Leçon 3. CHAMP MAGNETIQUE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Leçon 3. CHAMP MAGNETIQUE"

Transcription

1 Leçon 3. CAMP MAGNETQUE Exercice n 1 Solénoïdes 1. Soit un premier solénoïde S 1 de longueur l = 50 cm et comportant 200 spires. a) Quel est le champ magnétique produit au centre de ce solénoïde lorsqu'il est parcouru par un courant électrique d'intensité? Faire un schéma clair en figurant le sens du courant et le sens du champ magnétique. Perméabilité du vide.. µ 0 = 4π.10-7 S.. b) On place une petite aiguille aimantée à l'intérieur de S 1 au voisinage de son centre. L axe de S 1 est disposé horizontalement et perpendiculairement au plan du méridien magnétique. Calculer l'intensité l du courant qu'il faut faire passer dans S 1 pour que l'aiguille aimantée dévie de 30. Composante horizontale du champ magnétique terrestre : = 2, T. 2. Soit un second solénoïde S 2 comportant 80 spires par mètre de longueur. Les deux solénoïdes S 1 et S 2 sont disposés de manière à avoir le même axe, cet axe commun étant perpendiculaire au méridien magnétique (voir figure). Les deux solénoïdes sont branchés en série dans un circuit électrique et on constate que l'aiguille aimantée dévie de 45. Déterminer la valeur de l'intensité du courant qui les traverse; on trouvera deux solutions qui devront être interprétées. 1. a. Lorsque le solénoïde est parcouru par un courant, le champ magnétique au centre du solénoïde est parallèle à l axe du solénoïde, son sens dépend du sens du courant et est donné par la règle de la main droite, ou du bonhomme d Ampère, et sa valeur est : = µ N 0 ( en l teslas, l en mètres, en ampères) r r r 1. b. L aiguille aimantée prend la direction du champ résultant : t = + elle tourne d un angle α : tan α = = tan α µ N 0 = tan α. l 16

2 tanα.l = α = 30 ; = 2, T ; l = 0,50 m ; N = 200 spires = 23 ma µ N 0 α t 2. Les 2 solénoïdes ont le même axe : les champs magnétiques 1 et 2 créés par chacun des solénoïdes sont colinéaires, de même sens ou de sens contraire selon le sens du courant. r r r Champ résultant : = Même sens du courant dans S 1 et dans S 2 : = Sens contraire : = L aiguille tourne d un angle α : tan α = n 1 > n 2 : le champ résultant a toujours le sens de 1 : = 1 ± 2 N 1 = µ 0 n 1 = N n 1 = 400 spires/m l l 2 = µ 0 n 2 n 2 = 80 spires/m = µ 0 ( n 1 ± n 2 ) Application numérique : = tan α tan 45 2,0.10 = 7 4π.10 5 (400 ± 80) = tanα µ (n ± n ) Pour que l aiguille tourne de 45 : ' 1 = 33 ma si = et ' 2 = 50 ma si =

3 Exercice n 2 -Les figures 1,3,4, de l'exercice sont vues du dessus. Les bobines de elmholtz sont deux bobines identiques, plates, de même axe, séparées d'une distance égale à leur rayon et parcourues par des courants de même intensité et de même sens (figure 1). On donne la composante horizontale du champ terrestre =2, T Dans la question 1, le champ terrestre est négligeable 1 a) ndiquer sur la figure 1 quelques lignes de champ magnétique, dans l'espace situé entre les bobines et dans le voisinage extérieur immédiat. Orienter les lignes de champ, positionner sur l'une d'elles une petite aiguille aimantée dont on indiquera les pôles. (On ne demande pas de justifier) b) On fait varier l'intensité du courant dans les bobines. On mesure la valeur du champ magnétique entre les bobines. On obtient le graphe =f ( ) ( figure 2 ) -D'après le graphe, quelle est la relation entre et, littéralement et numériquement? 2. Dans les questions 2 et 3, le champ terrestre n'est pas négligeable Figure 3 On place les 2 bobines de elmholtz dans le plan du méridien magnétique. En l'absence de courant dans les bobines, une aiguille aimantée s'oriente comme l'indique la figure 3 Lorsque les bobines sont parcourues par un courant, le pôle Nord de l'aiguille tourne d'un angle α dans le sens indiqué par la flèche. Expliquer la rotation de l'aiguille, compléter la figure 3 et indiquer le sens du courant En déduire la relation littérale entre champ créé par le courant, et α. 3) Les 2 bobines sont maintenant placées de sorte que leur plan soit perpendiculaire au plan du méridien magnétique ( figure 4 ) En l'absence de courant dans les bobines, une aiguille aimantée s'oriente comme l'indique la figure 4. Lorsque les bobines sont parcourues par un courant, l'aiguille tourne de 180. Expliquer la rotation de l'aiguille, compléter la figure 4 et indiquer le sens du courant. -En déduire la valeur minimum de et de pour que l'aiguille tourne de

4 Figure 1 Figure 2 Figure 3 Figure 4 1. a) N S R R b) Le graphe = f() est une droite passant par l origine, donc est proportionnel à : = k Calcul du coefficient directeur k : 19

5 soit un point A (5,0 A ; 4, T) k = en teslas et en ampères. A A k = 8, T.A -1 = En l absence de courant dans les bobines, l aiguille s oriente dans le plan du méridien magnétique, suivant v composante horizontale du champ magnétique terrestre, v ayant le sens SN de l aiguille. Le passage du courant dans les bobines crée un champ colinéaire à l axe des bobines : l aiguille s oriente alors suivant : T = + en déduit le sens du courant (d après la règle de la main droite). et v étant perpendiculaires, on en déduit d après le schéma : tan v. Le sens de rotation donne le sens de. On α = Figure 3 complétée α r 3. En l absence de courant, l aiguille s oriente, comme dans 2, suivant v. Le champ créé r par le passage du courant dans les bobines étant colinéaire à l axe des bobines, et v sont colinéaires. L aiguille s oriente suivant T = + v. r - si et v sont de même sens, l aiguille ne tourne pas. r - si et v sont de sens contraire, l aiguille ne tourne de 180 que si > > 2, T. Du sens de, inverse du sens de v, on déduit le sens de. Valeur minimale de : d après la 1 ère 5 question, = 2.10 = = 2, A k Pour que l aiguille tourne de 180, il faut > 25 ma R S N Figure 4 complétée 20

