FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS"

Transcription

1 FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS 1. Introducton La factorsaton est l un des ponts où l analoge entre nombres enters et polynômes se rompt. Par exemple, en caractérstque nulle, on peut trouver la parte sans facteurs carrés d un polynôme (c est-à-dre le produt de ses facteurs rréductbles) en utlsant la noton de dérvée, et en caractérstque postve, on peut aménager ce procédé. De plus, la noton de degré, la structure d algèbre dont est mun l ensemble de polynômes sur un corps, fournssent des outls mportants pour la résoluton du problème. Nous allons vor deux algorthmes. Le premer utlse tros étapes : la factorsaton en un produt de polynômes sans facteurs carrés, la factorsaton en degrés dstnts, pus la factorsaton en degrés égaux (algorthme de Cantor-Zassenhaus). La seconde utlse d abord une factorsaton en produt de polynômes sans facteurs carrés, pus un algorthme de factorsaton dû à Berlekamp, qu utlse de l algèbre lnéare. 2. Factorsaton en degrés dstncts Ce paragraphe décrt une factorsaton de polynômes sans facteurs carrés en un produt de polynômes de degrés dstncts. On utlse le théorème suvant. Théorème 2.1. Pour tout d 1, x qd x F q [x] est le produt de tous les polynômes untares rréductbles de F q [x] dont le degré dvse d. Défnton 2.2. La décomposton en degrés dstncts d un polynôme non constant f F q [x] est la sute (g 1,..., g s ) de polynômes, où g est le produt de tous les polynômes untares rréductbles de degré qu dvsent f, avec g s 1. Exemple. x 2 + x, x 4 + x 3 + x + 2 est la décomposton en degrés dstncts de f = x(x + 1)(x 2 + 1)(x 2 + x + 2) F 3 [x]. Pour effectuer la factorsaton en degrés dstncts d un polynôme f sans facteurs carrés, on peut défnr les éléments de R = F q [x]/(f), pour 0 : h = x q, f 0 = f, g = (h x, f 1 ), f = f 1 /g, jusqu à ce que f = 1. On pose alors s = et la décomposton cherchée est (g 1,..., g s ). Théorème 2.3. Cet algorthme fonctonne, et se fat en au plus O(sn 2 log(q)) opératons dans F q. 1

2 2 FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS Remarquons qu on peut arrêter l algorthme dès que degf < 2( + 1), parce-que tous les facteurs rréductbles de f ont un degré supéreur ou égal à + 1, et donc dans ce cas, f est rréductble. 3. Factorsaton en degrés égaux (algorthme de Cantor-Zassenhaus) Mantenant, voyons la factorsaton en degrés égaux, pour factorser les polynômes produts par la factorsaton en degrés dstncts. L algorthme décrt c ne fonctonne que s q est mpar. Lemme 3.1. Sot q une pussance d un nombre premer mpar, et sot S = (F q) 2 l ensemble des carrés de F q. Alors S est un sous-groupe de F q d ordre (q 1)/2, égal à Kerϕ, où ϕ est l homomorphsme de groupes de F q dans {±1} qu à a assoce a (q 1)/2. Sot f un polynôme untare de F q [x] de degré n, et sot d un dvseur de n, tels que tous les facteurs rréductbles de f ont degré d. On veut trouver ces facteurs rréductbles. Il y en a r = n/d. On écrt f = f 1... f r, où pour tout, f est un polynôme untare rréductble de degré r de F q [x]. On peut supposer que r 2, car snon f est rréductble. Grâce au théorème chnos, on sat qu l exste un somorphsme d algèbres χ : R F q [x]/(f 1 )... F q [x]/(f r ) = R 1 R r, chaque R étant une extenson algébrque de F q de degré d, donc un corps fn de cardnal q d. Pour tout élément a de F q, on note χ (a) l mage de a dans R. S l on trouve un polynôme a tel que certans χ (a) sont nuls et d autres non, alors (a, f) est un dvseur non trval de f. Sot e = (q d 1)/2. Pour tout élément α de R, αe {±1}, chacune des deux possbltés ayant la même probablté d arrver. S on chost a F q [x], de façon aléatore, avec une lo de probablté unforme, premer à f de degré strctement nféreur à n, alors les χ (a) sont des éléments aléatores avec des los de probablté unformes ndépendantes de F q d, et ε = χ (a e ) R est égal à 1 ou 1, chacun avec une probablté de 1/2. Ans, χ([a e 1] f ) = (ε 1 1,... ε r 1), et a e 1 décompose f, sauf s ε 1 = = ε r, ce qu arrve avec probablté 2 r+1 1/2. On procède de la façon suvante. On chost a F q [x] de degré nféreur strctement à n au hasard. S a F q, on retourne : Erreur. Ensute, on pose g 1 =pgcd(a, f). S g 1 1, on retourne g 1 : c est un facteur non trval de f. On calcule b = a (qd 1)/2 mod f. On calcule g 2 =pgcd(b 1, f). S g 2 1 et g 2 f, alors on retourne g 2. Snon, on retourne Erreur.

