Ques%on #1. Distances: Masses:

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Ques%on #1. Distances: Masses:"

Transcription

1 Ques%on #1 Le Comité Interna%onal Olympique a mandaté le comité organisateur des jeux d été de Tokyo 00 d ajouter une nouvelle épreuve de force. Dans le cadre de cege épreuve, l athlète doit soutenir une structure rigide composée de trois poids dont les dimensions et les masses sont représentées sur la figure: un poids a la forme d un quart de cercle, un autre est en forme de demi cercle et le troisième est une barre rectangulaire. Le ressort a une constante k et est associé à un é%rement x par rapport à sa posi%on d équilibre. Une force de grandeur absolue F est aussi appliquée au bout de la barre rectangulaire. Pour répondre aux ques%ons vous devez considérer que les points d applica%on des deux forces exercées par l athlète sur la barre rectangulaire sont situées aux points P 1 et P. Angles: Distances: Masses: Force: Constante du ressort: θ 30 L k 0. m, L P1 1 m, L P 1.75 m, L. m, D 0.1 m, r 0.05 m, H 1.5 m m 1 m 110 kg, m 3 0 kg, F 30 N k 10.0 N/m A. Faites le DCL du système composé des poids m 1, m et m 3 dont la masse volumique est constante. Prenez en considéra%on qu il existe une force de fric%on (ver%cale) dans le système de glissement au point A. (0 points) B. Trouvez les coordonnées du centre de gravité de la structure composée des poids m 1, m et m 3 dans un système de coordonnées dont l origine correspond au point O. (10 points) C. Trouvez les forces exercées aux points d applica%on P 1 et P lorsque l é%rement dans le ressort est de x 1 m et que la force de fric%on au point A est nulle (μ 0). Faites le calcul pour θ 45. (15 points) D. Quelle sera la valeur absolue de la force de fric%on au point A si le coefficient de fric%on est μ 0.5. Faites le calcul pour θ 0, 45 et 90. (5 points)

2 Ques%on #1 (suite) L L P point A L k L P1 D F Quart de cercle aire: πr / 4 centre de gravité: y 4r / 3π r m 1 r m m 3 θ y r P 1 P k, x H point O

3

4

5 La chaîne de télévision PolyTV a besoin de votre aide! Dans le cadre de son nouveau jeu ques%onnaire télévisé, la chaîne veut concevoir une plateforme tel qu illustrée sur la figure. Lorsque le par%cipant situé sur la plateforme répond incorrectement à une ques%on, cege dernière devra être relâchée de manière à ce que le par%cipant tombe dans la piscine. Lorsqu il y a une mauvaise réponse, un homme exerçant une force F à travers un système de poulies lâche la corde et la membrure de protec%on est elle- aussi relâchée exactement en même temps. Le point A est un pivot qui est libre de tourner. Angles: Distances: Masses: Force: θ 30, φ 40 d 0.5 m, D 4 m, L 5 m, m P (plateforme) 00 kg, M (masse du par%cipant) F 15 N A. Faites le DCL de la plateforme. (0 points) Ques%on # B. Il y a deux contraintes à respecter pour la construc%on du tremplin: la force sur le joint rota%f au point A et la tension dans la membrure de sécurité ne peuvent dépasser N, sans quoi il y aura bris. Déterminez si oui ou non il y aura bris de la structure sachant que la masse d une personne se tenant sur la plateforme ne dépassera jamais M 130 kg. (0 points) C. Est- ce que la présence de l homme exerçant une force F est essen%elle pour que l intégrité de la structure soit maintenue? (10 points)

6 Ques%on # (suite) L D point A d M φ F m P θ Membrure de protection

7 Ques%on A)

8

9 Ques%on #3 On étudie un avant- bras (incluant la main) qui sou%ent une balle de poids M et dont le centre de masse est en F. Le bras s agache au coude au point C. Le poids du bras applique une unique force ver%cale en C dirigée vers le bas et notée G. L avant bras (par%e CH) est maintenu dans la posi%on montrée sur le schéma (bras et avant bras faisant ini%alement un angle β 90 l un de l autre) grâce au tendon du biceps (BD) qui applique une tension T au point D. Dans toute la suite du problème, seul l avant bras (C à H) est étudié. La posi%on des points A et B vous est donnée pour vous aider à extraire des informa%ons géométriques requises pour répondre aux ques%ons plus bas. Le centre de masse de l avant bras (main incluse) est situé au point E. On néglige l influence du bout des doigts. Dans cege ques%on nous allons considérer deux situa7ons différentes pour lesquelles l angle β entre le tendon et le est différent, c est- à- dire β 90 (situa7on 1) et β 10 (situa7on ). β

10 Ques%on #3 (suite) Situa7on 1: β 90 A) Faites le DCL de l avant- bras uniquement (par%e C à H). (10 points) B) Exprimez ligéralement puis calculez la valeur de la tension T. (10 points) Situa7on : β 10 On considère à présent un angle β de 10 o entre le bras AC et l avant bras CH. On considère également que la balle est immobile et qu il n y a aucune force de frogement. Notez que lorsque l avant bras était à l horizontale, le tendon BD avait la même longueur que le bras AC. Par contre, avec un angle β 10 o, le tendon change sa longueur sans changer la posigon du point d ahache B. C) Faites le nouveau DCL de la par%e CH uniquement en vous aidant de la figure 1 (10 points) D) U%lisez le schéma du quadrilatère ABDC (figure ) et calculez l angle γ. (10 points) Nous vous conseillons de découper le quadrilatère en deux triangles et d ugliser des relagons trigonométriques du formulaire pour trouver la solugon. E) En considérant que la réponse en D) est γ61, o, et en vous aidant du DCL fait en C), calculez la nouvelle tension T lorsque β 10 o. (10 points) Les ques'ons n ont que peu de dépendances entres elles. Nous vous conseillons donc de répondre à toutes les ques'ons même si vous n avez pas réussi les autres sous- ques'ons.