6 Exercice n 3 à caractère expérimental Le but des expériences proposées est d' étudier les caractéristiques du champ magnétique créé par une bobine longue (solénoïde) parcourue par un courant constant. Certaines valeurs numériques ne sont données qu'à titre indicatif. 1. On réalise le spectre magnétique d'un solénoïde alimenté par un courant constant d'intensité. Ce spectre, réalisé avec de la limaille de fer, est visible sur la figure 1 a). ndiquer, sur la figure1 le sens du courant, le vecteur champ magnétique 0 créé par ce courant au centre 0 du solénoïde, les pôles magnétiques de la petite aiguille aimantée placée à l entrée du solénoïde, et orienter les lignes de champ magnétique à l intérieur et à l extérieur du solénoïde. b). Quelles informations qualitatives peut-on tirer de l'observation de ce spectre, quant à la nature du champ magnétique à l'intérieur et à l'extérieur du solénoïde? Justifier. 2. On mesure, au moyen d'un teslamètre convenablement réglé, la valeur du champ magnétique créé par la bobine en différents points de son axe, à l'endroit où se situe la sonde (fig. 2). La bobine a pour longueur totale: L = 40,5 cm.(le teslamètre est constitué d'une sonde placée à l'extrémité d'une tige reliée à un appareil où on lit directement la valeur du champ magnétique). Les mesures effectuées permettent de tracer la courbe = f(x), reproduite à la figure 3, x étant l'abscisse de la sonde à partir de O. Durant ces mesures, l'intensité du courant vaut 5 A. a) Ces résultats sont-ils en accord avec l'allure du spectre magnétique? b) Déterminer la longueur de la portion de bobine sur laquelle est compris entre 0 (au centre) et 0,9 0 21

7 3.. Étude de l'influence de l'intensité. Le solénoïde S 1 utilisé ici comporte un nombre total de spires N = 200 régulièrement réparties sur la longueur totale L = 40,5 cm. Le rayon des spires est R = 2,5 cm. La sonde du teslamètre est placée en O. Les mesures de o en 0, pour différentes valeurs de, sont rassemblées dans le tableau suivant. Quelle relation existe-t-il entre o et? Préciser la valeur numérique de la constante introduite. 4.. Étude de l'influence du nombre de spires par mètre. On dispose d'un solénoïde S 2 de même longueur L que S 1 mais comportant N' = 400 spires, de rayon R = 2,5 cm. On recommence l'expérience du paragraphe 3, mais avec S 2. On constate que, pour chaque valeur précédente de, o est multiplié par deux quand on passe de S 1 à S 2. Quel type de relation existe-t-il entre o et n, nombre de spires par mètre? 5.. En utilisant les résultats des expériences précédentes, montrer que la relation o = µ 0 n liant o, et n, valable en toute rigueur pour un solénoïde de longueur infinie, est vérifiée pour ce type de solénoïde à mieux que 3 % près. On donne la valeur de la perméabilité magnétique du vide: µ 0 = 4π10-7 S.. 6. Etude de l'influence de la longueur de la bobine sur la valeur du champ magnétique en son centre O. Un système de bornes réparties le long du bobinage permet de n'alimenter qu'une fraction des spires, de longueur l centrée sur 0 (fig. 4). Le solénoïde utilisé ici est S 1 On mesure la valeur de o pour différentes valeurs de l. L'intensité du courant vaut 5 A. Les mesures obtenues sont reportées sur la courbe de la figure 5. Quel commentaire vous suggère cette courbe? À partir de quelle valeur du rapport l/r peut-on considérer que o au centre diffère de moins de 3 % de la valeur la plus grande lue sur la courbe? (Un tel solénoïde est considéré comme infiniment long.) 22

8 Solution 1. a) 0 b) A l intérieur du solénoïde les lignes de champ sont parallèles : le champ magnétique est uniforme. A l extérieur du solénoïde le spectre magnétique est identique à celui d un aimant droit. 2. a) La valeur du champ magnétique est sensiblement constante à l intérieur du solénoïde mais diminue près des bords. b) Au centre du solénoïde 0 = 3,2 mt 0,9. 0 = 2,9 mt Sur la courbe on lit = 2,9 mt pour les points situés à 15 cm du centre du solénoïde. La longueur du solénoïde où le champ peut être considéré constant est de 30 cm. 3. 2,18 3,5 2,5 4 2,82 4,5 3, En ordonnées : en mt 2 1 En abscisses : en A La courbe 0 = f() est une droite. Entre 0 et on peut écrire la relation 0 = k k = 3 3, = 6, ( 0 en teslas et en ampères). 4. Les 2 solénoïdes ont même longueur mais le nombre de spires de S 2 est le double de celui de S 1 23

9 n nombre de spires par mètre de longueur : n = L N ; n 2 = 2 n 1 et à intensités égales : 02 = 2 01 on en déduit : 0 = k n 5. Le champ magnétique 0 est proportionnel à l intensité du courant et au nombre de spires par mètre. On peut donc écrire 0 = µ 0.n. ; 0 L µ = N 3 2 3, , Expérimentalement : µ 0 = µ = 1, valeur théorique : µ 0 = -6 1,26.10 La relation est vérifiée à moins de 2% près. 6. Valeur maximale de lue sur la courbe : 0 = 3,2 mt ; pour = 3,1 mt la longueur du solénoïde est égale à 35 cm et la variation de est égale à 3% de la valeur maximale 0. L = 35 cm ; R = 2,5 cm L = 35 = 14 R 2,5 Si la valeur du rapport R L est supérieure ou égale à 14, le champ magnétique à l intérieur du solénoïde peut être considéré constant. 24

Champ magnétique crée par des courants

Champ magnétique crée par des courants Champ magnétique crée par des courants Un aimant crée un champ magnétique dans son voisinage. Une aiguille aimantée s'oriente, (placée dans une zone ne contenant ni aimant, ni circuit électrique) dans

Plus en détail

P5-GENERALITES SUR LE CHAMP MAGNETIQUE CHAMPS MAGNETIQUES DES COURANTS

P5-GENERALITES SUR LE CHAMP MAGNETIQUE CHAMPS MAGNETIQUES DES COURANTS PC A DOMICILE - 779165576 WAHAB DIOP LSLL P5-GENERALITES SUR LE CHAMP MAGNETIQUE CHAMPS MAGNETIQUES DES COURANTS TRAVAUX DIRIGES TERMINALE S Perméabilité magnétique du vide : µ 0 = 4π.10-7 S.I. ; Composante