3 FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS 3 Théorème 3.2. Cet algorthme de Cantor-Zassenhaus répond Erreur avec une probablté nféreure à 2 1 r 1/2, où r = n/d 2, ou snon donne un facteur non trval de f. Il se fat en au plus O(dn 2 log(q)) opératons dans F q. Ans, s l on fat tourner l algorthme k fos, la probablté de ne pas trouver de facteurs est nféreure à 2 (1 r)k 2 k. Cet algorthme donne 2 facteurs. S on veut juste un facteur rréductble, on peut applquer l algorthme récursvement sur le plus pett facteur. Habtuellement, on veut les r facteurs rréductbles, et donc on applque l algorthme récursvement sur tous les facteurs. Théorème 3.3. Par cette méthode, on factorse un polynôme de degré n = rd avec r facteurs rréductbles de degré d avec un nombre d opératons de O(dn 2 logqlogr) en moyenne. Pour montrer cela, on peut llustrer la méthode par un arbre. Les noeuds de l arbre sont des facteurs de f. La racne est f et les facteurs rréductbles sont les feulles. S l algorthme de Cantor-Zassenhaus répond Erreur, alors le noeud correspondant a exactement un enfant avec le même polynôme. Snon, l a deux enfants qu contennent les deux facteurs trouvés. Le produt sur tous les noeuds à un nveau de l arbre est égal à f, donc la somme des degrés correspondants est n. Le coût en un noeud de degré m est O(dm 2 logq). Donc, le coût total à un nveau donné est de O(dn 2 logq). Montrons mantenant que la profondeur moyenne de l arbre est en O(logr). Soent g et g deux facteurs rréductbles de f. La probablté que l algorthme de Zassenhaus sépare g et g est supéreure à 1/2 (s ls n ont pas été séparés auparavant). Donc, la probablté pour que g et g ne soent pas encore séparés à la profondeur k de l arbre est au plus 2 k. C est valable pour tout couple de facteurs rréductbles de f. Comme l y a (r 2 r)/2 r 2 tels couples, la probablté p k que tous les facteurs rréductbles ne sont pas séparés à la profondeur k de l arbre est au plus r 2 2 k. p k est en fat la probablté pour que l arbre sot de profondeur supéreure ou égale à k, et p k 1 p k est la probablté pour que l arbre sot de profondeur exactement k. Donc la profondeur en moyenne de l arbre est égale à k 1 k(p k 1 p k ) = k 0 p k. Pour k < s = 2log 2 r, on utlse le fat que p k 1 et pour k s le fat que p k r 2 2 k pour montrer que cette moyenne est nféreure ou égale à s + 2, qu est en O(logr). 4. Un algorthme complet de factorsaton Sot f un polynôme qu n est pas nécessarement sans facteurs carrés. On peut détermner sa parte sans facteurs carrés, par un algorthme décrt dans le paragraphe suvant. Mas on peut auss drectement applquer drectement les algorthmes décrts dans le paragraphe précédent. En effet, sot P le polynôme à factorser. On peut d abord calculer le produt des facteurs rréductbles deux à deux

4 4 FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS dstncts de degré 1 qu dvsent P. Ensute, on factorse complètement ce produt. Il est alors facle de détermner la valuaton dans P de chacun des facteurs rréductbles obtenus. Ensute, on applque la même méthode pour le degré 2 à P dvsé par le produt de tous ses facteurs rréductbles de degré 1 (avec multplcté), et on tère le procédé. Voyons le coût en opératons dans F q. Il est domné par n 3 logq pour la factorsaton en degrés dstncts. Ensute, on applque l algorthme de Cantor- Zassenhaus aux dfférents facteurs g 1,..., g s trouvés, respectvement de degrés m 1,..., m s. Chacune de ces applcatons coûte au plus O(m 2 logqlog(m /)) opératons dans F q. Comme log(m /) = m log(m /) m / m, on trouve que le coût total est en O(n 3 logq). Le pas fnal, qu trouve les valuatons des facteurs rréductbles, a un coût nféreur, donc en tout, l algorthme est en O(n 3 logq). 5. Factorsaton sans facteurs carrés Sot F un corps parfat. Nous nous ntéressons dans ce paragraphe à la façon de rédure le problème de la factorsaton d un polynôme au problème de la factorsaton d un polynôme sans facteurs carrés. Cette réducton est souvent utlsée dans les logcels de calcul. Écrvons la factorsaton en facteurs rréductbles d un polynôme f de F [x]. f = r =1 f e, où les f sont deux à deux dstncts et les e strctement postfs. La parte sans facteurs carrés de f est égale à r =1 f. De plus, f = r =1 e f f f. Alors on peut vor que pour tout, f e 1 dvse f, et que de plus, f e ne dvse f que s e f = 0. Ans, en caractérstque nulle, la parte sans facteur carré de f est f/u, où u =pgcd(f, f ), alors qu en caractérstque p, ce quotent f/u est égal à v = p e f. Alors, u/pgcd(u, v n ) = p e f e. On est donc ramené à calculer la racne p ème de ce polynôme, pus à procéder de façon récursve. 6. Algorthme de Berlekamp Cet algorthme de factorsaton utlse l algèbre lnéare. Sot f F q [x] un polynôme untare rréductble de degré n > 0, et sot R = F q [x]/(f). Alors R est une F q -algèbre de dmenson n, et l applcaton σ de R dans R qu à a assoce a q est F q -lnéare. Sot β = σ d. Alors β est également F q -lnéare. On va encore utlser l somorphsme d algèbres χ : R F q [x]/(f 1 ) F q [x]/(f r ) = R 1 R r.

5 FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS 5 Sot B =Kerβ. χ(b) est égal à F q F q = F r q (c est un abus de notaton : c est en fat égal au produt des mages de F q dans F[x]/(f )). Sot Q la matrce de σ dans la base de R formée par les mages de 1, x,..., x n 1 dans R. L algorthme de Berlekamp détermne dans un premer temps une base b 1,..., b r de B, en utlsant le pvot de Gauss. Notons que f est rréductble s et seulement s le rang de Q I est égal à n 1. On va supposer à partr de mantenant que q est mpar. Sot b = r =1 c b un élément de B chos au hasard, où les c sont des éléments de F q. On emplo la même dée que pour la factorsaton en degrés égaux. S aucun f ne dvse b, alors pour tout, b (q 1)/2 ±1 mod f, et chacune des deux possbltés apparaît avec probablté 1/2, et ce de façon ndépendante pour tout. L algorthme suvant donne un facteur non trval de f, ou ben retourne Erreur. On calcule g 1 =pgcd(b, f). S g 1 1, on termne l algorthme : g 1 est un facteur de f. On calcule a = b (q 1)/2. On calcule g 2 =pgcd(a 1, f). S g 2 1 et g 2 f, alors on retourne g 2, snon, on retourne Erreur. Théorème 6.1. Cet algorthme répond Erreur avec une probablté nféreure à 1/2, ou snon donne un facteur non trval de f. Il se fat en au plus O(n 3 + n 2 logq) opératons dans F q. S l on veut une factorsaton complète de f, on se contente de calculer une base de B une fos pour toute, pus on applque le reste de l algorthme récursvement à g et f/g, où g est le facteur trouvé. Une analyse semblable à celle correspondant à l algorthme de factorsaton en degrés égaux montre que le coût en moyenne est de O(n 3 + n 2 logq) opératons dans F q. Référence : Modern computer algebra (Von zur Gathen et Gerhard).