11 Ques%on #3 (suite) Figure 1 Figure On donne : CF l 30 cm * CE AB CD e 3 cm AC d 7 cm FH r 5 cm m (balle) 4 kg m (avant- bras),5 kg β γ

12 A) Faites le DCL de l avant- bras uniquement (par%e C à H). (10 points) B) Exprimez ligéralement puis calculez la valeur de T (10 points) z e Ml Pl T z z Ml Pl et M r l P l T e M M CF P CE T CD M M C C C ) ( / Σ + + Σ Σ N g m M N g m P balle bras T515,05N Réponse #3

13 Réponse #3 C) Faites le nouveau DCL de la par%e CH uniquement en vous aidant de la figure 1 (10 points)

14 Réponse #3 D) U%lisez le schéma du quadrilatère ABDC (figure ) et calculez l angle γ. (10 points) Vous pouvez découper le quadrilatère en triangles pour trouver la solu%on. e On cherche f dans ABC On cherche alpha en u%lisant ABC On calcule l angle BCD Loi des sinus pour BCD (1) Al kashi pour BCD U%lisa%on de (1) f e α a tan 6.8 d β α e f h sinδ sin γ sin( β α) h e e + d + ef 0.03 cos( β α) h 0.849m 8.49cm sin( β α) sin γ f h γ 61. f m 7.17cm sin(113.) d β α e f δ h γ

15 Réponse #3 E) En considérant que γ61, o, et en vous aidant du DCL fait en C) calculez la nouvelle tension T avec β 10 o (10 points) ΣM ΣM C C CD T + CE P + CF M e T cosγ l ΣM C + 0 T sin γ 0 cos(180 β ) cos β sin(180 β ) sin β ΣM ( et sin γ l C 0 lp sin β + lm sin β Mr cos β T z z esin γ T N / * / P cos(180 β ) l M cos(180 β ) + Psin(180 β ) r M sin(180 β ) Psin β lm sin β + Mr cos β ) z 0

16 Ques%on #4 La posi%on du drapeau humain consiste à se maintenir horizontalement sur une barre ver%cale (voir photo ci- dessous). C est un Québécois, Dominic Lacasse, qui dé%ent le record du monde en ayant tenu 39 secondes dans cege posi%on. Le but de l exercice est de calculer le moment d iner%e de l homme selon l axe z (voir schéma). Le corps de l homme est composé de deux jambes cylindres pleins (J 1 et J ), d un buste parallélépipède (B 3 ), d une tête cylindre plein(t 4 ) et de deux bras cylindres pleins (B 5 et B 6 ). La plupart des dimensions sont sur le schéma ci- dessous. La seule informa%on non affichée est l épaisseur du parallélépipède e 3. Masse volumique : ρ040kg/m 3 Jambes J 1 et J : L 1 86cm, d 1 10cm Buste B 3 : L 3 60cm, h 3 30cm, e 3 7m Tête T 4 : L 4 5cm, d 4 1cm Bras B 5 et B 6 : L 5 68cm, d 5 8cm Autre : b4cm A) Calculer la masse totale de l homme. (5 points) B) Déterminer les coordonnées (x,y) du centre de masse de l homme. (10 points) C) Expliquer, en vos propres mots, comment calculer le moment d iner%e total du système au complet par rapport à l axe z. (5 points) D) Calculer le moment d iner%e de chacune des pièces par rapport à l axe parallèle à z et passant par leur centre de masse respec%f. (10 points) E) Déterminer le moment d iner%e total de l homme par rapport à l axe z. (10 points) F) Calculer le rayon de gira%on de l homme par rapport à l axe z. (5 points) G) Expliquer et jus%fier, en vos propres mots, quels sont les avantages d écarter les bras. (5 points)

17 Ques%on #4 (suite) b y h 3 d 1 J 1 L 4 B 5 d 4 T 4 J B 3 B 6 z d 5 x L 1 L 3 L 5

18 A) Calculer la masse totale de l homme. (5 points) Ques%on #4 Solu%on V V V V J1 B3 T4 B5 + V + V J L B3 πd B6 πd h T4 B3 L e T4 J1 B3 πd L B5 J / L / m B5 m 3 m 3 / m 3 V m tot tot ρv tot m 73 kg 5 points de calculs simples 3 B) Déterminer le centre de masse de l homme. (10 points) Par7e m (kg) x G (m) y G (m) mx G J J B T B B Total 73 y est un axe de symétrie x m 73 y 0 m 10 points de résolu%on de problème

19 Ques%on #4 Solu%on (suite) C) Expliquer en vos propres mots comment calculer le moment d iner%e total par rapport à l axe z. (5 points) Le moment d iner%e total d une pièce est composé de deux termes : le moment d iner%e au centre de masse de cege pièce et un terme relié à la distance entre l axe de référence et l axe de calcul (théorème des axes parallèles). Une fois le moment total de chaque pièce déterminé, il suffit de faire la somme pour avoir le moment d iner%e de l ensemble au complet. 5 points de compréhension D) Calculer le moment d iner%e de chacune des pièces à leur centre de masse respec%f. (10 points) Pour un cylindre horizontal : mr /4+mL /1 Pour un parallélépipède : m(l +h )/1 Par7e I CM (kg.m ) J m J1 (0.05 / /1) J B3 m B3 ( )/ T4 m T4 (0.06 /4+0.5 /1) B5 0.7 m B5 (0.04 / /1) B6 0.7 Total points de calculs simples

