Le moment cinétique. Quiz de bienvenue

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Le moment cinétique. Quiz de bienvenue"

Transcription

1 chapitre 10 Si vous avez changé de canal, tapez: [Ch]-[4]-[1]-[Ch] ou [Go]-[4]-[1]-[Go] Le moment cinétique Quiz de bienvenue Soit une rotation, représentée par l opérateur dans l espace de Hilbert, ce qui signifie qu une fonction d onde tournée sous l action de cette rotation s écrit. On considère un système décrit par l hamiltonien supposé invariant sous l action de cette rotation. Quelle est la relation ci-dessous la plus générale qui soit toujours vérifiée?

2 1. Le moment cinétique orbital

3 L observable moment cinétique De même : On ne peut pas connaître simultanément les différentes composantes cartésiennes du moment cinétique!

4 L observable (voir QCM) De même : et Il est donc possible de mesurer simultanément la norme du moment cinétique et l une de ses composantes cartésiennes.

5 2. Moment cinétique et rotations

6 Représentation d une rotation dans l espace de Hilbert On considère l effet d une rotation d un angle autour de l axe sur une fonction d onde

7 Représentation d une rotation infinitésimale On considère une rotation d un angle autour de l axe. sont les générateurs infinitésimaux du groupe des rotations.

8 Invariance et commutation Soit un système invariant par l opération représentée par dans l espace de Hilbert. Mais Donc

9 Invariance par rotation et moment cinétique Invariance par rotation : Pour tout axe et tout angle Ceci est vrai en particulier pour les petits angles. On peut donc chercher une base propre commune à composantes cartésiennes de et l une des On choisit traditionnellement :

10

11

12 3. Le problème général d une observable de moment cinétique Elie Cartan Recherche des états propres communs de

13 Les valeurs propres de et Les valeurs propres de sont positives ou nulles. On les note : On appelle l espace propre commun à et associé aux valeurs propres respectives et

14 Les opérateurs et Alors : et (voir QCM)

15 Action de et sur un vecteur propre commun Que dire de?

16 Calcul de la norme de avec

17 Valeurs autorisées pour j et m 2 3/2 1 1/2 0-1/2-1 -3/2-2 1/2 1 3/2 2

18 Vecteurs propres et valeurs propres de Soit une base propre de On définit la base standard selon la relation 2 3/2 1 1/2 0-1/2-1 -3/2-2 1/2 1 3/2 2

19 4. Application au moment cinétique orbital

20 Expression des opérateurs en coordonnées sphériques En coordonnées sphériques, on a C est un peu fastidieux, mais on peut également montrer (exercice)

21 Variables radiales et angulaires La variable radiale r n intervient pas

22 Les valeurs propres de et Mais : entier entier

23 Les harmoniques sphériques (PC) Legendre Cas est un opérateur différentiel linéaire du premier ordre Solution unique. On montre On applique la relation de récurrence : est une fonction réelle qui s annule fois dans l intervalle

24 Reconnaissez l harmonique sphérique (1) Quelles sont les valeurs de et pour l harmonique sphérique représentée ci-dessous? A. B. C. D. E. F. G. H. I.

25 Reconnaissez l harmonique sphérique (2) Quelles sont les valeurs de et pour l harmonique sphérique représentée ci-dessous? A. B. C. D. E. F. G. H. I.

26 Représentation graphique des harmoniques sphériques est une fonction réelle qui s annule fois dans l intervalle

27 5. Rotation d une molécule diatomique

28 Espace de Hilbert associé à un «rotateur rigide» On modélise l état de rotation d une molécule diatomique à l aide de l orientation d un «rotateur rigide», repérée par les angles q et j. Quelle est la dimension de l espace de Hilbert correspondant? 1. Dimension 1 2. Dimension 2 3. Dimension 3 4. Dimension infinie

29 Hamiltonien d un rotateur rigide Mécanique classique Moment d inertie : Energie cinétique de rotation : Mécanique quantique

30 Illustrations expérimentales Niveaux rotationnels de molécules froides de Cs 2 Fioretti et al., Eur. Phys. J. D 5, 389 (1999) Laboratoire Aimé Cotton, Orsay Spectre rotationnel du monoxyde de carbone (infrarouge lointain) 115 GHz Fleming & Chamberlain, J. Infrared Phys. 14, 277 (1974)

31 Spectroscopie rotationnelle de la nébuleuse d Orion

32 Conclusion 2 3/2 1 1/2 0-1/2-1 -3/2-2 1/2 1 3/2 2 Cas du moment cinétique orbital Que dire des valeurs demi-entières de?