Exercices d arithmétique

Exercices d arithmétique DOMAINE : Arthmétque NIVEAU : Intermédare CONTENU : Exercces AUTEUR : Noé DE RANCOURT STAGE : Cachan 011 (junor) Exercces d arthmétque Exercce 1 - Énoncés - a) Trouver tous les enters n N qu possèdent

Plus en détail

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même.

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même. Vdoune Termnale S Chaptre spé Arthmétque PPCM et nombres premers Nombre premer Dre qu un enter naturel est premer sgnfe qu l admet deux dvseurs : un et lu-même. Zéro est-l un nombre premer? Un est-l un

Plus en détail

Devoil libre N 6 2ème TSI 1 Correction

Devoil libre N 6 2ème TSI 1 Correction CPGE- Lycée technque Mohammeda Devol lbre N 6 Correcton Mathématques Exercce 1 : Un compact de R est une parte bornée fermée http://mathscpge.wordpress.com 1 http://mathscpge.wordpress.com CPGE- Lycée

Plus en détail

5. Relations d équivalences

5. Relations d équivalences 5. Relatons d équvalences Il est naturel de classfer des choses et on le fat tout le temps. Les nombres naturels sont de deux sortes : ceux qu sont pars et ceux qu sont mpars. On consdère Par et Impar

Plus en détail

Les nombres complexes

Les nombres complexes LGL Cours de Mathématques 6 Les nombres complexes Notaton, Défnton A Introducton et notatons Dans l'ensemble des enters naturels, une équaton telle que x + 5 admet une soluton. Pour que l'équaton x + 5

Plus en détail

Nombres premiers et décomposition primaire

Nombres premiers et décomposition primaire [htt://m.cgeduuydelome.fr] édté le 10 jullet 2014 Enoncés 1 ombres remers et décomoston rmare Exercce 1 [ 01219 ] [correcton] Montrer que les nombres suvants sont comosés : a) 4n 3 + 6n 2 + 4n + 1 avec

Plus en détail

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1 1 ère S1 Contrôle du lund 19 novembre 01 (45 mnutes) Compléter le tableau c-dessous donnant la dstrbuton de fréquences pour cet échantllon (calculs au broullon, fréquences sous forme décmale) : Prénom

Plus en détail

UE MAT234. Notes de cours sur l algèbre linéaire

UE MAT234. Notes de cours sur l algèbre linéaire UE MAT234 Notes de cours sur l algèbre lnéare Matrces - Systèmes lnéares - Détermnants - Dagonalsaton Dans tout ce document, K désgne ndfféremment le corps des nombres réels IR, ou celu des nombres complexes

Plus en détail

UNIVERSITE DE BOURGOGNE MM5: Analyse Numérique Elémentaire FichedeTDno2

UNIVERSITE DE BOURGOGNE MM5: Analyse Numérique Elémentaire FichedeTDno2 1 UNIVERSITE DE BOURGOGNE MM5: Analyse Numérque Elémentare FchedeTDno2 1 Que peut-on dre d une méthode tératve dont la matrce a un rayon spectral nul? 2 Etuder les méthodes de Jacob et Gauss-Sedel pour

Plus en détail

IFT1575 Modèles de recherche opérationnelle (RO) 7. Programmation non linéaire

IFT1575 Modèles de recherche opérationnelle (RO) 7. Programmation non linéaire IFT575 Modèles de recherche opératonnelle (RO 7. Programmaton non lnéare Fonctons convees et concaves Sot et deu ponts dans R n Le segment de drote jognant ces deu ponts est l ensemble des ponts + λ( -

Plus en détail

Les nombres complexes

Les nombres complexes A) Forme algébrque des nombres complexes Théorème (adms) Il exste un ensemble appelé ensemble des nombres complexes, noté, vérfant les tros proprétés suvantes :. content ;. Il exste dans un élément tel

Plus en détail

TD 1. Z la prévision de Monsieur Sûr-de-lui. On donne les lois jointes de (X, Y ) et celles de (X, Z) dans les deux tableaux suivants Elles

TD 1. Z la prévision de Monsieur Sûr-de-lui. On donne les lois jointes de (X, Y ) et celles de (X, Z) dans les deux tableaux suivants Elles TD 1 Exercce 1. Dans la vallée de la mort : l pleut en moyenne 1 jour sur 100. la météo prédt 3 jours de plue sur 100. chaque fos qu l pleut, la météo l a prévu. Monseur Sûr-de-lu prévot qu l ne pleut

Plus en détail

Les Nombres. A.Balan 4 août 2017

Les Nombres. A.Balan 4 août 2017 Les Nombres A.Balan 4 août 2017 1 Les nombres enters naturels 1.1 Défnton On appelle c nombres enters naturels N les cardnaux des ensembles fns [J]. En partculer 0 est le cardnal de l ensemble vde, 1 est

Plus en détail

Anneaux et corps Bachelor Semestre 4 Prof. E. Bayer Fluckiger 16 mars Quiz 3

Anneaux et corps Bachelor Semestre 4 Prof. E. Bayer Fluckiger 16 mars Quiz 3 Anneaux et corps Bachelor Semestre 4 Prof. E. Bayer Fluckger 16 mars 2016 Quz 3 Queston 1. Est-ce que les anneaux Z et Q sont somorphes? Non. Par exemple, on a montré Sére 2, Ex.3.1. qu l exste un seul

Plus en détail

2. Simplification d un rapport de nombres complexes.

2. Simplification d un rapport de nombres complexes. chaptre. Calcul du module et de l argument d une pussance d un nombre complexe.. Smplfcaton d un rapport de nombres complexes. 3. Pour montrer qu un nombre complexe est réel. 4. Pour montrer qu un nombre

Plus en détail

Fiche technique : diagonalisation, trigonalisation.