20 Ques%on #4 Solu%on (suite) E) Déterminer le moment d iner%e total de l homme par rapport à l axe z. (10 points) Par7e I CM (déjà calculé) md Total (kg.m ) J m J1 *( ) J B m B3 * T m T4 * B m B5 *( ) B Total F) Calculer le rayon de gira%on de l ensemble. (5 points) k I m tot tot 11.5 k 1.4m points de résolu%on de problème 5 points de calculs simples G) Expliquer et jus%fier, en vos propres mots, quels sont les avantages d écarter les bras. (5 points) Le but est d augmenter le moment de force MFxd pour contrer le poids. Augmenter la distance d entre les bras revient à limiter la force nécessaire F. 5 points de compréhension

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces Etude de l équilibre d un solide soumis à trois forces non parallèles Si un solide soumis à l'action de 3 forces A

Plus en détail

Partiel PHY121 Mécanique du point

Partiel PHY121 Mécanique du point Université Joseph Fourier Grenoble Licence Partiel PHY2 Mécanique du point Vendredi 23 mars 202 Durée h30 Calculatrices et documents non-autorisés Pour chaque question, 4 réponses sont proposées dont ou

Plus en détail

Voyez la réponse à cette question dans ce chapitre. www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof

Voyez la réponse à cette question dans ce chapitre. www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof Une échelle est appuyée sur un mur. S il n y a que la friction statique avec le sol, quel est l angle minimum possible entre le sol et l échelle pour que l échelle ne glisse pas et tombe au sol? www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof

Plus en détail

Calcul de longueurs :

Calcul de longueurs : Calcul de longueurs : Exercice : (Japon 96) C est un triangle rectangle en A. On donne 5 cm et A B ˆC 5. 1) Construire la figure en vraie grandeur. 2) Déterminer la longueur, arrondie au dixième de centimètre.

Plus en détail

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME 2012 FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME NOUS VOUS PRESENTONS ICI UN FORMULAIRE CONTENANT LES DEFINITIONS, PROPRIETES ET THEOREMES VUS EN COURS DE MATHEMATIQUES TOUT AU LONG DE VOTRE SCOLARITE

Plus en détail

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ.

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ. Exercice :(Amiens 1995) Les questions 2, 3 et 4 sont indépendantes. L'unité est le centimètre. 1) Construire un triangle MAI rectangle en A tel que AM = 8 et IM = 12. Indiquer brièvement les étapes de

Plus en détail

Campus Saint-Jean (consolidé avec la Faculty of Engineering) PHYSQ 131 Examen Final Samedi, 21 avril, 2012; 14h 16h30 MCM 3-18

Campus Saint-Jean (consolidé avec la Faculty of Engineering) PHYSQ 131 Examen Final Samedi, 21 avril, 2012; 14h 16h30 MCM 3-18 Campus Saint-Jean (consolidé avec la Faculty of Engineering) PHYSQ 131 Examen Final Samedi, 21 avril, 2012; 14h 16h30 MCM 3-18 1. Vous n avez droit ni aux notes, ni au manuel. 2. Des feuilles de formules

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

Les moments de force. Ci-contre, un schéma du submersible MIR où l on voit les bras articulés pour la récolte d échantillons [ 1 ]

Les moments de force. Ci-contre, un schéma du submersible MIR où l on voit les bras articulés pour la récolte d échantillons [ 1 ] Les moments de force Les submersibles Mir peuvent plonger à 6 000 mètres, rester en immersion une vingtaine d heures et abriter 3 personnes (le pilote et deux observateurs), dans une sphère pressurisée

Plus en détail

BREVET BLANC de Mathématiques. Jeudi 16 mai 2013

BREVET BLANC de Mathématiques. Jeudi 16 mai 2013 BREVET BLANC de Mathématiques Jeudi 16 mai 2013 ********************************** Durée de l épreuve : 2 heures ********************************** Le sujet comporte 5 pages. Dès que ce sujet vous est

Plus en détail

Géométrie synthétique : Juillet 2005 (première série) Nom. Question 3 : (25%) Numéro

Géométrie synthétique : Juillet 2005 (première série) Nom. Question 3 : (25%) Numéro Géométrie synthétique : Juillet 2005 (première série) Question 3 : (25%) On donne dans le même plan, un point fixe F, et un cercle fixe de centre O et de rayon R. Par F, on mène une droite qui intersecte

Plus en détail

PHYSQ 124 LEC A1 : Particules et ondes Examen final Automne 2011. Nom SOLUTIONS. Numéro de l étudiant.e

PHYSQ 124 LEC A1 : Particules et ondes Examen final Automne 2011. Nom SOLUTIONS. Numéro de l étudiant.e PHYSQ 124 LEC A1 : Particules et ondes Examen final Automne 2011 Nom SOLUTIONS Numéro de l étudiant.e Professeur Marc de Montigny Horaire Vendredi, 16 décembre 2011, de 9 h à midi Lieu Gymnase du Campus

Plus en détail

Problèmes sur le chapitre 5

Problèmes sur le chapitre 5 Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire

Plus en détail

Ce document a été numérisé par le CRDP de Paris pour la Base Nationale des Sujets d Examens de l enseignement professionnel

