CORRIGE SERIE 11 : OSCILLATIONS MECANIQUES EXERCICE 1 PARTIE

Dimension: px
Commencer à balayer dès la page:

Download "CORRIGE SERIE 11 : OSCILLATIONS MECANIQUES EXERCICE 1 PARTIE"

Transcription

1 CORRIGE SERIE 11 : OSCILLATIONS MECANIQUES EXERCICE 1 PARTIE 1 1 ) «Evoluer de façon alternative et périodique» signifie osciller entre une valeur maximale et une valeur minimale en répétant le phénomène pendant une durée constante appelée période. 2 ) Ces mouvements sont périodiques car se répètent identiquement pendant la même durée. Ils ne sont pas des oscillateurs car les mouvements ne sont pas des mouvements alternatifs. 3 ) Système effectuant des oscillations libres : pendule simple, balançoire, Système effectuant des oscillations forcées : circuit RLC, 4 ) La cause d amortissement est une force de frottement ou une résistance. Pour entretenir une oscillation libre, il faut exercer une force excitatrice ou alimenter le circuit par une GBF. Ex : circuit RLC série alimentée par un GBF. 5 ) Il y a résonance lorsque la fréquence de la source excitatrice est égale à la fréquence propre du système libre. PARTIE 2 Pendule élastique horizontale 2 ) x + m x = 0 ω 0= m x(t) =x 0 sin( m t + π 2 ) v(t) = x 0 m cos( m t + π 2 ) 3 ) Em (t) = 1 2 x 0 2 = cte = 0, 15 J ω 0 = 17, 32 rads/s. x = 0, 1 sin (17, 32t + π 2 ) v = 1, 732 cos (17, 32t + π 2 ) 4 ) Em (t) = 1 2 x mv2 et on dérive Mouvement oscillatoire d une voiture 6 ) Mg - l 0 = 0 7 ) mg = h et n/m. 8 ) x + x = 0 T0 = 2π M+ m 1 = 0, 71s M+ m 1 9 ) on a un régime oscillatoire amorti, la caisse et le ressort oscillent en même temps. 10 ) phénomène de résonance, la période des oscillations est égale à la période propre, D = 15, 78 m, un autre moyen est d augmenter les amortissements. Molécule diatomique 1 ) y + y = 0 2 ) ω m 1 + m 0 = T 2 m 1 + m 0 =2π m 1+ m ) n = 1 2π m 1 + m 2 avec T = l C, on a n = 1 = c n = 62, T l 9 Hz = 4π 2 n 2 (mo + mc) Oscillation de torsion d une molécule Positions d équilibre stable α = π et α = - π Pour les relations, choisir un sens de rotation, appliquer le TAA et Ep à chaque groupe, faire la somme des 2 relations et poser α = α 1 - α 2. Poser cos(2α) = 1 2sin 2 α et prendre sinα α si α petit on obtient Ep(α) = Ep 0α 2. En dérivant cette dernière relation, on a α + 4Epo α = 0 oscillateur harmonique. J ω 2 = 4Epo J T 2 =2π J 4Epo Epo = Jω 2 2 possède la dimension d une masse. EXERCICE 2 1/ Décidons d un sens positif de la rotation (voir figure). Le disque écarté de sa position d équilibre est abandonné, il est soumis au seul couple de torsion de rappel de moment :-Cθ Le signe moins indique que le moment est toujours de signe contraire à l écart angulaire θ. Le théorème s écrit : 4 C est l équation d un oscillateur harmonique de pulsation égale à

2 Et de période propre : 2/L énergie mécanique est : Dérivons cette expression par rapport au temps : On retrouve après les simplifications évidentes, l équation différentielle du paragraphe précédent. 3/ Le pendule simple synchrone doit avoir une période égale à Remarque : il peut être utile de se demander si la relation (*) a bien la dimension d une longueur. EXERCICE 3 Note : la longueur du fil sera notée L. Dans un texte, les vecteurs sont souvent représentés par des lettres en caractère gras Partie I 1-Appliquons le théorème de l énergie cinétique entre O 1 et O 2 (voir fig 2) T étant orthogonal au déplacement W(T)=0, soit : 2-a Relation entre et ϖ: Le point S est animé d un mouvement circulaire et uniforme de rayon : r= L.sin. L accélération de S est donc centripète et a pour expression : Le théorème du centre d inertie s écrit : Soit, en projetant cette relation sur les deux axes Sx et Sy : T.cos - P = 0 (1) T.sin = m.l. 2.sin. (2) Eliminons T entre les deux équations 1 et 2 :