Fiche technique : diagonalisation, trigonalisation. Fche technque 4 : dagonalsaton trgonalsaton - - Fche technque : dagonalsaton trgonalsaton Dagonalsaton de matrces le prncpe pour dagonalser en pratque une matrce est smple : calculer les espaces propres

Plus en détail

Andreea Dragut Cours de cryptographie Chapitre IV Fonctions conjecturées à sens unique : Le problème du logarithme

Andreea Dragut Cours de cryptographie Chapitre IV Fonctions conjecturées à sens unique : Le problème du logarithme ELGamal Andreea Dragut (dragut@unvmed.fr) Cours de cryptographe Chaptre IV 4.0.1 Fonctons conjecturées à sens unque : Le problème du logarthme dscret Defnton. Un groupe cyclque G, est un groupe dans lequel

Plus en détail

Méthode des résidus pondérés

Méthode des résidus pondérés Produt propre d un opérateur Méthode des résdus pondérés Ecrture d un opérateur u avec Ω les coordonnées spatales x, y, z p dans Ω Pour un opérateur lnéare u u u u avec α, β des nombres quelconques Pour

Plus en détail

A =

A = Exercces avec corrgé succnct du chaptre 2 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

Exercices type Bac Nombres complexes

Exercices type Bac Nombres complexes Exercces type Bac Nombres complexes Exercce 1 : Pour chaque queston, une seule réponse est exacte. Chaque réponse juste rapporte 1 pont. Une absence de réponse n est pas sanctonnée. Il sera retré 0,5 pont

Plus en détail

Module Mathématiques pour l Informatique_ partie 10

Module Mathématiques pour l Informatique_ partie 10 Module Mathématques pour l Informatque_ parte 0 Zahra Royer-SafouanaTabou Rappel : On appelle ans les ensembles de nombres : (cf. Wpéda), ensemble des enters naturels., ensemble des enters relatfs., ensemble

Plus en détail

Primitives élémentaires de fonctions élémentaires

Primitives élémentaires de fonctions élémentaires Prmtves élémentares de fonctons élémentares Ahmed Moussaou et Ramanujan Santharoubane Exposé de maîtrse encadré par Franços Loeser Septembre 2008 1 Table des matères 1 Corps dfférentels 3 2 Équatons dfférentelles

Plus en détail

TD6 : groupe linéaire, homographies, simplicité

TD6 : groupe linéaire, homographies, simplicité École Normale Supéreure 1ère année Année 2015-2016 Algèbre 1 TD6 : groupe lnéare, homographes, smplcté Exercces : à préparer à la mason avant le TD, seront corrgés en début de TD. Exercces : seront tratés

Plus en détail

Chap. C1 : structure et arithmétique dans Z (fin)

Chap. C1 : structure et arithmétique dans Z (fin) Chap. C1 : structure et arthmétque dans Z (fn) The aftermath of Gauss... or the math after Gauss (P. Rbenbom, My Number My frends). V Nombres premers 1) Proprétés élémentares a) Défnton : () Termnologe

Plus en détail

CHAPITRE V. Formes différentielles sur les variétés. I. Espace tangent

CHAPITRE V. Formes différentielles sur les variétés. I. Espace tangent CHAPITRE V Formes dfférentelles sur les varétés I. Espace tangent Sot M une varété dfférentable de dmenson n et U = (U, ϕ ) I un atlas de M. On note par ϕ j := ϕ ϕ 1 j le dfféomorphsme entre les ouverts

Plus en détail

Correction Mines PC 2 : Problème de Waring

Correction Mines PC 2 : Problème de Waring Correcton Mnes PC : Problème de Warng Glbert Prmet glbertprmet@9onlnefr 9 ma 6 Merc d adresser vos éventuelles remarques et correctons à l adresse c-dessus A Proprétés élémentares du Wronsken On pose d)

Plus en détail

Fractions rationnelles

Fractions rationnelles Bblothèque d exercces Énoncés L Feulle n 8 Fractons ratonnelles Exercce Décomposer + 4 Décomposer + + + Décomposer + + + 4 Décomposer 4 + + 5 Décomposer 4 6 Décomposer 5 + 4 + 7 Décomposer 5 + 4 + ( )

Plus en détail

1 ère S Fonctions de référence

1 ère S Fonctions de référence ère S Fonctons de référence Cette méthode est dffcle à mettre en œuvre pour certanes fonctons ; nous étuderons un ben melleur moyen cette année. 4 ) Tableau de varaton (pour mémore) bectfs : - Revor et

Plus en détail

Corrigés d exercices pour le TD 3

Corrigés d exercices pour le TD 3 Corrgés d eercces pour le TD 3 N héstez pas à relever les éventuelles fautes dans ce document! Sot (E, d) un espace vectorel mun d une dstance vérfant Pour tous, y E et λ R, d(λ, λy) = λ d(, y). Pour tous,

Plus en détail

Cours d analyse numérique de C. Bertelle. FMdKdD fmdkdd [à] free.fr

Cours d analyse numérique de C. Bertelle. FMdKdD fmdkdd [à] free.fr Cours d analyse numérque de C Bertelle FMdKdD fmdkdd [à] freefr Unversté du Havre Année 009 00 Table des matères Rappels d algèbre lnéare Espace vectorel Applcatons lnéares et matrces Matrce nverse d une

Plus en détail

II MOMENTS - TORSEURS

II MOMENTS - TORSEURS II OENTS - TORSEURS Le torseur est l'outl prvlégé de la mécanque. Il sert à représenter le mouvement d'un solde, à caractérser une acton mécanque et à formuler le PFD (prncpe fondamental de la dynamque),

Plus en détail

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS Statque et Cnématque des soldes 0-0 Chaptre Chap: OUTILS THETIQUES GLISSEUS & TOSEUS L'obectf de ce chaptre est de donner brèvement les outls mathématques nécessares à la compréhenson de la sute de ce

Plus en détail

Terminale S Les ROC : complexe/géométrie à connaître.

Terminale S Les ROC : complexe/géométrie à connaître. Termnale S Les ROC : complexe/géométre à connaître Vous trouvere c les démonstratons que vous ave offcellement dues fare en cours (dans le programme) Il est mportant de précser que cela ne sgnfe en aucun

Plus en détail

Polynômes en plusieurs indéterminées

Polynômes en plusieurs indéterminées Polynômes en pluseurs ndétermnées Marc SAGE 29 octobre 25 Table des matères La A-algèbre A ( ) 2I 2. Dé ntons................................................. 2.2 Écrture canonque des polynômes...................................

Plus en détail

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6.