Symétries et physique quantique

Symétries et physique quantique 7.4 & 15.5 Symétries et physique quantique Quiz de bienvenue Soit une rotation, représentée par l opérateur dans l espace de Hilbert, ce qui signifie qu une fonction d onde tournée sous l action de cette

Plus en détail

Symétries et physique quantique

Symétries et physique quantique 7.4 & 15.5 Symétries et physique quantique Quiz de bienvenue Soit une rotation, représentée par l opérateur dans l espace de Hilbert, ce qui signifie qu une fonction d onde tournée sous l action de cette

Plus en détail

Atome d hydrogène. comme. Ces trois orbitales sont appelées, et

Atome d hydrogène. comme. Ces trois orbitales sont appelées, et Atome d hydrogène 1) On considère l atome d hydrogène, composé d un noyau de charge Z=1 et d un électron de masse m e. On suppose que le noyau est fixe. Écrire, à l aide de l Annexe I, l équation de Schrödinger

Plus en détail

Le moment cinétique et l'atome d'hydrogène. Le moment cinétique orbital. Le potentiel coulombien. Premier pas vers l étude du magnétisme

Le moment cinétique et l'atome d'hydrogène. Le moment cinétique orbital. Le potentiel coulombien. Premier pas vers l étude du magnétisme Le moment cinétique et l'atome d'hydrogène Le potentiel coulombien Recherche des états propres et de leurs énergies pour Chapitres et L'opérateur commute avec l'hamiltonien : (. et.6 hors programme) On

Plus en détail

Chapitre 11. L atome d hydrogène

Chapitre 11. L atome d hydrogène Chapitre 11 L atome d hydrogène L hydrogène: un double défi pour la physique classique Spectre constitué de raies discrètes (Balmer, Rydberg) lumière visible série de Balmer : entiers positifs : Rydberg

Plus en détail

Chap.1 Cinématique du point matériel

Chap.1 Cinématique du point matériel Chap.1 Cinématique du point matériel 1. Point matériel et relativité du mouvement 1.1. Notion de point matériel 1.2. Relativité du mouvement - Notion de référentiel 1.3. Trajectoire dans un référentiel

Plus en détail

Le spin ½ et la résonance magnétique nucléaire. Chapitre 12

Le spin ½ et la résonance magnétique nucléaire. Chapitre 12 Le spin ½ et la résonance magnétique nucléaire Chapitre 12 1. Le spin ½ Le moment cinétique orbital n explique pas tout Valeurs propres : Pour une valeur de donnée, on s attend donc à valeurs possibles.

Plus en détail

Chapitre I : Atome d hydrogène et notion de mécanique quantique

Chapitre I : Atome d hydrogène et notion de mécanique quantique Chapitre I : Atome d hydrogène et notion de mécanique quantique Plan : ********************** II- INTRODUCTION DES NOTIONS FONDAMENTALES DE MECANIQUE QUANTIQUE... 3 1- Rappels sur l atome et présentation

Plus en détail

Mouvement, vitesse et accélération

Mouvement, vitesse et accélération Mouvement, vitesse et accélération Notions et contenus Référentiels, trajectoires, vitesse, vitesse angulaire, accélération. Capacités exigibles - Mesurer des vitesses et des accélérations. - Écrire et

Plus en détail

Examen (Session 2) durée 2h

Examen (Session 2) durée 2h Université Pierre et Marie Curie Master de sciences et technologie. Mécanique quantique appliquée (MU003) Janvier 2007 Examen (Session 2) durée 2h Les deux problèmes sont indépendants. I-Spectredel oxydedecarboneco

Plus en détail

Problème : l atome d hélium et les molécules He 2, He 3

Problème : l atome d hélium et les molécules He 2, He 3 ECOLE POLYTECHNIQUE Promotion 2001 CONTRÔLE HORS CLASSEMENT DU COURS DE PHYSIQUE PHY 432 Mardi 29 avril 2003, durée : 2 heures Documents autorisés : cours, recueil de problèmes, copies des transparents,

Plus en détail

Cinématique du point

Cinématique du point Notes de Cours PS 91 Cinématique du point La cinématique du point est l étude du mouvement d un point matériel indépendamment des causes de ce mouvement. En pratique l approximation du point matériel peut

Plus en détail

Mécanique Chapitre 1 : Cinématique du point matériel

Mécanique Chapitre 1 : Cinématique du point matériel Lycée François Arago Perpignan M.P.S.I. 2012-2013 Mécanique Chapitre 1 : Cinématique du point matériel On se place dans le cadre de la mécanique classique (newtonienne) qui convient très bien pour expliquer

Plus en détail

De l addition de deux spins ½ aux horloges atomiques. Chapitre 13

De l addition de deux spins ½ aux horloges atomiques. Chapitre 13 De l addition de deux spins ½ aux horloges atomiques Chapitre 13 Quiz de bienvenue On considère un système constitué de deux particules (a) et (b) de spin ½ et on ne s intéresse qu aux degrés de liberté

Plus en détail

CHAPITRE III LE MODELE QUANTIQUE DE L'ATOME

CHAPITRE III LE MODELE QUANTIQUE DE L'ATOME CHAPITRE III LE MODELE QUANTIQUE DE L'ATOME 1 INTRODUCTION Le début de ce siècle a vu la naissance d'une nouvelle mécanique adaptée à ces objets minuscules. Cette nouvelle mécanique à reçut le nom de mécanique

Plus en détail

Mécanique des milieux continus

Mécanique des milieux continus Mécanique des milieux continus Séance 6 : Contraintes Guilhem MOLLON GEO3 2012-2013 Plan de la séance A. Théorème de Cauchy B. Directions principales, invariants C. Cercle de Mohr 1. Principe 2. Contrainte

Plus en détail

Mesure des grandeurs physiques

Mesure des grandeurs physiques Les buts de cet amphi 1. Comprendre la signification physique du formalisme mis en place Quelle est l information acquise lors d une mesure? Mesure des grandeurs physiques Formulation du principe 3, d

Plus en détail

BACCALAURÉAT LIBANAIS - SG Corrigé

BACCALAURÉAT LIBANAIS - SG Corrigé Exercice 1 : Pendule de torsion Le but de l exercice est de déterminer le moment d inertie d une tige homogène par rapport à un axe qui lui est perpendiculaire en son milieu et la constante de torsion

Plus en détail

3. La structure électronique des atomes

3. La structure électronique des atomes 3. La structure électronique des atomes Questions fondamentales du chapitre 3 Quels sont les emplacements occupés par les électrons autour du noyau? Comment sont-ils distribués? Quelles sont leurs énergies?