Plus en détail

--y. Champ magnétique crée par des courants. Devoir.tn toutes les matières, tous les niveauxq. B = 2n d. Mn = 4 îï 10'7

--y. Champ magnétique crée par des courants. Devoir.tn toutes les matières, tous les niveauxq. B = 2n d. Mn = 4 îï 10'7 f \ Champ magnétique crée par des courants --y Un aimant crée un champ magnétique dans son voisinage. Une aiguille aimantée s'oriente, (placée dans une zone ne contenant ni aimant, ni circuit électrique)

Plus en détail

M DIOUF LYCEE JULES SAGNA DE THIES TERMINALES S1 S2 SERIE 5 : CHAMP MAGNETIQUE

M DIOUF LYCEE JULES SAGNA DE THIES TERMINALES S1 S2 SERIE 5 : CHAMP MAGNETIQUE SERIE 5 : CHAMP MAGNETIQUE EXERCICE 1 : CONNAISSANCES DU COURS a) Quelle est l'unité internationale de champ magnétique? b) Avec quel appareil mesure-t-on l'intensité d'un champ magnétique? c) Quels sont

Plus en détail

Electromagnétisme. Présentation du pôle nord d un aimant droit horizontal placé perpendiculairement au faisceau d électron. Déviation vers le bas:

Electromagnétisme. Présentation du pôle nord d un aimant droit horizontal placé perpendiculairement au faisceau d électron. Déviation vers le bas: Action d un aimant sur un faisceau d électron Présentation du pôle nord d un aimant droit horizontal placé perpendiculairement au faisceau d électron. Déviation vers le bas: Aimant sans action si parallèle

Plus en détail

Chapitre 7 : CHAMP MAGNETIQUE ET ACTIONS DU CHAMP MAGNETIQUE

Chapitre 7 : CHAMP MAGNETIQUE ET ACTIONS DU CHAMP MAGNETIQUE Chapitre 7 : CHAMP MAGNETIQUE ET ACTIONS DU CHAMP MAGNETIQUE I- Le champ magnétique : 1.1. Sources de champ magnétique : a- Les aimants : L approche d une aiguille aimantée vers un aimant droit donne les

Plus en détail

I Notion de champ magnétique 1. Sources de champ magnétique

I Notion de champ magnétique 1. Sources de champ magnétique LE CHAMP MAGNÉTIQUE I Notion de champ magnétique II Champ magnétique crée par des aimants III Champ magnétique crée par des courants IV Champ magnétique terrestre V Le champ magnétique et ses applications

Plus en détail

TD- Induction - I: Champ magnétique Correction

TD- Induction - I: Champ magnétique Correction TD- Induction - I: Champ magnétique Correction Application 1 : Dans les cartes de champs magnétique suivantes, où le champ est-il le plus intense? Où sont placées les sources? Le courant sort-il ou rentre-t-il

Plus en détail

Eau. Le niveau d eau diminue dans le tube pour laisser place au gaz dégagé. /Mn 2+ et à un couple contenant H 2 O 2.

Eau. Le niveau d eau diminue dans le tube pour laisser place au gaz dégagé. /Mn 2+ et à un couple contenant H 2 O 2. MATIERE : SCIENCES PHYSIQUES ENSEIGNANT : IMED RADHOUANI CLASSE : 3 SC EXP 1 & 3 MATH 1 DATE : LE SAMEDI 3 NOVEMBRE 2012 DUREE : 2 HEURES EXERCICE 1 REACTION D OXYDOREDUCTION (5/4 POINTS) L eau oxygénée

Plus en détail

Le champ magnétique. Lycée Viette TSI 1. II. Les sources de champ magnétique

Le champ magnétique. Lycée Viette TSI 1. II. Les sources de champ magnétique Le champ magnétique II. Les sources de champ magnétique 1. Origine du champ magnétique Le champ magnétique peut être créé par des aimants ou des conducteurs parcourus par des courants. Ces deux origines

Plus en détail

I- Notion de champ. II- Champs magnétiques. Chap. 11 Champs et forces

I- Notion de champ. II- Champs magnétiques. Chap. 11 Champs et forces Chap. 11 Champs et forces I- Notion de champ 1- Définition Une grandeur physique est une caractéristique mesurable d un objet, d un phénomène (pression, vitesse ) Si la grandeur est décrite uniquement

Plus en détail

TP 5 : champs magnétiques

TP 5 : champs magnétiques Objectifs : Évaluer le champ magnétique créé par une spire de courant en son centre par rapport au champ magnétique ambiant ; Vérifier la loi de Biot et Savart sur des bobines de différentes formes. Dans

Plus en détail

TP 8. Etude des bobines de Helmholtz Utilisation d un teslamètre à sonde à effet Hall

TP 8. Etude des bobines de Helmholtz Utilisation d un teslamètre à sonde à effet Hall TP 8 Etude des bobines de Helmholtz Utilisation d un teslamètre à sonde à effet Hall Objectifs : - Étude du dispositif des bobines de Helmholtz à l aide d une sonde à effet Hall reliée à un teslamètre.

Plus en détail

TD ELECTROTECHNIQUE 1 ère année Module MC2-2. V. Chollet - TD-Trotech07-28/08/2006 page 1

TD ELECTROTECHNIQUE 1 ère année Module MC2-2. V. Chollet - TD-Trotech07-28/08/2006 page 1 TD ELECTROTECHNIQUE 1 ère année Module MC2-2 V. Chollet - TD-Trotech07-28/08/2006 page 1 IUT BELFORT MONTBELIARD Dpt Mesures Physiques TD ELECTROTECHNIQUE n 1 Avec l aide du cours, faire une fiche faisant

Plus en détail

TP magnétisme. Ce TP est évalué à l'aide du compte-rendu pré-imprimé et des courbes produites.

TP magnétisme. Ce TP est évalué à l'aide du compte-rendu pré-imprimé et des courbes produites. TP magnétisme Ce TP est évalué à l'aide du compte-rendu pré-imprimé et des courbes produites. Objectifs : Évaluer le champ magnétique créé par une spire de courant en son centre par rapport au champ magnétique

Plus en détail

1) Champ magnétique autour d un aimant droit.

1) Champ magnétique autour d un aimant droit. 1) Champ magnétique autour d un aimant droit. Comme le courant électrique, le champ magnétique est invisible. Il est mis en évidence par les forces qui s exercent sur une aiguille aimantée et qui la font

Plus en détail

Première S Chapitre 10. Le magnétisme. I. Le champ magnétique. 1. L effet d un champ magnétique. 2. Aimant et champ magnétique.