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6. EXERCICES TERMINALE S LES NOMBRES COMPLEXES PREMIERS EXERCICES: 1 Calculs dans : Ecrre les nombres complexes suvant sous la forme a + b où a et b sont des réels : 1 = ; = ; = ( + )( + ) ; = 6 = 1 1+ ;

Plus en détail

Contrôle du mardi 21 janvier 2014 (3 heures 30) 1 ère S1. Partie B

Contrôle du mardi 21 janvier 2014 (3 heures 30) 1 ère S1. Partie B 1 ère S1 ontrôle du mard 1 janver 01 ( heures 0) Le barème est donné sur 0. Parte B Pour la fabrcaton d un lvre, un mprmeur dot respecter sur chaque page des marges de cm à drote et à gauche, cm en haut

Plus en détail

Nombre dérivé d une fonction (2) Plan du chapitre

Nombre dérivé d une fonction (2) Plan du chapitre Nombre dérvé d une foncton (2) Plan du captre Introducton : Nous poursuvons l étude des tangentes en procédant par pettes touces. Dans le captre précédent, nous avons défn la noton de nombre dérvé d une

Plus en détail

EXERCICE 1. SOLUTION (5 i ) (2 + 3 i ) (1 i 5) (5 4 i )(3 + 6 i ). 3 i ; 1

EXERCICE 1. SOLUTION (5 i ) (2 + 3 i ) (1 i 5) (5 4 i )(3 + 6 i ). 3 i ; 1 EXERCICE 1. Détermner (x + y ), représentaton cartésenne du nombre complexe : 1.1. (5 ) ; ( + ) ; (1 5 ). 1.. (5 )( + 6 ); ( + ) ( ). 1.. 1.. 1.5. 1+ ; 1 ; +. 1+ 7 + + + 1. 1+ α ( α + β ) α + ( α ; ; (α,β)

Plus en détail

Résumé. Sommaire. «Toute théorie n est bonne qu à condition de s en servir pour passer outre». André Gide in «Journal».

Résumé. Sommaire. «Toute théorie n est bonne qu à condition de s en servir pour passer outre». André Gide in «Journal». «Toute théore n est bonne qu à condton de s en servr pour passer outre». ndré Gde n «Journal». Résumé L usage des los de Krchhoff permet de toujours trouver les tensons et courants dans un réseau électrque

Plus en détail

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel.

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel. NOMRES OMPLEXES RPPELS SUR LES ENSEMLES DE NOMRES Ensemble N : ensemble des enters naturels. L addton et la multplcaton de enters naturels donnent un enter naturel. La soustracton et la dvson de enters

Plus en détail

1 ère S Exercices sur les fonctions de référence

1 ère S Exercices sur les fonctions de référence ère S Eercces sur les fonctons de référence Détermner par le calcul les nombres qu sont confondus avec leur mage par la foncton «carré» Détermner par le calcul les nombres qu sont confondus avec leur mage

Plus en détail

10 I. INTRODUCTION À LA THÉORIE DES GROUPES

10 I. INTRODUCTION À LA THÉORIE DES GROUPES 10 I. INTRODUCTION À LA THÉORIE DES GROUPES () Pour tout x H, x 1 H Cela sgnfe que la restrcton de à H H que l on note encore mas qu l faudrat en toute rgueur désgner par H donne une lo nterne de H et

Plus en détail

Calculer une enveloppe convexe

Calculer une enveloppe convexe Calculer une enveloppe convexe Préparaton à l agrégaton opton Calcul formel Antone Chambert-Lor (verson revue par Mchel Coste) 1. Introducton Sot A une parte du plan ; de nombreux problèmes géométrques

Plus en détail

A. Équations algébriques réciproques

A. Équations algébriques réciproques SESSION 22 Concours commun Mnes-Ponts PREMIÈRE EPREUVE. FILIÈRE MP Sot P R n []. Posons P = A. Équatons algébrques récproques n a k k. k= n u n P = n a n k k = a k n k = k= k= n a n k k. u n P est effectvement

Plus en détail

Probabilités. Définition : Chacun des résultats possible d une expérience aléatoire est appelée issue de l expérience.

Probabilités. Définition : Chacun des résultats possible d une expérience aléatoire est appelée issue de l expérience. Probabltés A) Vocabulare.. Expérence aléatore. Défntons : Une expérence est dte aléatore s elle vérfe tros condtons : Elle condut à des résultats possbles qu on est capable de nommer. On ne sat à l avance

Plus en détail

VI INERTIE GEOMETRIE DES MASSES

VI INERTIE GEOMETRIE DES MASSES VI INERTIE EOMETRIE DE ME Dans l étude de la dynamque des systèmes matérels et des soldes l est mportant d étuder la répartton géométrque des masses, afn d exprmer smplement les concepts cnétques qu apparassent

Plus en détail

PLAN L OPTIMISATION MULTICRITÈRE

PLAN L OPTIMISATION MULTICRITÈRE PLAN COURS 5 OPTIMISATION MULTICRITÈRE Master IAD DMDC PATRICE PERNY LIP6 UnverstéPars6 1 Défntons 2 Relatons de domnance, effcacté 3 Fonctons scalarsantes 4 Exploraton de la frontère effcace 2/28 L OPTIMISATION

Plus en détail

Nombres complexes. Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Nombres complexes. Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Les nombres complexes. Défnton............................................................... Opératons...............................................................3 Parte réelle

Plus en détail

AL1 Complexes Séance de TD - Corrigés des exercices -

AL1 Complexes Séance de TD - Corrigés des exercices - AL1 Complexes Séance de TD - Corrgés des exercces - 1 QCM GI FA 01 Test calcul et rotaton GI FA 015 Test 1 Complexes et rotaton GI FC186 015 Test Complexes et cercle 5 GI FC18/6 01 Test - Complexes et

Plus en détail

( ) ( ) ( ) ( ) ( ) Terminales S Exercices sur les nombres complexes Page 1 sur 6. Exercice 1 :

( ) ( ) ( ) ( ) ( ) Terminales S Exercices sur les nombres complexes Page 1 sur 6. Exercice 1 : Termnales S Exercces sur les nombres complexes Page sur 6 Exercce : ) Calculer, et 05 06 07 ) En dédure, et ) Détermner les enters n pour lesquels n est a) un réel, b) est un magnare pur, c) égal à Exercce