3 b-tension du fil : On utilise la relation (1) Partie II 1-distance OG : Appelons C le centre de la barre de masse 3m et G le centre d inertie du système {barre-solide ponctuel S}. G est barycentre de C(3m) et A(m), par conséquent : Les vecteurs étant colinéaires, cette relation s écrit : 2-Moment d inertie du système par rapport à l axe de rotation passant par O: On appelle «ρ» la masse par unité de longueur de la barre

4 EXERCICE a. la distance du centre d inertie G du système {disque + corps (S)} à l axe ( ) est OG = a =4R/3. G est barycentre des points C(M) et B(m), soit : Les vecteurs ayant même direction et même sens (voir figure ci-dessus), la longueur OG s écrit donc : b. Calcul du moment d inertie du système, en tenant compte du théorème de Huyghens: Et comme : M=2m 2.- Le système de poids total P = (M+m)g, écarté de sa position d équilibre, est schématisé ci-dessous. Le sens positif de rotation étant choisi, écrivons le théorème de l accélération angulaire pour un angle petit: Le signe «moins» se justifie car le moment de P est toujours de signe contraire à celui de. Soit en simplifiant par M, on obtient l équation différentielle du mouvement de l oscillateur :

5 Remarque : Avant d aller plus loin, il est important de vérifier l homogénéité de la formule! Les deux termes de l équation différentielle ont la même unité SI soit: m.rad.s -2 L équation différentielle est celle d un oscillateur harmonique de pulsation ϖ et de période T, avec : Le pendule simple de longueur l synchrone du pendule composé doit vérifier : 3.- a. Calcul de Mf. Le disque tourne cette fois sans surcharge autour de son axe (Le moment de la force tend à s opposer au mouvement de rotation dans le sens choisi positif d où le signe négatif devant M f) Mf étant constant, le mouvement de rotation est uniformément varié d accélération : En intégrant, cette relation par rapport au temps, nous trouvons : La vitesse angulaire : ϖ(t) est donc une fonction affine décroissante de pente : Mf/J Une nouvelle intégration permet d obtenir ϖ : Les équations 1,2 et 3 dépendantes du temps sont celles définissant un mouvement uniformément varié. Pour trouver M f, nous devons établir une quatrième équation, celle que l on obtient en éliminant t entre les deux équations 2 et 3 Nous tirons t de l équation 2 et reportons son expression dans la troisième. Après simplification on obtient : Remarque : cette relation est formellement identique à celle obtenue lors d un mouvement rectiligne uniformément varié. Il suffit de remplacer ϖ par v, par x, et l accélération angulaire par l accélération :

6 L équation 4 est l équation indépendante du temps caractérisant un mouvement uniformément varié. On a représenté, ci-dessous l aspect des graphes de la vitesse angulaire et de l écart angulaire (non exigé) A l instant de l arrêt du disque, ϖ=0 et max=250.2.π=500π=1570rad Là encore il est prudent de vérifier l homogénéité de cette formule! Le terme littéral ci-dessus possède l unité : (s -1 ) 2.g.m 2.=s -2.g.m 2 Par ailleurs, une force a la dimension d une accélération par une masse, son unité est le newton (N) qui est équivalent à : m.s -2.g Ainsi : on trouve que l unité de Mf est : N.m ce qui est bien l unité d un moment! b. Calcul de la durée de cette phase d arrêt du disque. Il suffit de poser ϖ(t)=0 dans l équation 2 de la vitesse angulaire.

Matière : Physique Classe : SG.