Plus en détail

PHYSIQUE II. Partie I - Moteur à aimant inducteur. r 1. Figure 1

PHYSIQUE II. Partie I - Moteur à aimant inducteur. r 1. Figure 1 PHYSIQUE II On se propose d examiner quelques principes de fonctionnement de deux types de moteurs électriques, à la fois sous les aspects électromagnétique et dynamique Les trois parties de ce problème

Plus en détail

Géométrie. δmaths BAC MATHS. M. Ezeddine ABDA DeltaMaths

Géométrie. δmaths BAC MATHS. M. Ezeddine ABDA DeltaMaths Géométrie BAC MATHS δmaths M. Ezeddine ABDA DeltaMaths Nombres complexes * +. Si, alors il existe un unique couple tel que. est la forme algébrique du nombre complexe. : la partie réelle de. : la partie

Plus en détail

Mécanique du solide - Chapitre 1 : Décrire et caractériser le mouvement d un solide

Mécanique du solide - Chapitre 1 : Décrire et caractériser le mouvement d un solide Mécanique du solide - Chapitre 1 : Décrire et caractériser le mouvement d un solide Problématique : Quelles sont les grandeurs cinématiques et cinétiques associées à un solide en mouvement? Comment les

Plus en détail

Opérateurs différentiels

Opérateurs différentiels Master Dynamique terrestre et risques naturels Mathématiques pour géologues Opérateurs différentiels On étudie en géosciences des fonctions scalaires des coordonnées d espace, comme la température, ou

Plus en détail

Suites - cours - 1 STG

Suites - cours - 1 STG Suites - cours - STG F.Gaudon 0 juin 2006 Table des matières Notion de suite 2. Définitions............................. 2.2 Méthodes de construction des suites............... 2.2. Définition explicite....................

Plus en détail

Chap.3 Circulation du champ électrostatique Potentiel, et énergie potentielle électrostatique

Chap.3 Circulation du champ électrostatique Potentiel, et énergie potentielle électrostatique Chap.3 Circulation du champ électrostatique Potentiel, et énergie potentielle électrostatique 1. Notions de gradient, et de circulation d un champ vectoriel 1.1. Gradient d un champ scalaire 1.2. Circulation

Plus en détail

Objectifs d apprentissage du chapitre 1 Physique et mécaniques, analyse dimensionnelle et ordres de grandeur

Objectifs d apprentissage du chapitre 1 Physique et mécaniques, analyse dimensionnelle et ordres de grandeur Objectifs d apprentissage du chapitre 1 Physique et mécaniques, analyse dimensionnelle et ordres de grandeur Principes de la démarche scientifique Cadre d étude de la physique Définition des mécaniques

Plus en détail

3) Précession de Larmor

3) Précession de Larmor M/CFP/Parcours de Physique Théorique Invariances en physique et théorie des groupes Précession de Thomas En 196, Uhlenbeck et Goudsmit ont introduit la notion de spin de l électron et montré que si l électron

Plus en détail

Chapitre MQ1 Le modèle quantique de l atome

Chapitre MQ1 Le modèle quantique de l atome Chapitre MQ1 Le modèle quantique de l atome 1. Description en mécanique quantique 1.1. Fonction d onde 1.2. Conditions sur la fonction d onde 2. Cas de l hydrogène et des atomes hydrogénoides 2.1. Définition

Plus en détail

Le dipôle le plus simple consiste en un couple de charges opposées P (+ q) et N ( q) distantes de a :

Le dipôle le plus simple consiste en un couple de charges opposées P (+ q) et N ( q) distantes de a : 4 LE DIÔLE ÉLECTRIQUE 4. Définition Un dipôle électrostatique est défini par ensemble de charges distinctes disposées de telle sorte que le barycentre des charges positives ne coïncide pas avec le barycentre

Plus en détail

TD- Induction - I: Champ magnétique Correction

TD- Induction - I: Champ magnétique Correction TD- Induction - I: Champ magnétique Correction Application 1 : Dans les cartes de champs magnétique suivantes, où le champ est-il le plus intense? Où sont placées les sources? Le courant sort-il ou rentre-t-il

Plus en détail

SERIE 3 / ENERGIE POTENTIELLE ET MECANIQUE ANNEE :

SERIE 3 / ENERGIE POTENTIELLE ET MECANIQUE ANNEE : SERIE 3 : ENERGIES POTENTIELLE ET MECANIQUE Remarque : Dans cette série, il est possible de résoudre certains exercices avec le théorème de l énergie cinétique, seulement il est clair que le but est de

Plus en détail

PT Electronique Chapitre 1 Page 1

PT Electronique Chapitre 1 Page 1 CHAPITRE 1. STABILITE DES SYSTEMES LINEAIRES I. Qu est ce que la réponse harmonique d un système linéaire permanent?... 2 1. Réponse harmonique... 2 2. Système linéaire... 2 3. Critère de linéarité...