Plus en détail

arxiv:math/ v1 [math.ra] 9 Aug 2002

arxiv:math/ v1 [math.ra] 9 Aug 2002 arxv:math/874v [mathra] 9 Aug Matrces autosmlares Roland Bacher November 8, 3 Résumé: Cette note ntrodut une classe de matrces dont les détermnants sont facles à calculer L exemple le plus frappant est

Plus en détail

NOMBRES COMPLEXES EXERCICE 1. EXERCICE 2. EXERCICE 3. EXERCICE 4. 3 i ; 1. Déterminer (x + y i), représentation cartésienne du nombre complexe : i 1

NOMBRES COMPLEXES EXERCICE 1. EXERCICE 2. EXERCICE 3. EXERCICE 4. 3 i ; 1. Déterminer (x + y i), représentation cartésienne du nombre complexe : i 1 NOMBRES COMPLEXES EXERCICE 1 Détermner (x + y ), représentaton cartésenne du nombre complexe : 11 (5 ) ; ( + ) ; (1 5 ) 1 (5 4 )( + 6 ); (4 + ) (4 ) 1 14 15 ; 1 ; + 7 + + + 1 α ( α + β ) α + ( α ; ; (α,β)

Plus en détail

Polynômes et fractions rationnelles

Polynômes et fractions rationnelles Prépa CAPES UPMC 2010-2011 Mattheu Romagny Polynômes et fractons ratonnelles Table des matères 1 Constructon de l'anneau des polynômes 1 2 Dvson eucldenne et conséquences 4 3 Fonctons polynomales et dérvaton

Plus en détail

Équations et racines

Équations et racines CHAPITRE III Équatons et racnes III.1. Quadratques et cubques Équatons quadratques. On dspose de formules pour la résoluton des équatons quadratques (c est à dre du second degré). En fat, la résoluton

Plus en détail

Clôture transitive (accessibilité) Clôture transitive des graphes. Clôture par produits. Représentations matricielles

Clôture transitive (accessibilité) Clôture transitive des graphes. Clôture par produits. Représentations matricielles Clôture transtve (accessblté) Problème G = (S, A) graphe (orenté) Calculer H = (S, B) où B est la clôture réflexve et transtve de A. Clôture transtve des graphes et tous les plus courts chemns Note : (s,t)

Plus en détail

Guylaine Faubert. Enseignante en mathématique et informatique au secondaire Le petit relais scolaire. (gfaubert)

Guylaine Faubert. Enseignante en mathématique et informatique au secondaire Le petit relais scolaire. (gfaubert) Guylane Faubert Ensegnante en mathématque et nformatque au secondare - - A ADDITION - 6 - ARBRE DE FACTEURS - - ARRONDIR UN NOMBRE - 6 - C CALCULER LE POURCENTAGE - 6 - COMMUTATIVITÉ - 6 -, - 7 - CONVERSION

Plus en détail

EC 2 Étude des circuits linéaires en régime continu

EC 2 Étude des circuits linéaires en régime continu Étude des crcuts lnéares en régme contnu PS 2016 2017 Objet du chaptre : donner des outls pour détermner l état électrque d un crcut : potentels des dfférents nœuds par rapport à un nœud chos comme référence

Plus en détail

Fractions rationnelles

Fractions rationnelles Unversté Claude Bernard Lyon 1 L1 de Mathématques : Math. II Algèbre (parcours prépa.) Année 2013 2014 Fractons ratonnelles I On fxe un corps K. On connaît l anneau des polynômes K[X], dont l arthmétque

Plus en détail

ASI 3. Méthodes numériques pour l ingénieur. Interpolation f(x)

ASI 3. Méthodes numériques pour l ingénieur. Interpolation f(x) ASI 3 Métodes nuérques pour l ngéneur Interpolaton f Approaton de fonctons Sot une foncton f nconnue eplcteent connue seuleent en certans ponts, n ou évaluable par un calcul coûteu. rncpe : représenter

Plus en détail

OUTILS MATHEMATIQUES L1 SVG Paul Broussous

OUTILS MATHEMATIQUES L1 SVG Paul Broussous UTILS MATHEMATIQUES L1 SVG 1 Paul Broussous Chaptre II. Nombres complees Défnton. L ensemble C des nombres complees est formé des epressons de la forme +, et nombres réels avec les règles : (Egalté) +

Plus en détail

Circuits en courant continu

Circuits en courant continu Crcuts en courant contnu xercce On consdère les tros montages suvants : montage montage montage ) Montrer que le premer montage équvaut à une résstance unque eq telle que : + eq ) Montrer que le deuxème

Plus en détail

Nombres complexes. i² = -1

Nombres complexes. i² = -1 Prof : Hadj Salem Habb I ] Forme 1. Défntons Le nombre complexe est tel que algébrque ² = -1 Un nombre complexe s'écrt de façon unque sous la forme a + b ; a IR, b IR C = ensemble des nombres complexes

Plus en détail

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i Exercces avec corrgé succnct du chaptre 3 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

Mathématiques B30. Les nombres complexes Module de l élève

Mathématiques B30. Les nombres complexes Module de l élève Mathématques B30 Les nombres complexes Module de l élève 00 Mathématques B30 Les nombres complexes 10 y axe magnare Module de l élève 4+6 x -10 10 axe réel --4 Bureau de la mnorté de langue offcelle 00-10

Plus en détail

COURS REPRÉSENTATIONS

COURS REPRÉSENTATIONS COURS REPRÉSENTATIONS STÉPHANE LAMY Table des matères Théore générale. Développement : Le cube et les représentatons de S 4 5 2. Développement : Structure des groupes abélens fns 8 3. Développement : Théorème

Plus en détail

GEL Circuits LOIS ET THÉORÈMES DE CIRCUITS

GEL Circuits LOIS ET THÉORÈMES DE CIRCUITS GEL2945 Crcuts LOIS ET THÉORÈMES DE CIRCUITS Objectfs comprendre et être capable d utlser les los de Krchhoff; reconnaître les éléments en sére ou en parallèle dans un crcut complexe; obtenr les dpôles