Première S Chapitre 10. Le magnétisme. I. Le champ magnétique. 1. L effet d un champ magnétique. 2. Aimant et champ magnétique. Première S Chapitre 10 Le magnétisme.. Le champ magnétique. 1. L effet d un champ magnétique. Dans certaines circonstances, une aiguille aimantée s oriente comme soumise à un couple. On dit alors que dans

Plus en détail

I. Le champ magnétique

I. Le champ magnétique Chap 2 : L électromagnétisme Page 1 / 7 I. Le champ magnétique Le magnétisme est l étude des phénomènes que présentent les matériaux aimantés. 1. Aimants a. Définitions b. Expériences Expérience 1 : Passons

Plus en détail

CHAMP MAGNETIQUE INTRODUCTION A L INDUCTION

CHAMP MAGNETIQUE INTRODUCTION A L INDUCTION TP ELECTROMAGNETISME R.DUPERRAY Lycée F.BUISSON PTSI CHAMP MAGNETIQUE INTRODUCTION A L INDUCTION PREMIERE PARTIE : CHAMP MAGNETIQUE, BOBINES DE HELMHOLTZ OBJECTIFS Produire et mesurer un champ magnétique.

Plus en détail

Exercices sur le magnétisme

Exercices sur le magnétisme Exercices sur le magnétisme 1 Superposition de champs magnétiques On approche, dans un plan horizontal, des aimants identiques selon les schémas des trois cas suivants. S S M 60 S P S S S O S S Donnée

Plus en détail

BEP ET Leçon 19 Le magnétisme Page 1/6. Au voisinage d un pôle Nord d un aimant une boussole indique le SUD

BEP ET Leçon 19 Le magnétisme Page 1/6. Au voisinage d un pôle Nord d un aimant une boussole indique le SUD BEP ET Leçon 19 Le magnétisme Page 1/6 1. EXPERECE 1 ère expérience : Une boussole indique Le ORD du champ magnétique terrestre 2 ème expérience : 3 ème expérience : Au voisinage d un pôle ord d un aimant

Plus en détail

Séquence de cours n 8 : champ magnétique et force électromagnétique

Séquence de cours n 8 : champ magnétique et force électromagnétique Séquence de cours n 8 : champ magnétique et force électromagnétique Dernière mise à jour le 16/05/2015 Supports Cours en ligne, chapitres 14 et 15. Laboratoire sur le champ magnétique à l'intérieur d'un

Plus en détail

Leçon 3 : Champ magnétique créé par les courants

Leçon 3 : Champ magnétique créé par les courants Leçon 3 : Champ magnétique créé par les courants ANOUMOUYÉ Edmond Serge @ UVCI 2017 Août 2017 Version 1.0 Table des matières I - Objectifs 3 II - Introduction 4 III - Loi de Biot et Savart 5 1. Champ magnétique

Plus en détail

Si nous mettons en présence deux aimants, des forces interactives sont crées.

Si nous mettons en présence deux aimants, des forces interactives sont crées. 1) Le champ magnétique terrestre En l absence de toute autre source de champ, le pôle Nord d une aiguille aimantée (ou boussole) s oriente vers le pôle Nord magnétique terrestre. 2) Les aimants Les aimants

Plus en détail

Exercices sur les dipôles RL, RC, LC et RLC libre Un solénoïde de 50 cm de longueur et de 8 cm de diamètre est considéré comme infiniment long ; il comporte 2000 spires par mètre. 1) Donner les caractéristiques

Plus en détail

BEP ET Leçon 20 La force électromagnétique Page 1/6

BEP ET Leçon 20 La force électromagnétique Page 1/6 EP ET Leçon 20 La force électromagnétique Page 1/6 1. EXPERECE 1 ère expérience : Constatation : Le gros aimant repousse le petit aimant, il créer donc une force qui permet se déplacement. 2 ème expérience

Plus en détail

Chapitre 13: Quel modèle utilise-t-on pour expliquer notre environnement?

Chapitre 13: Quel modèle utilise-t-on pour expliquer notre environnement? Chapitre 13: Quel modèle utilise-t-on pour expliquer notre environnement? I. Champs scalaires et vectoriels. Recueillir et exploiter des informations (météorologie, téléphone portable, etc.) sur un phénomène

Plus en détail

Le champ magnétique. 1. Action d un champ magnétique sur un faisceau d électron

Le champ magnétique. 1. Action d un champ magnétique sur un faisceau d électron Le champ magnétique I. Mise en évidence du champ magnétique 1. Action d un champ magnétique sur un faisceau d électron Dans une ampoule ou règne un vide très pousser, une cathode émissive est chauffé par

Plus en détail

Correction du devoir n 3

Correction du devoir n 3 Correction du devoir n 3 Il est fortement conseillé de lire l'ensemble des énoncés avant de commencer. Exercice 1 (8 points) 1. On considère l'inductance représentée ci contre. L'intensité i L (t) a une

Plus en détail

Induction électromagnétiqu e (Bases du transformateur)

Induction électromagnétiqu e (Bases du transformateur) Induction électromagnétiqu e (Bases du transformateur) Table des matières I - Objectifs 5 II - Principe 7 III - Matériel 9 IV - Manipulation 21 V - Manipulations virtuelles 23 VI - Bibliographie 25 VII

Plus en détail

Travaux Pratiques de Physique Expérience n 6

Travaux Pratiques de Physique Expérience n 6 Expérience n 6 BOUSSOLE DES TANGENTES Domaine: Electricité, magnétisme Lien avec le cours de Physique Générale: Cette expérience est liée au chapitre suivant du cours de Physique Générale: - Physique II,

Plus en détail

Chapitre 9 : Champ magnétique

Chapitre 9 : Champ magnétique Chapitre 9 : Champ magnétique I Historique II Champ magnétique 1. mise en évidence 2. sources de champ magnétique III vecteur champ magnétique 1. vecteur B 2. intensité du champ 3. lignes de champ 4. exercice

Plus en détail

G.S.AIGUILLON EXAMEN BLANC 2013/2014 EPREUVE DE SCIENCES PHYSIQUES DUREE :04H

G.S.AIGUILLON EXAMEN BLANC 2013/2014 EPREUVE DE SCIENCES PHYSIQUES DUREE :04H EXERCICE N 1 : 04 points Données : Masses molaires en g.mol-1 : M(H) = 1,0 ; M(C) = 12,0 ; M(O) = 16,0 On étudie l évolution d un mélange constitué par 50 ml d une solution S1 d acide éthanedioïque (H2C2O4)

Plus en détail

Prof :Baccari.A Série d exercices : dipôle RL Classe : 4 e sc.ex /M /Tech A.S :2010/2011

Prof :Baccari.A Série d exercices : dipôle RL Classe : 4 e sc.ex /M /Tech A.S :2010/2011 Prof :Baccari.A Série d exercices : dipôle RL Classe : 4 e sc.ex /M /Tech A.S :2010/2011 Exercice 1 : On considère le montage ci-dessous : 1- Flécher les tensions aux bornes de la bobine et du résistor.