Ce document a été numérisé par le CRDP de Paris pour la Base Nationale des Sujets d Examens de l enseignement professionnel Ce document a été numérisé par le CRDP de Paris pour la Base Nationale des Sujets d Examens de l enseignement professionnel Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans

Plus en détail

Mesure d angles et trigonométrie

Mesure d angles et trigonométrie Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi

Plus en détail

CRPE Blanc 2015 ESPE DE GRENOBLE (Bonneville, Chambéry, Grenoble, Valence) Epreuve de mathématiques

CRPE Blanc 2015 ESPE DE GRENOBLE (Bonneville, Chambéry, Grenoble, Valence) Epreuve de mathématiques CRPE Blanc 2015 ESPE DE GRENOBLE (Bonneville, Chambéry, Grenoble, Valence) Epreuve de mathématiques PREMIERE PARTIE (13 points) Dans ce problème, on étudiera un procédé de fabrication d'une " brique "

Plus en détail

Chapitre 4. Travail et puissance. 4.1 Travail d une force. 4.1.1 Définition

Chapitre 4. Travail et puissance. 4.1 Travail d une force. 4.1.1 Définition Chapitre 4 Travail et puissance 4.1 Travail d une force 4.1.1 Définition En physique, le travail est une notion liée aux forces et aux déplacements de leurs points d application. Considérons une force

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Brevet Juin 2007 Liban Corrigé Page 1 sur 6

Brevet Juin 2007 Liban Corrigé Page 1 sur 6 Brevet Juin 007 Liban Corrigé Page 1 sur 6 Exercice 1 : 1) A = 500 (10 3 ),4 10 7 8 10 4 = 500 10 6 4 10 1 10 7 8 10 4 500 4 = 8 = 500 3 8 8 = 500 3 100 10 4 = 1500 10 0 + 4 = 1500 10 4 = 1,5 10 3 10 4

Plus en détail

Brevet des collèges, correction, Métropole, 28 juin 2011

Brevet des collèges, correction, Métropole, 28 juin 2011 Brevet des collèges, correction, Métropole, 28 juin 2011 Activités numériques 12 points Exercice 1 Un dé cubique a 6 faces peintes : une en bleu, une en rouge, une en jaune, une en vert et deux en noir.

Plus en détail

On prend comme volume de contrôle l auget en translation. Ce volume de contrôle est donc en translation avec une vitesse U t. U t

On prend comme volume de contrôle l auget en translation. Ce volume de contrôle est donc en translation avec une vitesse U t. U t page 1 Problème 1 : Auget mobile (6 points) Un jet d eau, ayant une vitesse V 1 frappe un auget à une hauteur y 1 comme indiqué sur la figure 1. On considère que le jet incident a un diamètre D et que

Plus en détail

Secteur 3 : Métiers de l'électricité - Électronique - Audiovisuel - Industries graphiques

Secteur 3 : Métiers de l'électricité - Électronique - Audiovisuel - Industries graphiques Examen : CAP Épreuve : Mathématiques-Sciences durée : 2 heures Secteur 3 : Métiers de l'électricité - Électronique - Audiovisuel - Industries graphiques Sont concernées les spécialités suivantes : Accessoiriste

Plus en détail

MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2

MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2 MON CAHIER DE VACANCES n 1 MATHEMATIQUES 3 ème 2 Ce cahier appartient à. Ce cahier est à rapporter le vendredi 6 Novembre 201, à Mme Viault. Les exercices sont à rédiger, sur ce livret, le plus sérieusement

Plus en détail

Corrigés de la séance 5 Chap 5 et 7: Gravitation et frottements

Corrigés de la séance 5 Chap 5 et 7: Gravitation et frottements Corrigés de la séance 5 Chap 5 et 7: Gravitation et frottements Questions pour réfléchir Q4. p.262. Jupiter a une masse 318 fois plus grande que celle de la Terre. Pourtant, l accélération de la pesanteur

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Question #1. m A m D m E

Question #1. m A m D m E Question #1 La poutre suivante est soumise à des poids A, D et E. Elle est soutenue par une corde attachée en B et C et qui passe par une poulie sans friction. m A m D m E Question #1 (suite) A) Faites

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

Mathématiques niveau CFG

Mathématiques niveau CFG Mathématiques niveau CFG Chapitre 4 : Géométrie COURS 4 : QUADRILATERES 1. IDENTIFIER UN QUADRILATERE ABCD est une figure géométrique formée de 4 côtés et de 4 sommets : c est un quadrilatère Le segment

Plus en détail

Mathématiques et petites voitures

Mathématiques et petites voitures Mathématiques et petites voitures Thomas Lefebvre 10 avril 2015 Résumé Ce document présente diérentes applications des mathématiques dans le domaine du slot-racing. Table des matières 1 Périmètre et circuit

Plus en détail

point d application F r intensité: 4 unités

point d application F r intensité: 4 unités A. MÉCANIQUE A1. Forces I) appels 1) Effets d une force: définition Une force est une grandeur physique qui se manifeste par ses effets a) effet dynamique : Une force est une cause capable de produire

Plus en détail

Nom :... Prénom :... Section :... No :... Exercice 1 (6 points) EPFL, Physique Générale I SIE & SMX, 2010-2011 Examen 14.01.2011

Nom :... Prénom :... Section :... No :... Exercice 1 (6 points) EPFL, Physique Générale I SIE & SMX, 2010-2011 Examen 14.01.2011 EPFL, Physique Générale I SIE & SMX, 200-20 Examen 4.0.20 Nom :... Prénom :... Section :... No :... Les seuls objets autorisés sont: Le formulaire "résumé mécanique" disponible sur le moodle une feuille