Plus en détail

Couplage de deux spins ½. Chapitres 13, 14

Couplage de deux spins ½. Chapitres 13, 14 Couplage de deux spins ½ Chapitres 13, 14 Quiz de bienvenue Pour deux espaces de Hilbert et de dimensions finies, quelle est la dimension de l espace? 1. 2. Rappels sur le spin ½ 1. Spins ½ et intrication

Plus en détail

Chapitre-III Dynamique dans un référentiel non galiléen

Chapitre-III Dynamique dans un référentiel non galiléen Chapitre-III Dynamique dans un référentiel non galiléen A- Changements de référentiels Aspect Cinématique I. Introduction L objet de ce paragraphe est d établir, d un point de vue cinématique, les lois

Plus en détail

DS2. Le guidage des avions, un instrument essentiel : l altimètre

DS2. Le guidage des avions, un instrument essentiel : l altimètre 1 MP*1 016/017 Problème 1, d après Mines-PC-011 : DS Le guidage des avions, un instrument essentiel : l altimètre Le principe général d un altimètre est très simple. Un oscillateur embarqué dans l avion

Plus en détail

Documents de Physique-Chimie M. MORIN

Documents de Physique-Chimie M. MORIN 1 Afin de décrire le mouvement d un solide, il faut : Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 16 : Cinématique - Mouvement d un point au cours du temps. Comment décrire le

Plus en détail

Cinématique. Description «mathématique» du mouvement des corps (ici de points matériels) sans en évoquer les causes.

Cinématique. Description «mathématique» du mouvement des corps (ici de points matériels) sans en évoquer les causes. Cinématique Description «mathématique» du mouvement des corps (ici de points matériels) sans en évoquer les causes. Cette discipline de la mécanique fait appel à la géométrie analytique et au calcul infinitésimal.

Plus en détail

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES Terminales S - S2 N. Chiffot S. Coursaget J. Giovendo Durée : 4 heures. Nombre de pages : 7. L utilisation de la calculatrice est autorisée. Corrigé TS - TS2

Plus en détail

Liste d exercices IV

Liste d exercices IV Université de Paris-Sud Orsay Année universitaire 2012-2013 S2, M1 Géométrie Liste d exercices IV (I) Exemples des variétés différentielles 1. Variété produit : Soient M et N deux variétés différentielles

Plus en détail

EXERCICE 1. (11 points) PROBLÈME ÉCONOMIQUE

EXERCICE 1. (11 points) PROBLÈME ÉCONOMIQUE 1L spé math / 1ES ÉVALUATION N 2 DE MATHÉMATIQUES Le 10/02/2015 Durée : 3h Corrigé Calculatrice autorisée. Le barème est donné sur 40 points. EXERCICE 1. (11 points) PROBLÈME ÉCONOMIQUE PARTIE A On considère

Plus en détail

L expérience de Stern et Gerlach. ~ k3. Chapitre 8

L expérience de Stern et Gerlach. ~ k3. Chapitre 8 L expérience de Stern et Gerlach ~ k3 Chapitre 8 Quiz de bienvenue Si vous avez changé de canal, tapez: [Ch]-[4]-[1]-[Ch] ou [Go]-[4]-[1]-[Go] On considère un aimant placé dans un champ magnétique homogène.

Plus en détail

Terminale ES Rappels sur les suites I Qu est-ce qu une suite? Définition : liste ordonnée de nombres réels,

Terminale ES Rappels sur les suites I Qu est-ce qu une suite? Définition : liste ordonnée de nombres réels, I Qu est-ce qu une suite? Définition : Rappels sur les suites Une suite de nombres réels est une liste ordonnée de nombres réels, finie ou infinie. On note ( ) la suite u 0, u 1, u 2,..,, +1, Le nombre

Plus en détail

1. DYNAMIQUE DU POINT MATÉRIEL

1. DYNAMIQUE DU POINT MATÉRIEL . DYNAMIQUE DU PINT MATÉRIEL.. Grandeurs cinétiques fondamentales Pour un point matériel M, de masse m, animéd une vitesse v par rapport à un référentiel R donné, on définit les grandeurs cinétiques suivantes

Plus en détail

Mouvement dans un champ de forces centrales conservatives

Mouvement dans un champ de forces centrales conservatives Mouvement dans un champ de forces centrales conservatives Cadre de l étude : Le mouvement du point matériel M de masse m sera étudié dans un référentiel R galiléen. I. Forces centrales conservatives 1)

Plus en détail

Le dipôle électrostatique

Le dipôle électrostatique Cours d électromagnétisme 1 Définition, potentiel et champ créés 1.1 Définition du dipôle électrostatique On appelle dipôle électrostatique le système constitué de deux charges ponctuelles opposées et

Plus en détail

Brevet de technicien supérieur session groupement A

Brevet de technicien supérieur session groupement A Brevet de technicien supérieur session 01 - groupement A A. P. M. E. P. Spécialités : Contrôle industriel et régulation automatique Informatique et réseaux pour l industrie et les services techniques Systèmes