Plus en détail

Activité documentaire : le champ magnétique. Document 1 : le magnétisme, une histoire d aimants

Activité documentaire : le champ magnétique. Document 1 : le magnétisme, une histoire d aimants ctivité documentaire : le champ magnétique ocument 1 : le magnétisme, une histoire d aimants epuis les temps les plus reculés, les hommes ont remarqué que certaines pierres ont la propriété de s attirer

Plus en détail

RAPPELS DE PRINCIPES PHYSIQUES

RAPPELS DE PRINCIPES PHYSIQUES 1) RAPPELS DE PRINCIPES PHYSIQUES: 1.1) Effet du passage du courant électrique : Un conducteur parcouru par un courant électrique crée un champ magnétique. Le sens du champ dépend du sens de passage du

Plus en détail

Électromagnétisme. Dép. GEii2. Travaux Dirigés

Électromagnétisme. Dép. GEii2. Travaux Dirigés Électromagnétisme Dép. GEii2 Travaux Dirigés FORCE ET CHAMP ÉLECTRIQUES Exercice 1 Force de Coulomb Deux particules ponctuelles chargées (q 1 et q 2 ) placées à 30 cm l'une de l'autre, s'attirent avec

Plus en détail

Magnétostatique : Lois générales & Applications

Magnétostatique : Lois générales & Applications Electromagnétisme Chapitre 4 Magnétostatique : Lois générales & Applications Plan du cours A. Lois générales de l électrostatique 1. Ecriture des équations de Maxwell 2. Propriétés topographiques du champ

Plus en détail

PHYSIQUE II. Partie I - Moteur à aimant inducteur. r 1. Figure 1

PHYSIQUE II. Partie I - Moteur à aimant inducteur. r 1. Figure 1 PHYSIQUE II On se propose d examiner quelques principes de fonctionnement de deux types de moteurs électriques, à la fois sous les aspects électromagnétique et dynamique Les trois parties de ce problème

Plus en détail

I. Propriétés de symétrie et d invariance

I. Propriétés de symétrie et d invariance PC - Lycée Dumont D Urville Chapitre EM 4: Magnétostatique Les champs magnétiques permanents sont créés par des courants. Ordres de grandeur de champ magnétique: Composante horizontale du champ magnétique

Plus en détail

Introduction au magnétisme

Introduction au magnétisme Introduction au magnétisme 1. Introduction Le magnétisme est déjà connu depuis l'antiquité. Le mot magnétisme vient du grec magnes, qui a probablement son origine dans l'ancienne colonie appelée Magnésie

Plus en détail

Feuille d'exercices : Ferromagnétisme

Feuille d'exercices : Ferromagnétisme Feuille d'exercices : Ferromagnétisme P Colin 15 décembre 2016 1 Choix d'un matériau À l'aide du tableau 1, préciser si les matériaux proposés peuvent être utilisés dans : un transformateur basse fréquence

Plus en détail

Champ magnétique. I. Introduction. 1. Rappel. 2. Notion de champ vectoriel

Champ magnétique. I. Introduction. 1. Rappel. 2. Notion de champ vectoriel Champ magnétique I. Introduction 1. Rappel Nous avons rencontré le champ magnétique dans le cours de mécanique. Son action sur une charge électrique en mouvement à la vitesse v dans le référentiel galiléen

Plus en détail

DEVOIR DE CONTROLE N 1 Sciences physiques. Solution de sulfate de zinc. Solution de sulfate de cuivre. Bécher B

DEVOIR DE CONTROLE N 1 Sciences physiques. Solution de sulfate de zinc. Solution de sulfate de cuivre. Bécher B Lycée oumt souk Djerba Prof :Berriche DEVIR DE CNTRLE N 1 Sciences physiques 3 ème Sc durée : h Le 10/11/011 Chimie( 9points) Eercice N 1 (3.75pts) Première Partie La solution de sulfate de cuivre est

Plus en détail

LE CAPTEUR DE CHAMP MAGNETIQUE

LE CAPTEUR DE CHAMP MAGNETIQUE LE CAPTEUR DE CHAMP MAGNETIQUE 1. Recherche documentaire Qu est-ce qu un champ magnétique? C est une chose très dure à définir Il faut imaginer qu un aimant modifie l espace qui se trouve autour de lui,

Plus en détail

Déterminer le sens du courant induit dans la spire sachant que B z. (t) est une fonction croissante du temps.

Déterminer le sens du courant induit dans la spire sachant que B z. (t) est une fonction croissante du temps. PC 13/14 TD INDUCTION AC1 : Loi de Lenz On considère une spire circulaire (C) fixe, conductrice de résistance R soumise à un champ magnétique extérieur uniforme variable et orthogonal à la surface du circuit

Plus en détail

TP-comprendre notions de champs scalaires et vectoriels 1S Notions de champs scalaires et vectoriels

TP-comprendre notions de champs scalaires et vectoriels 1S Notions de champs scalaires et vectoriels Notions de champs scalaires et vectoriels OBJECTIFS : Savoir ce qu est un champ en physique. Savoir caractériser un champ. Connaître les caractéristiques de quelques champs. Introduction : Approche historique

Plus en détail

Phénoménologie des champs magnétiques

Phénoménologie des champs magnétiques Exercices du chapitre I1 Langevin-Wallon, PTSI 2016-2017 Phénoménologie des champs magnétiques Exercice 1 : Cartes de champ magnétique Exercices [ ] Les champs magnétiques représentés par les cartes ci-dessous

Plus en détail

exercices de colle ATS. Colle 1 :

exercices de colle ATS. Colle 1 : Colle 1 : 1) Magnétostatique. L On désigne par L la longueur entre S et les spires (voir figure). 1. Donner la relation entre z et L, puis la relation entre z et r. r z 2. On désigne par dn le nombre de

Plus en détail

Chap.3 Induction : cas d un circuit fixe dans un champ variable

Chap.3 Induction : cas d un circuit fixe dans un champ variable Chap.3 Induction : cas d un circuit fixe dans un champ variable 1. Circulation du champ électrique Loi de Faraday 1.1. Le champ électrique n est pas à circulation conservative Force électromotrice 1.2.