Plus en détail

Mécanique des solides déformables

Mécanique des solides déformables Mécanique des solides déformables Auteur Michel MAYA 1 Descriptions 2 Représentations graphiques Ce cours est mis à disposition selon les termes de la licence Creative Commons Paternité + Pas d utilisation

Plus en détail

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES ÉPREUVE DE SÉLECTION 2012 CORRIGÉ EXERCICES POUR LES ÉLÈVES DE COLLÈGE ET DE SECONDE

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES ÉPREUVE DE SÉLECTION 2012 CORRIGÉ EXERCICES POUR LES ÉLÈVES DE COLLÈGE ET DE SECONDE OLYMPIADES FRANÇAISES DE MATHÉMATIQUES ÉPREUVE DE SÉLECTION 2012 CORRIGÉ EXERCICES POUR LES ÉLÈVES DE COLLÈGE ET DE SECONDE Exercice 1. Fred et Sarah sont les aînés d une même et grande famille. Fred a

Plus en détail

Chapitre 4: Les 3 principes de Newton

Chapitre 4: Les 3 principes de Newton e B et C 4 Les 3 principes de Newton 38 Chapitre 4: Les 3 principes de Newton 1. Rappels sur les forces Rappel 1 : On appelle force toute cause capable de: modifier le mouvement d un corps; de déformer

Plus en détail

Section 7. Épreuves piscine-physique

Section 7. Épreuves piscine-physique Section 7 Épreuves piscine-physique 7. ÉPREUVES PISCINE-PHYSIQUE Légende : = Athlète = Mannequin maintenu à la verticale, face au mur de virage = Mannequin sur le dos = Obstacle et barre transversale =

Plus en détail

PRODUIT SCALAIRE EXERCICES CORRIGES

PRODUIT SCALAIRE EXERCICES CORRIGES Exercice n. (correction) Répondre par VRAI (V) ou FAUX (F) : Question Soient A, B et C trois points distincts du plan. PRODUIT SCALAIRE EXERCICES CORRIGES a) A, B et C sont alignés si et seulement si :

Plus en détail

1 /20 2 /20 3 /20 4 /20 5 /20 6 /20 7 /20 Total /140

1 /20 2 /20 3 /20 4 /20 5 /20 6 /20 7 /20 Total /140 PHY NY Mécaniquw Pré-Test PRÉ-TEST PHY NY NOM : Professeur : Pierre Noël de Tilly Règlements : Tout plagiat entraîne la note zéro. Seuls calculatrice, règle, rapporteur d'angle, gomme à effacer, crayons

Plus en détail

Exercices sur Travail, puissance et l'énergie mécanique

Exercices sur Travail, puissance et l'énergie mécanique F en N LNW Physique II e BC Exercices sur Travail, puissance et l'énergie mécanique 1) Calculer le travail d'une force constante F 3 i 1 j le long d'un trajet rectiligne de A (2,0) vers B (7,4). 2) Le

Plus en détail

CENTRE DE FORMATION DE LA FFCEB PROTOCOLES DES TESTS D ENTRÉE

CENTRE DE FORMATION DE LA FFCEB PROTOCOLES DES TESTS D ENTRÉE 1 ) TESTS DE SOUPLESSE Pour la souplesse, 4 tests seront effectués. CENTRE DE FORMATION DE LA FFCEB PROTOCOLES DES TESTS D ENTRÉE A) TEST DU SIT AND REACH Le sujet est assis jambes tendues devant lui.

Plus en détail

TEST PRÉPARATOIRE NEWTON 2014 A) 500 B) 10 C) 1 000 D) 100 E) 2 000 A) 3 B) 6 C) 4 D) 2 E) 5 A) 10 B) 0 C) -15 D) -9 E) -18

TEST PRÉPARATOIRE NEWTON 2014 A) 500 B) 10 C) 1 000 D) 100 E) 2 000 A) 3 B) 6 C) 4 D) 2 E) 5 A) 10 B) 0 C) -15 D) -9 E) -18 TEST PRÉPARATOIRE NEWTON 2014 1. La valeur de n dans l équation: n x 5% = 100 est A) 500 B) 10 C) 1 000 D) 100 E) 2 000 2. 3/4 de 1/4 de 16 =? A) 3 B) 6 C) 4 D) 2 E) 5 3. La valeur de (-2-5) + (-5-3) est

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

Exercice 2 On considère le triangle DNB tel que DN = 5 cm ; NB = 12 cm et BD = 13 cm. La figure ci-contre n est pas en vraie grandeur.

Exercice 2 On considère le triangle DNB tel que DN = 5 cm ; NB = 12 cm et BD = 13 cm. La figure ci-contre n est pas en vraie grandeur. BREVET BLANC de MATHEMATIQUES n 1 Janvier 2008 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques ( points) Exercice

Plus en détail

Corrigé des exercices «Principe fondamental de la dynamique»

Corrigé des exercices «Principe fondamental de la dynamique» «Principe fondamental de la dynamique» Exercice 1 a. Un véhicule parcourt 72 km en 50 minutes. Calculer sa vitesse moyenne et donner le résultat en km/h puis en m/s. La vitesse v est donnée en fonction

Plus en détail

Thème 17: Optimisation

Thème 17: Optimisation OPTIMISATION 45 Thème 17: Optimisation Introduction : Dans la plupart des applications, les grandeurs physiques ou géométriques sont exprimées à l aide d une formule contenant une fonction. Il peut s agir

Plus en détail

Ce document a été numérisé par le CRDP de Lille pour la Base Nationale des Sujets d Examens de l enseignement professionnel

Ce document a été numérisé par le CRDP de Lille pour la Base Nationale des Sujets d Examens de l enseignement professionnel Ce document a été numérisé par le CRDP de Lille pour la Base Nationale des Sujets d Examens de l enseignement professionnel Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans

Plus en détail

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5 ACTIVITÉS NUMÉRIQUES (12 s) Montrer que D est un nombre entier. Ê D = 5 12 2 D = 5 2 Exercice n 1 : Toutes les étapes de calcul devront figurer sur la copie. 1. On donne A = + 1 + 2. Calculer et donner

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

Brevet Blanc de Mathématiques. 4 Points sont réservés à la propreté et à la qualité de rédaction de la copie.