Plus en détail

Probabilités, Statistique et Calcul Stochastique

Probabilités, Statistique et Calcul Stochastique Ecole Natonale des Scences Applquées de Tétouan (ENSATE) Année Unverstare: 204-205 robabltés, Statstque et Calcul Stochastque e-mal: m_merouan@yahoo.fr Ste Web: elmerouan.jmdo.com rogramme robabltés et

Plus en détail

L ANOVA (complements)

L ANOVA (complements) L ANOVA (complements) On utlse le t de Student pour comparer deux moyennes. Cependant s on veut comparer tros moyennes ou plus l devent nécessare d utlser l Analyse de Varance smple ou l ANOVA 1. L applcaton

Plus en détail

Utilisation du solveur d Excel

Utilisation du solveur d Excel Cycle ICM : 1A Pôle nformatque Cours applcatons nformatques Auteur : Bertrand Jullen 22/12/04 Utlsaton du solveur d Excel Le but de ce TP est de famlarser les élèves avec la foncton Solveur d Excel, dans

Plus en détail

L ANOVA ( ceci est un complément)

L ANOVA ( ceci est un complément) L ANOVA ( cec est un complément) On utlse le t de Student pour comparer deux moyennes. Cependant s on veut comparer tros moyennes ou plus l devent nécessare d utlser l Analyse de Varance smple ou l ANOVA

Plus en détail

Estimateurs MCD de localisation et de dispersion: définition et calcul. Fauconnier Cécile Université de Liège

Estimateurs MCD de localisation et de dispersion: définition et calcul. Fauconnier Cécile Université de Liège Estmateurs MCD de localsaton et de dsperson: défnton et calcul Fauconner Cécle Unversté de Lège Plan de l eposé 2 Introducton: Pourquo les estmateurs robustes? Estmateur MCD : défnton Algorthmes appromatfs

Plus en détail

Aspects rigoureux de la mécanique statistique à l équilibre

Aspects rigoureux de la mécanique statistique à l équilibre Aspects rgoureux de la mécanque statstque à l équlbre Jéréme Boutter et Gulhem Semerjan Examen du 6 jun 2013 Le sujet est formé de deux partes ndépendantes. Vous rédgerez leurs solutons sur deux copes

Plus en détail

Exercices sur les courbes en coordonnées polaires dans le plan

Exercices sur les courbes en coordonnées polaires dans le plan Exercces sur les courbes en coordonnées polares dans le plan Dans le plan orenté P mun d un repère orthonormé drect,, polare sn. ) Détermner les symétres de ; en dédure un domane d étude. ) Etuder et tracer

Plus en détail

ANALYSE DE LA VARIANCE. Pierre-Louis GONZALEZ

ANALYSE DE LA VARIANCE. Pierre-Louis GONZALEZ ANALYSE DE LA VARIANCE Perre-Lous GONZALEZ ANALYSE DE LA VARIANCE Introducton Comparason des moyennes de pluseurs populatons Interprétaton statstque de résultats recuells à l ade d une stratége d expérmentaton

Plus en détail

Mémoire associative. Chapitre La tâche

Mémoire associative. Chapitre La tâche 151 Chaptre 6 Mémore assocatve 61 La tâche Le but de la mémore assocatve est de retrouver un motf mémorsé auparavant Contrarement à la mémore dans l archtecture de von eumann de l ordnateur classque, les

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématques 9 Entraˆnement au calcul Lcée La Bruère 0 avenue de Pars 78000 Versalles c 0, Polcopé du cours de mathématques de premère année. 8. Mode d emplo de ce document 8. Révson des fondamentau.

Plus en détail

Université d Orléans - Maitrise d Econométrie Econométrie des Variables Qualitatives

Université d Orléans - Maitrise d Econométrie Econométrie des Variables Qualitatives Unversté d Orléans - Matrse d Econométre Econométre des Varables Qualtatves Examen Termnal Decembre 2003. C. Hurln Exercce 1 (12 ponts) : Modèle Tobt Smple Censuré Le but de cet exercce est d évaluer l

Plus en détail

Texte Urnes et particules

Texte Urnes et particules Unverstés Rennes I Épreuve de modélsaton - Agrégaton Externe de Mathématques 2009. Page n 1. Texte Urnes et partcules À la fn du 19 ème sècle et au début du suvant, la tempête fat rage autour de la théore

Plus en détail

Loi binomiale - Echantillonnage

Loi binomiale - Echantillonnage Lo bnomale - Echantllonnage I Epreuve de Bernoull Lo de Bernoull 1. Epreuve de Bernoull Une épreuve de Bernoull est une expérence aléatore qu n'a que deux ssues : - S appelé succès avec une probablté p.

Plus en détail

( ), dans les conditions standards, va

( ), dans les conditions standards, va THERMOCHIMIE R. Duperray Lycée F.BUISSON PTSI U T I L I S A T I O N D E S T A B L E S D E S G R A N D E U R S T H E R M O D Y N A M I Q U E S S T A N D A R D Dans le chaptre précédent, nous avons vu l

Plus en détail

Nombre d occurences Note

Nombre d occurences Note Épreuve écrte d nformatque-mathématques Flère MP spécalté Info ENS : ULM, LYON, CACHAN, RENNES Correcteurs : Anne Boullard, Blase Genest et Xaver Goaoc Le sujet portat sur l étude de la complexté d hypergraphes

Plus en détail

»

» Leçon 1 Nombres enters En lsant avec attenton le lvre Le calcul et la géométre au temps des pharaons de M. ROUSSELET, Thomas apprend que «Les premers nombres qu ont été écrts en Égypte datent de 5 000

Plus en détail

Une introduction à la théorie de la NP-Complétude

Une introduction à la théorie de la NP-Complétude Chaptre 8 Une ntroducton à la théore de la P-Complétude. Introducton: u chaptre, nous avons dscuté l mportance d avor des solutons de complexté polynomale. Dans l étude de la complexté des problèmes, le

Plus en détail

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16 Méthode des mondres carrés Stuaton Le lancer de pods Dx adolescents droters s exercent à lancer le pods, du bras drot pus du bras gauche. Les résultats (dstances en mètres) obtenus sont les suvants : Adolescent