Plus en détail

PC A DOMICILE WAHAB DIOP LSLL

PC A DOMICILE WAHAB DIOP LSLL cos PC A DOMICILE - 779165576 WAHAB DIOP LSLL P13-OSCILLATIONS E L E C T R I Q U E S F O R C E E S E N R TRAVAUX DIRIGES TERMINALE S 1 On donne deux tensions sinusoïdales, exprimées en volts u 1 = 3cos(250t)

Plus en détail

Champ magnétique (calcul et propriétés)

Champ magnétique (calcul et propriétés) (calcul et propriétés) Les formules à connaître par cœur sont entourées. ut : Calcul du champ magnétique en régime permanent et dans l'approximation des Régimes QuasiStationnaires ARQS (régimes lentement

Plus en détail

L. Avicenne Gafsa Série N

L. Avicenne Gafsa Série N donné L orthogonale PU L. vicenne afsa Série : UP CLSSE : 3 UP ed PRF HR DTE : / /201 4 - UEssentiel à retenir U1- oment d une force : RF/ R= + F. U1- Force de Laplace F force de Laplace ses caractéristiques

Plus en détail

Physique appliquée BTS 1 Electrotechnique

Physique appliquée BTS 1 Electrotechnique Physique appliquée BTS 1 Electrotechnique Electromagnétisme Electromagnétisme Page 1 sur 21 1. Champ d excitation magnétique... 3 1.1. Interprétation de l aimantation.... 3 1.2. Champ d exitation magnétique

Plus en détail

Chap. 1 : Magnétostatique du vide SMP/S3 : Electricité 2 J. EL KHAMKHAMI 1

Chap. 1 : Magnétostatique du vide SMP/S3 : Electricité 2 J. EL KHAMKHAMI 1 Chap. 1 : Magnétostatique du vide SMP/S3 : Electricité 2 J. EL KHAMKHAMI 1 Chap. 1 : Magnétostatique du vide SMP/S3 : Electricité 2 J. EL KHAMKHAMI 2 Nous avons étudié, en S2, l interaction électrique

Plus en détail

Chap 13: Champs et forces

Chap 13: Champs et forces Chap 13: Champs et forces I-Notion de champ 1 )Activité documentaire p202 Exploitation des cartes météo. 1-Ces lignes représentent des ensembles de points qui sont à la même pression atmosphérique; elles

Plus en détail

6.1 Circulation du champ magnétique, théorème

6.1 Circulation du champ magnétique, théorème Chapitre 6 Le théorème d Ampère 6.1 Circulation du champ magnétique, théorème d Ampère 6.1.1 Circulation sur un circuit fermé du champ B créé par un fil rectiligne infini parcouru par un courant i Considérons

Plus en détail

CHAMP ELECTRIQUE D UN CONDENSATEUR INTRODUCTION A L INDUCTION

CHAMP ELECTRIQUE D UN CONDENSATEUR INTRODUCTION A L INDUCTION TP ELECTROMAGNETISME R.DUPERRAY Lycée F.BUISSON PTSI CHAMP ELECTRIQUE D UN CONDENSATEUR INTRODUCTION A L INDUCTION PREMIERE PARTIE : CHAMP ELECTRIQUE D UN CONDENSATEUR OBJECTIFS Comprendre la topologie

Plus en détail

Electromagnétisme Chap.6 Magnétostatique Théorème d Ampère

Electromagnétisme Chap.6 Magnétostatique Théorème d Ampère Electromagnétisme Chap.6 Magnétostatique Théorème d Ampère 1. Particularisation des équations de Maxwell en statique 1.1. (Rappels) Forces de Lorentz Force de Laplace 1.2. Equations de M.T. et M.A. en

Plus en détail

Un champ est une région de l espace dont les propriétés sont modifiées par la présence d un corps.

Un champ est une région de l espace dont les propriétés sont modifiées par la présence d un corps. Ce qu il faut retenir : Les champs I) Notion de champ. Un champ est une région de l espace dont les propriétés sont modifiées par la présence d un corps. Ex : un feu de camp modifie la température de l

Plus en détail

Généralités. La magnétostatique étudie les effets magnétiques indépendant du temps. Interaction magnétique Interaction à distance

Généralités. La magnétostatique étudie les effets magnétiques indépendant du temps. Interaction magnétique Interaction à distance Généralités La magnétostatique étudie les effets magnétiques indépendant du temps Interaction magnétique Interaction à distance attraction limaille de fer déviation particules électriques en mouvement

Plus en détail

Champ magnétique et force de Laplace

Champ magnétique et force de Laplace Champ magnétique et force de Laplace Introduction : champ magnétique créé par un aimant et par un courant... I Propriétés du champ magnétique...4 Pôle Nord et pôle Sud...4 Propriétés des lignes de champ

Plus en détail

Sciences et technologie industrielles

Sciences et technologie industrielles Sciences et technologie industrielles Spécialité : Génie Mécanique Programme d enseignement des matières spécifiques Sciences physiques et physique appliquée CE TEXTE REPREND LE PUBLIE EN ANNEXE DE L ARRETE

Plus en détail

BACCALAURÉAT LIBANAIS - SG Corrigé

BACCALAURÉAT LIBANAIS - SG Corrigé Exercice 1 : Pendule de torsion Le but de l exercice est de déterminer le moment d inertie d une tige homogène par rapport à un axe qui lui est perpendiculaire en son milieu et la constante de torsion

Plus en détail

Les Grecs de l'antiquité découvrent une pierre noire qui peut attirer le fer. C est la magnétite :

Les Grecs de l'antiquité découvrent une pierre noire qui peut attirer le fer. C est la magnétite : 17 Magnétisme Physique passerelle hiver 2016 1. Magnétisme naturel Les Grecs de l'antiquité découvrent une pierre noire qui peut attirer le fer. C est la magnétite : Les aimants naturels présentent toujours