Matière : Physique Classe : SG. Matière : Physique Classe : SG. Premier exercice (7pts) : étude énergétique Un jouet d'enfant est formé d'un rail placé dans un plan vertical comme indique la figure ci-dessous. La partie ABC est un trajet

Plus en détail

PENDULE DE TORSION. PENDULE PESANT.

PENDULE DE TORSION. PENDULE PESANT. PENDULE SIMPLE PENDULE DE TORSION. Il est constitué d un disque de masse m et de rayon R suspendu en son centre par un fil de torsion de masse négligeable. L autre extrémité du fil est fixe. PENDULE PESANT.

Plus en détail

ENERGIE CINETIQUE ENERGIE POTENTIELLE

ENERGIE CINETIQUE ENERGIE POTENTIELLE ENERGIE CINETIQUE ENERGIE POTENTIELLE EXERCICE I : ENERGIE CINETIQUE Un disque homogène de centre O et de rayon r = 10cm, a une masse M = 1,3kg. Dans une première expérience, le disque roule sans glisser

Plus en détail

LES OSCILLATIONS. Un mouvement qui se répète à intervalles de temps consécutifs égaux est dit périodique.

LES OSCILLATIONS. Un mouvement qui se répète à intervalles de temps consécutifs égaux est dit périodique. LES OSCILLATIONS Un mouvement qui se répète à intervalles de temps consécutifs égaux est dit périodique. Exemples d oscillations : la balancoire, cordes d une guitare... molécules d air qui transmettent

Plus en détail

La valeur positive extrême (ou maximale) prise par l abscisse angulaire est appelée amplitude de l oscillation.

La valeur positive extrême (ou maximale) prise par l abscisse angulaire est appelée amplitude de l oscillation. Terminale S Chapitre 12 Les systèmes mécaniques oscillants. Lycée J-B Schwilgué - SELESTAT I. Exemples de systèmes oscillants. 1. L oscillateur. On appelle oscillateur (ou système oscillant) un système

Plus en détail

Mouvement Rectiligne

Mouvement Rectiligne Mouvement Rectiligne Etude cinématique dynamique Enoncés Exercice 1 (Etude du mouvement rectiligne d un point matériel) Un mobile M effectue un mouvement dans le plan (O, x, y) muni d un repère R (O, i,

Plus en détail

TD 17 Approche énergétique du mouvement d un point matériel

TD 17 Approche énergétique du mouvement d un point matériel Mécanique I 1TPC TD 17 Approche énergétique du mouvement d un point matériel Exercice 1 Energie cinétique et théorème de l énergie cinétique (cours) 1. Donner la définition de l énergie cinétique d un

Plus en détail

Le graphe, de la figure (2), montre la variation de x en fonction de temps.

Le graphe, de la figure (2), montre la variation de x en fonction de temps. MATIERE; PHYSIQUE CLASSE; --SV-SG----------------------- DUREE---1 ''-18 ''------------- Premier exercice(7pts) Oscillateur élastique horizontal. On dispose d'un oscillateur élastique formé d'un ressort,

Plus en détail

TD 17 Approche énergétique du mouvement d un point matériel

TD 17 Approche énergétique du mouvement d un point matériel Mécanique I 1TPC TD 17 Approche énergétique du mouvement d un point matériel Exercice 1 Questions de cours 1. Rappeler la définition du travail et de la puissance d une force. Citer des cas de nullité

Plus en détail

1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son

1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son Physique TC 1 Correction 1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son centre. 2. Proposer une expression

Plus en détail

Oscillateurs. Une oscillation est le mouvement effectué par le système entre deux passages consécutifs à la même position et dans le même sens.