Brevet Blanc de Mathématiques. 4 Points sont réservés à la propreté et à la qualité de rédaction de la copie. Brevet Blanc de Mathématiques 4 Points sont réservés à la propreté et à la qualité de rédaction de la copie. Exercice 1 : Le graphique ci contre représente une fonction h. Pour chaque question, donner

Plus en détail

Travail d une force Correction

Travail d une force Correction Travail d une force Exercice 1 : Deux jumeaux de même masse m=75,0 kg montent au 5ème étage d'un immeuble en partant du rez-de-chaussée. Le jumeau A emprunte l'ascenseur et le jumeau B l'escalier. La distance

Plus en détail

Diplôme National du Brevet. Épreuve blanche Proposition de corrigé. Externat Notre Dame

Diplôme National du Brevet. Épreuve blanche Proposition de corrigé. Externat Notre Dame Diplôme National du Brevet Épreuve blanche Proposition de corrigé Externat Notre Dame Vendredi 9 décembre 2011 durée de l'épreuve : 2 h I - Activités numériques II - Activités géométriques III Problème

Plus en détail

Angles orientés. exercices corrigés. 21 février 2014

Angles orientés. exercices corrigés. 21 février 2014 exercices corrigés 21 février 2014 Exercice 1 Exercice 2 Exercice 3 Exercice 4 Exercice 5 Exercice 6 Exercice 7 Exercice 8 Exercice 9 Exercice 1 Enoncé Soit A et B deux points du plan tels que AB = 4 cm.

Plus en détail

Classes de 3 ème MATHEMATIQUES 1 février NOM : Prénom : Classe : Observations : Note : Signature :

Classes de 3 ème MATHEMATIQUES 1 février NOM : Prénom : Classe : Observations : Note : Signature : NOM : Prénom : Classe : Observations : Note : Signature : Durée 2 heures Il sera tenu compte de la clarté et de la présentation de la copie. Exercice 1 (2 points) Calculer et simplifier : A = 34 2 : 4

Plus en détail

Chapitre 3: Dynamique

Chapitre 3: Dynamique Introduction Le mot dynamique désigne ou qualifie ce qui est relatif au mouvement. Il est l opposé du mot statique. Le mouvement d un point matériel est liée à son interaction avec le monde extérieur ce

Plus en détail

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites

Plus en détail

DISQUE DUR. Figure 1 Disque dur ouvert

DISQUE DUR. Figure 1 Disque dur ouvert DISQUE DUR Le sujet est composé de 8 pages et d une feuille format A3 de dessins de détails, la réponse à toutes les questions sera rédigée sur les feuilles de réponses jointes au sujet. Toutes les questions

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

Savoir lire une carte, se situer et s orienter en randonnée

Savoir lire une carte, se situer et s orienter en randonnée Savoir lire une carte, se situer et s orienter en randonnée Le b.a.-ba du randonneur Fiche 2 Lire une carte topographique Mais c est où le nord? Quel Nord Le magnétisme terrestre attire systématiquement

Plus en détail

Troisième E IE3 trigonométrie sujet 1 2014-2015. A l aide de points nommés de la figure, exprimer de deux façons différentes : a) Cos ( BAC) =

Troisième E IE3 trigonométrie sujet 1 2014-2015. A l aide de points nommés de la figure, exprimer de deux façons différentes : a) Cos ( BAC) = Troisième E IE3 trigonométrie sujet 1 2014-2015 NOM : Prénom : a) Cos ( BAC) = Cos ( BAC) = b) Sin( BAC) = Sin( BAC) = c) Tan( BAC) = Tan( BAC) = Eddy souhaite aménager le grenier de sa ferme. Mesurant

Plus en détail

Module 8 : Périmètre et aire de figures planes

Module 8 : Périmètre et aire de figures planes RÉDUCTION DES ÉCARTS DE RENDEMENT 9 e année Module 8 : Périmètre et aire de figures planes Guide de l élève Module 8 Périmètre et aire de figures planes Évaluation diagnostique...3 Aire de parallélogrammes,

Plus en détail

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire

Plus en détail

Mathématiques Complément et synthèse I

Mathématiques Complément et synthèse I Définition du domaine d'examen MAT-4- Mathématiques Complément et synthèse I Mise à jour novembre 004 Définition du domaine d'examen MAT-4- Mathématiques Complément et synthèse I Mise à jour novembre 004

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Jean-Pierre LE GOFF & Didier TROTOUX

Jean-Pierre LE GOFF & Didier TROTOUX Histoire des Mathématiques par leur Littérature Une histoire des probabilités et des statistiques Stage du PAF (10A0050080 18412) 1 ère Session Vendredi 25 mars 2011 Quelques lumières sur la courbe dite

Plus en détail

Groupe seconde chance Feuille d exercices numéro 4

Groupe seconde chance Feuille d exercices numéro 4 Groupe seconde chance Feuille d exercices numéro 4 Exercice 1 Ecrire un programme de construction de la figure suivante. On utilisera seulement deux mesures : le rayon du cercle est 8 cm, la largeur d

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Définition : Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges ASIE Juin 2014 Durée : 2h00 Calculatrice autorisée Exercice 1 On laisse tomber une balle d une hauteur de 1 mètre. 3 points A chaque rebond elle rebondit des

Plus en détail

Concours Blanc N 1 Enoncé

Concours Blanc N 1 Enoncé Concours Blanc N 1 Enoncé Physique 20 QCM Durée de l épreuve : 60 min 20 pts Physique 1 QCM 1 Une bille, de masse m = 140 g, est accrochée à un fil inextensible de longueur l = 30 cm, de masse négligeable.