Plus en détail

Champs magnétiques et électrostatiques

Champs magnétiques et électrostatiques a Champs magnétiques et électrostatiques PARtiE 3 Manuel unique, p. 230 ( Manuel de physique, p. 116) séquence 2 Le programme notions et contenus Champ magnétique : sources de champ magnétique (Terre,

Plus en détail

MINES PONTS CONCOURS COMMUN

MINES PONTS CONCOURS COMMUN A 016 - PHYSIQUE II PSI CONCOURS COMMUN MINES PONTS École des PONTS ParisTech, ISAE-SUPAERO, ENSTA ParisTech, TÉLÉCOM ParisTech, MINES ParisTech, MINES Saint-Étienne, MINES Nancy, TÉLÉCOM Bretagne, ENSAE

Plus en détail

Loi de Faraday-Lenz-Inductance

Loi de Faraday-Lenz-Inductance Loi de Faraday-Lenz-Inductance I L expérience de l aimant en mouvement devant une spire-loi de Faraday On place un aimant droit devant une bobine (plate ou non) dont les bornes sont reliées à un voltmètre.

Plus en détail

ELECTRICITE (durée conseillée : 1h30) 8 points ETUDE D UN VISCOSIMETRE

ELECTRICITE (durée conseillée : 1h30) 8 points ETUDE D UN VISCOSIMETRE Repère SESSION DUREE : 4H Page : / Coefficient 4 ELECTRICITE (durée conseillée : h3) 8 points Cet exercice est constitué de quatre parties indépendantes. Les documents-réponses doivent impérativement (même

Plus en détail

Lycée de Kounoune TS Retrouver la série Page 1

Lycée de Kounoune TS Retrouver la série  Page 1 Lycée de Kounoune Série d exercices classe de Tle S2 2015/2016: prof : M.Diagne P2 : Applications des bases de la dynamique email : diagnensis@yahoo.fr EXERCICE 1 Sur un banc à coussin d'air, on étudie

Plus en détail

SPE MP ELECTROSTATIQUE MAGNETOSTATIQUE LYCEE DAUDET

SPE MP ELECTROSTATIQUE MAGNETOSTATIQUE LYCEE DAUDET SPE P ELECTROSTATQUE AGNETOSTATQUE LYCEE DAUDET Electrostatique 1. Equations locales et globales Les équations de axwell de l électrostatique sont : l équation de axwell Gauss : Q ( ) div( E ( ) ) dont

Plus en détail

Corrigé du DS n 4bis (Centrale - Mines) Épreuve Mines PSI 2016

Corrigé du DS n 4bis (Centrale - Mines) Épreuve Mines PSI 2016 MP1& 016-017 Épreuve Mines PSI 016 Mesures de champ magnétique I. Balance de Cotton 1 À l équilibre, le système formé des parties mobiles n étant soumis qu à son poids, qui s applique en G et la réaction

Plus en détail

Introduction à l Electromagnétisme

Introduction à l Electromagnétisme Introduction à l Electromagnétisme Notions / Grandeurs / Unités Basé sur le FET, Electrotechnique, Fascicule 3, ISBN 2-940025-16-9, Suisse s.bolay, Electronicien Mult 2, CFPs-EMVs, 2011 1 Les aimants Aimants

Plus en détail

Chapitre 5 : Condensateurs

Chapitre 5 : Condensateurs e B et 5 ondensateurs 43 hapitre 5 : ondensateurs 1. Qu est-ce qu un condensateur? a) Expérience de mise en évidence 1. Un électroscope est chargé négativement au moyen d'un bâton d'ébonite frotté avec

Plus en détail

Chapitre 4 : Electromagnétisme

Chapitre 4 : Electromagnétisme Chapitre 4 : Electromagnétisme On retrouve des charges en mouvement dans le courant électrique, mais aussi dans les champs magnétiques. Il n existe pas de charges magnétiques, et en général, et ne sont

Plus en détail

ENERGIE CINETIQUE ENERGIE POTENTIELLE

ENERGIE CINETIQUE ENERGIE POTENTIELLE ENERGIE CINETIQUE ENERGIE POTENTIELLE EXERCICE I : ENERGIE CINETIQUE Un disque homogène de centre O et de rayon r = 10cm, a une masse M = 1,3kg. Dans une première expérience, le disque roule sans glisser

Plus en détail

Chapitre 8 : Le champ magnétique. Force magnétique sur une particule animée d une vitesse v et se déplaçant dans un champ magnétique B

Chapitre 8 : Le champ magnétique. Force magnétique sur une particule animée d une vitesse v et se déplaçant dans un champ magnétique B Chapitre 8 : Le champ magnétique Produit vectoriel Règle de la main droite + Force magnétique sur une particule animée d une vitesse v et se déplaçant dans un champ magnétique B F B = q v B Et sa grandeur

Plus en détail

1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son

1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son Physique TC 1 Correction 1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son centre. 2. Proposer une expression

Plus en détail

Anémomètre à fil chaud

Anémomètre à fil chaud EPEUVE OPTIONNELLE de PHYSIQUE Anémomètre à fil chaud Un fil de platine de longueur l et de diamètre d est parcouru par un courant électrique qui lui fournit une puissance maintenue constante par un dispositif

Plus en détail

Étude des redresseurs à diodes (redresseurs non commandés)

Étude des redresseurs à diodes (redresseurs non commandés) Étude des redresseurs à diodes (redresseurs non commandés) Première partie : généralités 1. Rappels sur les diodes En électronique de puissance, la diode est utilisée comme un interrupteur unidirectionnel

Plus en détail

Etalonnage d un ressort Comment déterminer la constante de raideur d un ressort

Etalonnage d un ressort Comment déterminer la constante de raideur d un ressort Statique - 7 - - 8 - T.P. Etalonnage d un ressort Comment déterminer la constante de raideur d un ressort Niveau : 10 (étude des forces) Durée Pré requis : Loi de proportionnalité, connaître la notion

Plus en détail

Série d'exercices Objet: Oscillations libres amorties et non amorties

Série d'exercices Objet: Oscillations libres amorties et non amorties D.R: SBZ Prof:Baccari.A A.S:2010-2011 Série d'exercices Objet: Oscillations libres amorties et non amorties Lycée Lessouda Classe: 4e SC.exp+M+T Exercice1 : A) Un générateur idéal de tension constante

Plus en détail

Amérique du Sud 2005 Sans calculatrice I. ÉMISSION ET RÉCEPTION D UNE ONDE RADIO (4 points)