Plus en détail

Séance 1 : Exercices corrigés CALCUL DIFFÉRENTIEL

Séance 1 : Exercices corrigés CALCUL DIFFÉRENTIEL Mathématiques 2 1 Séance 1 : Exercices corrigés CALCUL DIFFÉRENTIEL Objectifs Les notions de différentielle, gradient... d une fonction en dimension finie et infinie. Exercices d illustration et calcul

Plus en détail

Mouvement d un solide en rotation autour d un axe fixe

Mouvement d un solide en rotation autour d un axe fixe Mouvement d un solide en rotation autour d un axe fixe II. Moment cinétique scalaire d un solide en rotation autour d un axe fixe 1. Moment cinétique d un point matériel par rapport à un point On appelle

Plus en détail

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans DST n 4 - Corrigé Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans l'ensemble des nombres réels, et de construire une suite qui

Plus en détail

Baccalauréat S Asie juin 2006

Baccalauréat S Asie juin 2006 Baccalauréat S Asie juin 2006 EXERCICE 1 4 points ( Le plan complexe est muni d un repère orthonormal direct O, u, v (unité graphique : 2 cm. On rappelle que pour tout vecteur w non nul, d affixe z, on

Plus en détail

Mécanique Analytique, Partiel 1

Mécanique Analytique, Partiel 1 Mécanique Analytique, Partiel 1 009-010 Epreuve du avril 010 ; durée : 110 minutes ; sans document ni calculatrice Exercice 1 : Lagrange (6 points) Soit un système de trois masses m a, m b et M dans un

Plus en détail

Raisonnement par récurrence 2

Raisonnement par récurrence 2 1 sur 9 25/10/2015 09:38 Raisonnement par récurrence 2 DATE DE CRÉATION DE L'ARTICLE :16 NOVEMBRE 2010 DATE DE RÉDACTION ANTÉRIEURE : N.C. LANGUE DE L'ARTICLE (français) Cet article est une traduction

Plus en détail

Chapitre VI Applications linéaires

Chapitre VI Applications linéaires Chapitre VI Applications linéaires Dans ce cours, désigne R, C ou un corps commutatif quelconque. I Généralités 1. Définition Soient et deux -ev donnés. Une application est dite linéaire si. C est-à-dire

Plus en détail

SPE MP ELECTROSTATIQUE MAGNETOSTATIQUE LYCEE DAUDET

SPE MP ELECTROSTATIQUE MAGNETOSTATIQUE LYCEE DAUDET SPE P ELECTROSTATQUE AGNETOSTATQUE LYCEE DAUDET Electrostatique 1. Equations locales et globales Les équations de axwell de l électrostatique sont : l équation de axwell Gauss : Q ( ) div( E ( ) ) dont

Plus en détail

I- FORME EXPONENTIELLE D UN NOMBRE COMPLEXE

I- FORME EXPONENTIELLE D UN NOMBRE COMPLEXE I- FORME EXPONENTIELLE D UN NOMBRE COMPLEXE Définition 1 : soit θ un nombre réel. On pose : cossin Théorème 1 (admis) : soit et deux nombres réels. Alors : Définition : soit r un nombre réel strictement

Plus en détail

Exercices Mécanique du solide

Exercices Mécanique du solide Exercices Mécanique du solide Exo 1 Balançoire Un enfant sur une balançoire est schématisé par un pendule oscillant autour d un axe horizontal grâce à une liaison parfaite. L angle avec la verticale est

Plus en détail

Physique Atomique et Moléculaire Atomes et Molécules

Physique Atomique et Moléculaire Atomes et Molécules Physique Atomique et Moléculaire Atomes et Molécules PLAN du Cours Rappels, atome d hydrogène Atome à plusieurs électrons Molécule (liaisons, structure électronique) Vibration et rotation des molécules

Plus en détail

MOOC Introduction à la Mécanique des fluides

MOOC Introduction à la Mécanique des fluides MOOC Introduction à la Mécanique des fluides EVALUATION N 1 1- On considère un écoulement unidimensionnel de fluide dont le champ des vitesses s écrit!"! =!! ( 1 + 2!! ) V 0 et L sont des constantes caractéristiques

Plus en détail

Lycée Polyvalent de Montbéliard - Physique-Chimie - TSI Reconnaître et décrire une translation rectiligne, une translation circulaire.

Lycée Polyvalent de Montbéliard - Physique-Chimie - TSI Reconnaître et décrire une translation rectiligne, une translation circulaire. Mécanique 5 Mouvement d un solide en rotation autour d un axe fixe Lycée Polyvalent de Montbéliard - Physique-Chimie - TSI 1-2016-2017 Contenu du programme officiel : Notions et contenus Définition d un

Plus en détail

IV CINEMATIQUE DU SOLIDE

IV CINEMATIQUE DU SOLIDE IV CINEMATIQUE DU OLIDE La cinématique du solide concerne l étude du mouvement des solides supposés indéformables. Elle tient une place importante dans les applications quotidiennes de la mécanique. 1.