Plus en détail

TRIGONOMETRIE ET CALCUL NUMERIQUE

TRIGONOMETRIE ET CALCUL NUMERIQUE TRIGONOMETRIE ET CALCUL NUMERIQUE Questions 2010-2013 Exercice 1 2 2 sin(4 x)cos( x) 2sin( x)cos (2 x) 1 2sin ( x) (valeurs numériques) x 45 k 90 ;10 k 120 ;50 k 120 k Exercice 2 tg x 3tg x 4 4 (valeurs

Plus en détail

SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES. f(0)= 5 0 + 4= 0 + 4 = 4.

SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES. f(0)= 5 0 + 4= 0 + 4 = 4. 196 Séquence 7 SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES Ce que tu devais faire Les commentaires du professeur Séance 1 JE RÉVISE LES ACQUIS DE LA 4 e 5 4 0 9 L image de 0 par la fonction f est le nombre

Plus en détail

Chapitre 4.9 Le champ magnétique généré par un solénoïde

Chapitre 4.9 Le champ magnétique généré par un solénoïde Chapitre 4.9 e champ magnétique généré par un solénoïde Champ de deux boucles espacées Si l on courbe notre ligne de courant en cercle, on peut définir l orientation du champ magnétique à l aide de la

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

CORRECTION BREVET BLANC

CORRECTION BREVET BLANC Partie numérique Exercice 1 : CORRECTION BREVET BLANC Question 1 : on teste les trois valeurs en remplaçant x par la valeur. La solution est Question 2 : Les solutions sont et -2 Question 3 : on fait deux

Plus en détail

MATHÉMATIQUES (10 points)

MATHÉMATIQUES (10 points) Épreuve : Mathématiques et Sciences physiques Durée : 2 heures Coefficient : 2 page 1/7 La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l appréciation

Plus en détail

BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES

BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES Durée de l épreuve : 2 heures. Ce sujet comporte 6 pages numérotées de 1 à 6. Dès qu il vous est remis, assurez-vous qu il est complet. L usage de la calculatrice

Plus en détail

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité

Plus en détail

6 Des triangles rectangles aux relations trigonométriques

6 Des triangles rectangles aux relations trigonométriques 6 Des triangles rectangles aux relations trigonométriques SAÉ 11 La conception d un plan Choisir l emplacement de chaque objet sur la carte. Voici une démarche qui permet de dessiner le plan demandé. Pour

Plus en détail

Brevet Blanc de Mathématiques n 1

Brevet Blanc de Mathématiques n 1 Collège français Sadi Carnot Diego Suarez 21/11/2015 Brevet Blanc de Mathématiques n 1 Série collège Durée de l épreuve : 2 h 00 Conseils au candidat : - Le sujet comporte quatre pages numérotées de 1/4

Plus en détail

BREVET BLANC DES 5 et 6 février 2004 Corrigé MATHEMATIQUES

BREVET BLANC DES 5 et 6 février 2004 Corrigé MATHEMATIQUES Collège LANGEVIN WALLON BREVET BLANC DES et 6 février 004 Corrigé MATHEMATIQUES PARTIE I : ACTIVITES NUMERIQUES (1 points) Exercice I :1 1. En faisant apparaître les différentes étapes de calcul, écrire

Plus en détail

Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2

Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2 Cette épreuve comporte trois parties : A AGRAFER A LA COPIE D EXAMEN Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2 Diplôme nationale du Brevet Session 1999 Série technologique Partie

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR Introduction. page 2 Classe de septième.. page 3 Classe de sixième page 7-1 - INTRODUCTION D une manière générale on

Plus en détail

Chapitre 2 : Caractéristiques du mouvement d un solide

Chapitre 2 : Caractéristiques du mouvement d un solide Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence

Plus en détail

9 è et 10 è années 2013

9 è et 10 è années 2013 Partie A: Chaque bonne réponse vaut 3 points. Jeu-concours international KANGOUROU DES MATHÉMATIQUES 1. Le nombre n'est pas divisible par (A). (B). (C). (D). (E). 2. Les huit demi-cercles inscrits à l'intérieur

Plus en détail

DS n 6 (1h30) Chap D3+D4 27/03/2015. DEVOIR SURVEILLÉ n 6 Un petit tour à la fête foraine CALCULATRICE INTERDITE!!!

DS n 6 (1h30) Chap D3+D4 27/03/2015. DEVOIR SURVEILLÉ n 6 Un petit tour à la fête foraine CALCULATRICE INTERDITE!!! DEVOIR SURVEILLÉ n 6 Un petit tour à la fête foraine CALCULATRICE INTERDITE!!! Brenda Semeda-Moreiro, une élève de, décide de passer tout son week-end à réviser le contrôle de physique prévu pour lundi.