Amérique du Sud 2005 Sans calculatrice I. ÉMISSION ET RÉCEPTION D UNE ONDE RADIO (4 points) Amérique du Sud 25 Sans calculatrice I. ÉMISSION ET RÉCEPTION D UNE ONDE RADIO (4 points) Au cours d une séance de travaux pratiques, les élèves réalisent un montage permettant d émettre puis de recevoir

Plus en détail

Chapitre 4.6a Le champ magnétique généré par un long fil rectiligne

Chapitre 4.6a Le champ magnétique généré par un long fil rectiligne Chapitre 4.6a Le champ magnétique généré par un long fil rectiligne L Expérience de Oersted En 1819, Hans Christian Oersted réalise qu une boussole est influencée lorsqu elle est située près d un fil parcouru

Plus en détail

G.P. DNS06 Octobre 2010

G.P. DNS06 Octobre 2010 DNS Sujet Chute d'un aimant dans un tube métallique...1 I.Potentiel vecteur et champ créés par un dipôle magnétique...1 II.Courant induit dans un circuit élémentaire...2 III.Force exercée par le tuyau

Plus en détail

Applications de l induction électromagnétique

Applications de l induction électromagnétique Applications de l induction électromagnétique La force électromotrice d induction(f e m induction ou f e m induite). La force électromotrice d auto-induction Note bien : il faut appliquer le bouton INV

Plus en détail

8. PHÉNOMÈNES D INDUCTION ÉLECTROMAGNÉTIQUE Circuit déformable dans un champ d induction magnétique uniforme et constant

8. PHÉNOMÈNES D INDUCTION ÉLECTROMAGNÉTIQUE Circuit déformable dans un champ d induction magnétique uniforme et constant 8. PHÉNOMÈNES D INDUTION ÉLETROMAGNÉTIQUE 8.1 Observations expérimentales 8.1.1 ircuit déformable dans un champ d induction magnétique uniforme et constant On considère l expérience décrite au paragraphe

Plus en détail

CAPES Externe Composition de physique avec applications (Coefficient Durée : 4 heures)

CAPES Externe Composition de physique avec applications (Coefficient Durée : 4 heures) CAPES Externe 2004 Agricole Physique Chimie Composition de physique avec applications (Coefficient. 2.5 - Durée : 4 heures) Matériel autorisé : calculatrice papier millimétré. Le barème indiqué correspond

Plus en détail

Chapitre 6 LA LOI D OHM

Chapitre 6 LA LOI D OHM Chapitre 6 LA LOI D OHM Expérience Réalise le circuit comportant une résistance (anneaux : marron, noir, rouge) et un générateur de tension réglable. Place un ampèremètre pour mesurer le courant qui traverse

Plus en détail

TP 10: Mouvement parabolique - Correction

TP 10: Mouvement parabolique - Correction TP 10: Mouvement parabolique - Correction Objectifs: Connaître et eploiter les 3 lois de Newton ; les mettre en œuvre pour étudier les mouvements dans les champs de pesanteur et électrostatique uniforme.

Plus en détail

P15 Induction et auto-induction

P15 Induction et auto-induction Induction et auto-induction Le phénomène d induction correspond à l apparition dans un conducteur d une force électromotrice lorsque celui-ci est soumis à un champ magnétique variable. Ceci peut alors

Plus en détail

- Il se produit un retard à l'établissement du courant dans la portion de circuit qui comporte la bobine.

- Il se produit un retard à l'établissement du courant dans la portion de circuit qui comporte la bobine. 1 sur 14 01/11/2011 22:32 I La bobine. Une bobine est constituée d un enroulement de fil conducteur, recouvert d un vernis isolant, sur un cylindre de rayon r. On désigne par l la longueur de l enroulement

Plus en détail

Activité.3 : Résistors et mesures

Activité.3 : Résistors et mesures MP : ctivité. ctivité. : ésistors et mesures Physique analogique et mesures Objectifs : Mettre en œuvre les différents moyens de mesurer la valeur d une résistance d un conducteur ohmique. tiliser ces

Plus en détail

SERIE 3 / ENERGIE POTENTIELLE ET MECANIQUE ANNEE :

SERIE 3 / ENERGIE POTENTIELLE ET MECANIQUE ANNEE : SERIE 3 : ENERGIES POTENTIELLE ET MECANIQUE Remarque : Dans cette série, il est possible de résoudre certains exercices avec le théorème de l énergie cinétique, seulement il est clair que le but est de

Plus en détail

Exercice N 01. u R de courant d intensité constante I 0 = 20µA. A l instant t=0 le condensateur est complètement déchargé.

Exercice N 01. u R de courant d intensité constante I 0 = 20µA. A l instant t=0 le condensateur est complètement déchargé. Exercice N 0 Un condensateur de capacité = 0 µ F présente entre ses bornes une tension u = 6V ) eprésenter le schéma normalisé du condensateur et indiquer sur le schéma la flèche de la tension u, le sens

Plus en détail

Propriétés de symétrie du champ magnétique

Propriétés de symétrie du champ magnétique Propriétés de symétrie du champ magnétique 1) Plans de symétrie (Π) et plans de symétrie inversion (Π ) de la distribution de courants : P' : symétrique de P par rapport au plan Π ou Π (P'=S / Π ou Π (P))

Plus en détail

3. Vérifier que l'expression: q = Q M cos. est solution de l'équation différentielle, si la période propre. T 0 a pour expression T 0 = 2π L.C.

3. Vérifier que l'expression: q = Q M cos. est solution de l'équation différentielle, si la période propre. T 0 a pour expression T 0 = 2π L.C. Sujet 1 (R,L,C) Dans cette partie, on étudie une application des oscillations électriques dans le domaine de la météorologie. Pour mesurer le taux d'humidité relative de l'air (noté % d'hr), on peut employer

Plus en détail

SCIENCES PHYSIQUES THEME : ELECTROMAGNETISME. Durée : 6 heures Toutes séries réunies

SCIENCES PHYSIQUES THEME : ELECTROMAGNETISME. Durée : 6 heures Toutes séries réunies S CONCOURS GÉNÉRAL Cours SÉNÉGALAS à domicile: 775136349 1/11 Durée : 6 heures SESSON 005 SCENCES PHYSQUES THEME : ELECTROMAGNETSME Le sujet traite de quelques applications des forces électromagnétiques

Plus en détail