principe d une démonstration par récurrence : Chapitre Suites 1 Démonstration par récurrence Exemples introductif : Imaginons que des ouvriers construisant un immeuble aient toutes les instructions nécessaires pour construire un étage d immeuble sur

Plus en détail

Cours d Analyse I : les réels et les fonctions

Cours d Analyse I : les réels et les fonctions Introduction à R Suites numériques Cours d Analyse I : les réels et les fonctions Université Lyon 1 Institut Camille Jordan CNRS UMR 5208 FRANCE Automne 2014 - Licence L1 Introduction à R Suites numériques

Plus en détail

MPSI 2 : DL 03. pour le 12 décembre 2003

MPSI 2 : DL 03. pour le 12 décembre 2003 MPSI : DL 03 pour le décembre 003 Problème L objet du problème est de calculer eplicitement la limite de la suite des moyennes arithmétiques-géométriques pour certaines valeurs initiales. On considère

Plus en détail

Cours sur les limites de fonctions et la continuité M. HARCHY TS 2 -Lycée Agora-2015/2016

Cours sur les limites de fonctions et la continuité M. HARCHY TS 2 -Lycée Agora-2015/2016 Cours sur les limites de fonctions et la continuité M. HARCHY TS 2 -Lycée Agora-205/206 Limite d une fonction. Limite à l infini.. Limite finie d une fonction à l infini Définition Soit f une fonction

Plus en détail