Plus en détail

CHAPITRE 7. CALCUL DES INDICATEURS DU SOUTIEN AUX CONSOMMATEURS

CHAPITRE 7. CALCUL DES INDICATEURS DU SOUTIEN AUX CONSOMMATEURS Chaptre 7 : Calcul des ndcateurs du souten aux consommateurs CHAITRE 7. CALCUL DES INDICATEURS DU SOUTIEN AUX CONSOMMATEURS 313. À l nstar du chaptre 6, le présent chaptre décrt en détal la méthode à applquer

Plus en détail

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire

Théorie des Nombres - TD1 Rappels d arithmétique élémentaire Unversté Perre & Mare Cure Master de mathématques 1 Année 2012-2013 Module MM020 Théore des Nombres - TD1 Rappels d arthmétque élémentare Exercce 1 : Trouver tous les enters n N tels que ϕ(n) = 6. Même

Plus en détail

ANNEXE : Rappels sur les notions de dérivée et différentielle

ANNEXE : Rappels sur les notions de dérivée et différentielle NNEXE : Rappels sur les notons de dérvée et dfférentelle Pente d une drote Eamnons géométrquement les drotes dans le plan cartésen La prncpale caractérstque qu dstngue une drote d une autre est son nclnason,

Plus en détail

Probabilités et Statistique

Probabilités et Statistique robabltés et Statstque rogramme Calcul des probabltés: Espaces probablsés Varables aléatores dscrètes et contnues Los usuelles dscrètes et contnues Statstque Applquée: Convergences stochastques Approxmatons

Plus en détail

: Circuit Electrique en Régime Stationnaire (Part1

: Circuit Electrique en Régime Stationnaire (Part1 CH1-EC1 : Crcut Electrque en Régme Statonnare (Part1 Part1) 1/ 1/3 ) Défntons Générales :.1) Défntons : Crcut électrque (ou réseau électrque) : Ensemble de composants relés entre eux par des fls de joncton

Plus en détail

Réseaux linéaires. C Fig 1-a Fig 1-b Fig 1-c Fig 1-d

Réseaux linéaires. C Fig 1-a Fig 1-b Fig 1-c Fig 1-d etour au menu éseaux lnéares Défntons Un réseau électrque lnéare est un ensemble de dpôles lnéares, relés par des conducteurs de résstance néglgeable. On suppose que le réseau content au mons un générateur.

Plus en détail

Mesures Physiques Intégrales triples Calcul de volumes et d hyper-volumes

Mesures Physiques Intégrales triples Calcul de volumes et d hyper-volumes IUT ORSAY Mesures Physques Intégrales trples Calcul de volumes et d hyper-volumes Cours du ème semestre A. omane «cubable» On dt qu un domane est cubable quand son volume peut être approché par une subdvson

Plus en détail

Nicolas GAYTON Maître de Conférences

Nicolas GAYTON Maître de Conférences Fablté des Matéraux et des Structures 2010 6èmes Journées Natonales de Fablté 24-25-26 Mars 2010 Toulouse Applcaton des méthodes fablstes au tolérancement statstque des Ncolas GAYTON Maître de Conférences

Plus en détail

Cours 2. Méthode des différences finies Approche stationnaire

Cours 2. Méthode des différences finies Approche stationnaire Cours Méthode des dfférences fnes Approche statonnare Technque de dscrétsaton en D Constructon du système Prse en compte des condtons aux lmtes Noton de convergence Extenson au D Verson 09/006 (E.L.) NF04

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR INFORMATIQUE DE GESTION

BREVET DE TECHNICIEN SUPÉRIEUR INFORMATIQUE DE GESTION BREVET DE TECHNICIEN SUPÉRIEUR INFORMATIQUE DE GESTION Optons : - Développeur d applcatons - Admnstrateur de réseaux locaux d entreprse SESSION 2011 SUJET ÉPREUVE E2 MATHÉMATIQUES I Durée : 3 heures coeffcent

Plus en détail

Calcul linéaire de toutes les périodes locales d un mot. Thierry Lecroq

Calcul linéaire de toutes les périodes locales d un mot. Thierry Lecroq Calcul lnéare de toutes les pérodes locales d un mot Therry Lecroq ABISS Unversté de Rouen - France Therry.Lecroq@unv-rouen.fr http://www-gm.unv-mlv.fr/~lecroq traval commun avec Jean-Perre Duval (Rouen),

Plus en détail

CARACTÈRES UNITAIRES DE U, R ET QUELQUES AUTRES GROUPES TOPOLOGIQUES

CARACTÈRES UNITAIRES DE U, R ET QUELQUES AUTRES GROUPES TOPOLOGIQUES CARACTÈRES UNITAIRES DE U, R ET QUELQUES AUTRES GROUPES TOPOLOGIQUES OLIVIER SERMAN Le but de ces notes est de détermner les caractères untares de certans groupes classques. Rappelons d abord que s G est

Plus en détail

INTRODUCTION A L ETUDE DES SPECTROMETRIES DE L ATOME

INTRODUCTION A L ETUDE DES SPECTROMETRIES DE L ATOME INTRODUCTION A ETUDE DES SPECTROMETRIES DE ATOME Nveaux énergétques de l atome et transtons permses C.J. Ducauze, H. Ths et X.T. Bu INTRODUCTION A ETUDE DES SPECTROMETRIES DE ATOME Nveaux énergétques de

Plus en détail

Polynômes bis. Marc SAGE. 18 décembre Continuité des racines 3. 4 Une fonction polynomiale en ses variables est polynomiale 4

Polynômes bis. Marc SAGE. 18 décembre Continuité des racines 3. 4 Une fonction polynomiale en ses variables est polynomiale 4 Polynômes bs Marc SAGE 8 décembre 25 Table des matères Sur la nullté des polynômes à n ndétermnées 2 2 Une foncton localement polynomale est un polynôme 2 3 Contnuté des racnes 3 4 Une foncton polynomale

Plus en détail

Editions ENI. Access Collection Référence Bureautique. Extrait

Editions ENI. Access Collection Référence Bureautique. Extrait Edtons ENI Access 2010 Collecton Référence Bureautque Extrat Relatons entres les tables Tables Établr une relaton entre deux tables Les dfférents types de relaton entre les tables Établr une relaton entre

Plus en détail