Plus en détail

Baccalauréat S Métropole juin 2005

Baccalauréat S Métropole juin 2005 Baccalauréat S Métropole juin 2005 EXERCICE 1 Commun à tous les candidats Cet exercice constitue une restitution organisée de connaissances. Partie A : question de cours 4 points On suppose connus les

Plus en détail

Baccalauréat S Liban 27 mai 2014

Baccalauréat S Liban 27 mai 2014 EXERCICE 1 Baccalauréat S Liban 27 mai 2014 Les trois parties A, B et C peuvent être traitées de façon indépendante. Les probabilités seront arrondies au dix millième. Un élève doit se rendre à son lycée

Plus en détail

Physique de la Matière Condensée Partiel du 13 Janvier 2011 Durée : 3 heures.

Physique de la Matière Condensée Partiel du 13 Janvier 2011 Durée : 3 heures. Master-1 et Magistère-2 de Physique Fondamentale Centre Scientifique d Orsay - Université de Paris-Sud Année 2010-2011 Physique de la Matière Condensée Partiel du 13 Janvier 2011 Durée : 3 heures. Remarques

Plus en détail

Chap.1 Conversion de puissance : Machine à courant continu

Chap.1 Conversion de puissance : Machine à courant continu Chap.1 Conversion de puissance : Machine à courant continu 1. Principe de la conversion électromécanique de puissance 1.1. Porteurs de charge d un circuit mobile dans un champ magnétique : bilan de puissance

Plus en détail

Mat307 Feuille d exercices 2 : équations différentielles UGA

Mat307 Feuille d exercices 2 : équations différentielles UGA Mat37 Feuille d exercices 2 : équations différentielles UGA Exercice 1. 1. Résoudre l équation différentielle suivante x x + cos(t ; x( 1. 2. Tracer la solution et étudier son comportement en et en +.

Plus en détail

Mécanique du point matériel TD1

Mécanique du point matériel TD1 UNIVERSITE CADI AYYAD CP 1 ère année 2015-2016 ENSA- MARRAKECH Mécanique du point matériel TD1 Questions de cours : On considère une courbe sur laquelle se déplace un point matériel d abscisse curviligne

Plus en détail

ETUDE CINETIQUE DE L OUVRE PORTAIL

ETUDE CINETIQUE DE L OUVRE PORTAIL ETUDE CINETIQUE DE L OUVRE PORTAIL OBJECTIFS DU TP On cherche à déterminer le moment d inertie du portail (avec ou sans masses additionnelles) autour de son axe de rotation à partir de relevés expérimentaux.

Plus en détail

b) Montrer que la condition (iii) (voir cours) a bien un sens et q elle est

b) Montrer que la condition (iii) (voir cours) a bien un sens et q elle est Université Chouaib Doukkali Faculté des Sciences Département de Mathématiques El Jadida A. Lesfari lesfariahmed@yahoo.fr http://lesfari.com Exercices d Algèbre et Géométrie Exercice 1. Soit E un espace

Plus en détail

Cours d électromagnétisme

Cours d électromagnétisme Cours d électromagnétisme EM0-Outils mathématiques Table des matières 1 Les sstèmes de coordonnées 2 1.1 Les coordonnées cartésiennes.................................. 2 1.2 Les coordonnées clindriques..................................

Plus en détail

Problème 1 : «Tomber plus vite que la chute libre»

Problème 1 : «Tomber plus vite que la chute libre» Problème 1 : «Tomber plus vite que la chute libre» Nous savons tous qu'en l'absence de tout frottement aérodynamique, deux objets de masses différentes soumis à la gravité possèdent la même accélération

Plus en détail

Chapitre 1- Compléments de mathématiques. ( ) dérivable et continue au voisinage d un point

Chapitre 1- Compléments de mathématiques. ( ) dérivable et continue au voisinage d un point Chapitre 1- Compléments de mathématiques Ce chapitre est consacré au notions de mathématiques indispensables pour l abord des chapitres suivants et qui ne sont pas au programmes des classes de première

Plus en détail

Lycée Viette TSI 1. DS h 50. Problème 01 Trajectoire d une particule

Lycée Viette TSI 1. DS h 50. Problème 01 Trajectoire d une particule DS 03 02 12 2011 1 h 50 Problème 01 Trajectoire d une particule On considère un point matériel en mouvement dans un référentiel. L équation en polaire de la trajectoire en polaire s écrit : =.. avec =.,

Plus en détail

Chapitre 4. Suites. Objectifs du chapitre : item références auto évaluation. définir et représenter graphiquement une suite

Chapitre 4. Suites. Objectifs du chapitre : item références auto évaluation. définir et représenter graphiquement une suite Chapitre 4 Suites Objectifs du chapitre : item références auto évaluation définir et représenter graphiquement une suite étudier une suite arithmétique étudier une suite géométrique étudier le sens de

Plus en détail

AL3 - Matrices Séance de TD n 1 - Corrigés des exercices -

AL3 - Matrices Séance de TD n 1 - Corrigés des exercices - AL3 - Matrices Séance de TD n - Corrigés des exercices - QCM GI FC8/6 03 TEST - SYSTEME 3 GI FA 0 TEST - SYSTEME 3 4 GI FA 0 TEST SYSTEME 4 5 GI FA 03 TEST SYSTEME 5 6 GI FC 8/6 04 TEST VECTEURS, APPLICATION

Plus en détail

DNS. Centrifugeuse. Sujet. G.P. DNS08 Décembre Centrifugeuse...1 I.Cinématique...2 II.Écriture du principe fondamental...2 III.Résolution...