Plus en détail

EPREUVE OPTIONNELLE de SCIENCES INDUSTRIELLES

EPREUVE OPTIONNELLE de SCIENCES INDUSTRIELLES EPREUVE OPTIONNELLE de SCIENCES INDUSTRIELLES FERME-PORTE (ou «groom») Un «groom» est un système hydro-mécanique de fermeture automatique de porte. Description du fonctionnement La figure montre le dispositif

Plus en détail

I n t r o d u c t i o n a u x ( 2 0 S ) m a t h é m a t i q u e s a p p l i q u é e s e t p r é - c a l c u l 1 0 e a n n é e

I n t r o d u c t i o n a u x ( 2 0 S ) m a t h é m a t i q u e s a p p l i q u é e s e t p r é - c a l c u l 1 0 e a n n é e I n t r o d u c t i o n a u x m a t h é m a t i q u e s a p p l i q u é e s e t p r é - c a l c u l 0 e a n n é e ( 0 S ) Examen de préparation de mi-session Corrigé I n t r o d u c t i o n a u x m a

Plus en détail

Produit par : Dominic Fournier. Cours Initiation

Produit par : Dominic Fournier. Cours Initiation Cours Initiation Grigri L'assureur/descendeur autofreinant GRIGRI de PETZL, a révolutionné les techniques de descente et d'assurance en falaise. Il permet d'assurer et de faire descendre un grimpeur. En

Plus en détail

Triangles. I - Définition du triangle. II - Somme des angles d un triangle

Triangles. I - Définition du triangle. II - Somme des angles d un triangle Triangles Un chapitre complet sur les triangles. Ne pensez pas que puisqu il n y a qu un mot dans le titre, il sera court, au contraire. Beaucoup de nouvelles notions vont être énoncées dans ce cours sur

Plus en détail

3 ème Cours : géométrie dans l espace

3 ème Cours : géométrie dans l espace I. La sphère : a) Définition : La sphère de centre et de rayon R est l ensemble de tous les points qui sont situés à la distance R du point. L intérieur de la sphère (l ensemble des points dont la distance

Plus en détail

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0?

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0? Exercice 1 : ACTIVITÉS NUMÉRIQUES. Métropole Juin 2008 On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre par 3. b) Ajouter le carré du nombre choisi. c) Multiplier par

Plus en détail

STI2D : Enseignements Technologiques Transversaux

STI2D : Enseignements Technologiques Transversaux 1) Notion de moment d une force : Les effets d une force sur un solide dépendent de la position de la force par rapport au corps. Pour traduire avec précision les effets d une force, il est nécessaire

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Correction du brevet blanc du 12 Mai 2011. 1ère étape : 2 3 + 1 = 2 3 + 3 3 = 5 3. 2ème étape : 3ème étape : 25 9 ( 2 2

Correction du brevet blanc du 12 Mai 2011. 1ère étape : 2 3 + 1 = 2 3 + 3 3 = 5 3. 2ème étape : 3ème étape : 25 9 ( 2 2 PARTIE NUMÉRIQUE (14 points) Correction du brevet blanc du 12 Mai 2011 Exercice 1 1.a. Le nombre de départ est 1 1ère étape : 1 + 1 = 2 2ème étape : 2² = 4 3ème étape : 4 1² 4-1²= 4 1 = 3 Le résultat final

Plus en détail

Corrections preparation BB 2012

Corrections preparation BB 2012 Corrections preparation BB 2012 Brevet 2007 - Solution Activités numériques 1 Les explications ne sont pas demandées mais nous vous les fournissons tout de même. 1) la bonne réponse est 9x 2 + 30x + 25

Plus en détail

Trigonométrie. Guesmi.B. I) Déterminer une longueur... C 4 cm F 8. 5 cm. 5 m. 70 mm. II) Déterminer le cosinus d'un angle... B D

Trigonométrie. Guesmi.B. I) Déterminer une longueur... C 4 cm F 8. 5 cm. 5 m. 70 mm. II) Déterminer le cosinus d'un angle... B D Trigonométrie I) Déterminer une longueur... C 4 cm D I 3) Déterminer GI au millième près A 5 cm 25 E 30 2) Déterminer DF au millimètre près F 8 1) Déterminer C au centième près P 4) Déterminer QR au centimètre

Plus en détail

TD d exercices de Géométrie dans l espace.

TD d exercices de Géométrie dans l espace. TD d exercices de Géométrie dans l espace. Exercice 1. (Brevet 2006) Pour la pyramide SABCD ci-contre : La base est le rectangle ABCD de centre O. AB = 3 cm et BD = 5cm. La hauteur [SO] mesure 6 cm. 1)

Plus en détail

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe.

Chapitre I. Calcul vectoriel. Nous nous placerons dorénavant toujours dans une base orthonormée directe. Chapitre I INTRODUCTION ATHÉATIQUE I.A. I.A.1. Calcul vectoriel Produit vectoriel Plaçons-nous dans un espace vectoriel euclidien à trois dimensions. En faisant subir des rotations identiques aux trois

Plus en détail

;2 est-il situé sur la courbe Cf? Justifier par un calcul. Exercice 1 (8 points) Les étapes intermédiaires des calculs sont exigées.

;2 est-il situé sur la courbe Cf? Justifier par un calcul. Exercice 1 (8 points) Les étapes intermédiaires des calculs sont exigées. 3 èmes 1 à 9 Lundi 18 novembre 2013 DS de mathématiques n 2 1h50 calculatrice autorisée Consignes : - Coller l énoncé, plié en 4, sur la 1 ère page de la copie. - Souligner les résultats à la règle ; séparer

Plus en détail