DNS. Centrifugeuse. Sujet. G.P. DNS08 Décembre Centrifugeuse...1 I.Cinématique...2 II.Écriture du principe fondamental...2 III.Résolution... DNS Sujet Centrifugeuse...1 I.Cinématique...2 II.Écriture du principe fondamental...2 III.Résolution...3 Centrifugeuse Une centrifugeuse est un appareil destiné à séparer la phase solide d une suspension

Plus en détail

PHYS-H-200 Physique quantique et statistique Chapitre 10: Les molécules et les solides

PHYS-H-200 Physique quantique et statistique Chapitre 10: Les molécules et les solides PHYS-H-2 Physique quantique et statistique Chapitre 1: Les molécules et les solides Jean-Marc Sparenberg 211-212 1 / 13 1 Approximation de Born-Oppenheimer 2 États électroniques et liaison chimique Ion

Plus en détail

Exo7. Courbes planes. 1 Courbes d équation y = f (x) 2 Courbes paramétrées en coordonnées cartésiennes. Fiche de Léa Blanc-Centi.

Exo7. Courbes planes. 1 Courbes d équation y = f (x) 2 Courbes paramétrées en coordonnées cartésiennes. Fiche de Léa Blanc-Centi. Eo7 Courbes planes Fiche de Léa Blanc-Centi. Courbes d équation = f () Eercice Représenter les courbes d équation cartésienne = f (), donner l équation de leur tangente au point d abscisse = et la position

Plus en détail

PCSI M1. Cinématique du point.

PCSI M1. Cinématique du point. M1. Cinématique du point. 1. Propos de la cinématique. 2. Cadre spatio-temporel de la cinématique newtonienne. 2.1. Notion d événement. 2.2. Repère de temps. 2.3. Repères d espace. 2.4. Notion de référentiel.

Plus en détail

Chapitre 3 : Observables et opérateurs

Chapitre 3 : Observables et opérateurs Chapitre 3 : Observables et opérateurs 1) Généralités Toute l information sur le système est contenue dans la fonction d onde! On utilise des opérateurs pour extraire cette information. Opérateur : Objet

Plus en détail

TORSION. I.2 : Hypothèse sur le système des forces extérieures appliquées et sur les déformations qui en résultent:

TORSION. I.2 : Hypothèse sur le système des forces extérieures appliquées et sur les déformations qui en résultent: 1 TORSION Définition: La torsion est un mode de charge telle que dans les sections droites de la barre, seul apparaît un moment de torsion. Les autres facteurs de forces (Moment fléchissant, force normale

Plus en détail

Baccalauréat S Métropole 19 juin 2014

Baccalauréat S Métropole 19 juin 2014 Baccalauréat S Métropole 19 juin 2014 EXERCICE 1 Partie A A. P. M. E. P. Dans le plan muni d un repère orthonormé, on désigne par C 1 la courbe représentative de la fonction f 1 définie sur R par : f 1

Plus en détail

Propagation libre dans le vide sans sources

Propagation libre dans le vide sans sources Cours d électromagnétisme Propagation libre dans le vide sans sources Hypothèses : On se place dans le vide dont les caractéristiques sont :,, 0, 0. Il y a une source de champs (par exemple : dipôle rayonnant).

Plus en détail

Chapitre VII : LES NOMBRES COMPLEXES

Chapitre VII : LES NOMBRES COMPLEXES I - Ecriture algébrique des nombres complexes 1) Définition Chapitre VII : LES NOMBRES COMPLEXES Définition 1 : On admet qu il existe un ensemble de nombres, noté C, vérifiant les propriétés suivantes

Plus en détail

AL1 Complexes FC - Exercices -

AL1 Complexes FC - Exercices - AL Complexes FC - Exercices - CALCULS TRANSFORMATIONS D ÉCRITURES TRIGONOMÉTRIE 4 4 POLYNÔMES 4 5 EXERCICES DE TESTS 5 Page sur 9 Calculs. Additions.. ( i) ( 4i) Mathématiques AL - Complexes + + +.. i

Plus en détail

60. Une équation d un plan P tel que P est perpendiculaire à P et passe par le point A est : A =0 B =0 C =0 D.

60. Une équation d un plan P tel que P est perpendiculaire à P et passe par le point A est : A =0 B =0 C =0 D. Dans un repère orthonormé 0;,,, on donne le point A de coordonnées : A(5,3,1) et le plan P d équation : +2 3+4=0 57. Un point E du plan P est : A. E (3,-2,1) B. E (-1,-2,3) C. E (3,2,1) D. E (0,0,0) 58.

Plus en détail

Brevet de technicien supérieur Métropole - session groupement A1

Brevet de technicien supérieur Métropole - session groupement A1 Brevet de technicien supérieur Métropole - session 2010 - groupement A1 Exercice 1 10 points Spécialités CIRA, Électrotechnique, Génie optique, Systèmes électroniques, TPIL Dans cet exercice, on se propose

Plus en détail

DS de Sciences Physique n 3

DS de Sciences Physique n 3 DS de Sciences Physique n 3 Exercice 1 : Effet Doppler et astrophysique L effet Doppler constitue un moyen d investigation utilisé en astrophysique Il permet de déterminer la vitesse des astres à partir

Plus en détail

source : géoportail.fr Carte à l échelle 1/8000 Courbes de niveau en économie

source : géoportail.fr Carte à l échelle 1/8000 Courbes de niveau en économie Courbe de niveau Pour représenter le relief, les cartographes utilisent des plans de coupe horizontale, d altitude constante. Par projection, les courbes obtenues donnent les courbes de niveau sur la carte.

Plus en détail

Chapitre I : LES SUITES

Chapitre I : LES SUITES Chapitre I : LES SUITES I- Généralités sur les suites 1) Définition et notations Définition 1 : 1) Définir une suite par une formule explicite, c est donner une relation entre le terme et l entier, pour

Plus en détail

Chapitre VIII Calcul matriciel

Chapitre VIII Calcul matriciel Chapitre VIII Calcul matriciel Dans ce cours, désigne, ou un corps commutatif quelconque. I Matrices et applications Les matrices sont un outil de calcul et de représentation des applications linéaires.

Plus en détail

北航中法工程师学院 ÉCOLE CENTRALE DE PÉKIN SCIENCES INDUSTRIELLES POUR L INGÉNIEUR

北航中法工程师学院 ÉCOLE CENTRALE DE PÉKIN SCIENCES INDUSTRIELLES POUR L INGÉNIEUR ER Page 1 北航中法工程师学院 ÉCOLE CENTRALE DE PÉKIN SCIENCES INDUSTRIELLES POUR L INGÉNIEUR Année académique 2012-2013 Examen de rattrapage Numéro d étudiant à 8 chiffres : Prénom français : Nom chinois ( 姓名,

Plus en détail

(Moment cinétique) Étude de la chute d une tartine

(Moment cinétique) Étude de la chute d une tartine Problème de mécanique (Moment cinétique) Étude de la chute d une tartine (Auteur : Arne Keller) Le matin de bonne heure, le café est en train de se faire et vous beurrez votre première tartine que vous

Plus en détail

La première série, découverte par Balmer (visible), comprend quatre raies démission :

La première série, découverte par Balmer (visible), comprend quatre raies démission : 11 CHAPITRE II SPECTROSCOPIE ATOMIQUE Une bonne partie de nos connaissances actuelles sur la constitution des atomes et des molécules provient d expériences dans lesquelles la lumière et la matière s influencent

Plus en détail

Fonction linéaire. Le nombre a étant donné, la fonction f qui, à la variable x, associe son image f(x) = ax est appelée fonction linéaire.

Fonction linéaire. Le nombre a étant donné, la fonction f qui, à la variable x, associe son image f(x) = ax est appelée fonction linéaire. Fonction linéaire Définition : Le nombre a étant donné, la fonction f qui, à la variable x, associe son image f(x) = ax est appelée fonction linéaire. Exemples : La fonction f définie par f(x) = 2x ; la

Plus en détail

Les équations de Maxwell

Les équations de Maxwell Chapitre 1 Les équations de Maxwell La lumière est une onde électromagnétique qui se propage dans le vide ou un milieu matériel. Nous allons donc rappeler dans ce premier chapitre les postulats de l électromagnétisme.

Plus en détail

MECANIQUE QUANTIQUE DOUBLE-PUITS- MODELISATION-DU-DOUBLE-PUITS PHÉNOMÈNE-D INVERSION

MECANIQUE QUANTIQUE DOUBLE-PUITS- MODELISATION-DU-DOUBLE-PUITS PHÉNOMÈNE-D INVERSION DOUBLE-PUITS- MECANIQUE QUANTIQUE Paramètres du problème : Largeur d un puits Hauteur d un puits Ecart entre les deux puits Modélisation de la liaison chimique : COURS 4 LES-PRINCIPES- DE-LA-MECANIQUE-

Plus en détail

Gilles Molinié. mise à jour le 4 avril 2008

Gilles Molinié. mise à jour le 4 avril 2008 Géométrie Gilles Molinié e x e z e y mise à jour le 4 avril 2008 e 3 q2=cste 00 11 000 111 00000 11111 000000 111111 0000000 1111111 000 111 01 0000000 1111111 0000 1111 0000 1111 e 2 000 111 000 111 00

Plus en détail

CI 3 CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES

CI 3 CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES CI 3 CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES SYSTÈMES CHAPITRE 3 PARAMÉTRAGE DES SYSTÈMES MÉCANIQUES La cinématique du solide indéformable fait intervenir des solides en mouvement relatifs les uns

Plus en détail

Analyse vectorielle 1/25

Analyse vectorielle 1/25 Seconde partie du cours MATH-F-112 / MATH-F-1112 : Module S GEOL2,GEOG2,GEOG3 Soyez les bienvenus! INFO1 Changez d auditoire! Cours à la Plaine au Forum D GEOG1,GEOL1 Vous pouvez rester si vous voulez

Plus en détail

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches.

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches. Sujet Centres Étrangers 203 EXERCICE. [6 pts] Lois continues Un industriel fabrique des vannes électroniques destinées à des circuits hydrauliques. Les quatre parties A, B, C, D sont indépendantes. Partie

Plus en détail