Oscillateurs. Une oscillation est le mouvement effectué par le système entre deux passages consécutifs à la même position et dans le même sens. I - Systèmes oscillants et mouvement sinusoïdal 1) Système mécanique oscillant Oscillateurs On appelle système mécanique oscillant un système matériel pouvant évoluer de part et d'autre d'une position

Plus en détail

TD 6 Moment cinétique

TD 6 Moment cinétique PH1ME2-C Université Paris 7 - Denis Diderot 2012-2013 TD 6 Moment cinétique 1. Force centrale 1. Définir une force centrale. 2. Donner les propriétés du moment cinétique d une masse ponctuelle uniquement

Plus en détail

Oscillateur harmonique (CORRIGES)

Oscillateur harmonique (CORRIGES) Oscillateur harmonique (CORRIGES) 1. Mesure de masse en apesanteur : a) Système ; chaise, de masse m o représentée par un point matériel M de masse m o. Actions : poids et rappel du ressort. La RFD (ou

Plus en détail

Cours de mécanique. M13-Oscillateurs

Cours de mécanique. M13-Oscillateurs Cours de mécanique M13-Oscillateurs 1 Introduction Nous étudierons dans ce chapitre en premier lieu l oscillateur harmonique solide-ressort horizontale, nous introduirons donc la force de rappel du ressort

Plus en détail

PROBLEME : PENDULES COUPLÉS PAR UNE BARRE DE TORSION

PROBLEME : PENDULES COUPLÉS PAR UNE BARRE DE TORSION UE PHY44 Vibrations, ondes et optique ondulatoire, 014-015 L Université Joseph Fourier, Grenoble UE PHY44 Partiel 1 mars 015 durée h 5 pages alculatrice collège autorisée, documents interdits, téléphone

Plus en détail

BACCALAURÉAT LIBANAIS - SG Corrigé

BACCALAURÉAT LIBANAIS - SG Corrigé Exercice 1 : Pendule de torsion Le but de l exercice est de déterminer le moment d inertie d une tige homogène par rapport à un axe qui lui est perpendiculaire en son milieu et la constante de torsion

Plus en détail

CHAPITRE I Oscillations libres non amorties Système à un degré de liberté CHAPITRE I

CHAPITRE I Oscillations libres non amorties Système à un degré de liberté CHAPITRE I Page1 CHAPITRE I Oscillations libres non amorties : Système à un degré de liberté I.1 Généralités sur les vibrations I.1.1 Mouvement périodique : Définition : C est un mouvement qui se répète à intervalles

Plus en détail

Cette manipulation doit être effectuée 3 fois afin de minimiser certaines erreurs expérimentales.

Cette manipulation doit être effectuée 3 fois afin de minimiser certaines erreurs expérimentales. TP - N : LA LOI DE NEWTON But de l expérience : - Vérifier le principe fondamental de la dynamique pour un mouvement de translation uniformément accéléré. - Déterminer expérimentalement la valeur de g.

Plus en détail

SERIE 3 / ENERGIE POTENTIELLE ET MECANIQUE ANNEE :

SERIE 3 / ENERGIE POTENTIELLE ET MECANIQUE ANNEE : SERIE 3 : ENERGIES POTENTIELLE ET MECANIQUE Remarque : Dans cette série, il est possible de résoudre certains exercices avec le théorème de l énergie cinétique, seulement il est clair que le but est de

Plus en détail

Les oscillations libres d un pendule élastique Oscillations libres non amorties Série d exercices corrigés

Les oscillations libres d un pendule élastique Oscillations libres non amorties Série d exercices corrigés Les oscillations libres d un pendule élastique Oscillations libres non amorties Série d exercices corrigés Exercice 1 : On considère l'oscillateur horizontal (Figure 1) constitué par un ressort de raideur

Plus en détail

Université Paul Sabatier Licence STS Parcours PC Physique L1

Université Paul Sabatier Licence STS Parcours PC Physique L1 Université Paul Sabatier Licence STS Parcours PC Physique L1 Thèmes 5 et 6 Oscillations forcées ; résonance ; impédance 2009 2010, durée : 6 h Conformément à l usage typographique international, les vecteurs

Plus en détail

Dans un référentiel choisi, un solide est en mouvement de translation s il conserve la même orientation au cours du mouvement.

Dans un référentiel choisi, un solide est en mouvement de translation s il conserve la même orientation au cours du mouvement. NOM : Prénom : M6. Rotation d un solide On limitera notre étude à la rotation autour d un axe fixe. L étude du mouvement d un solide, lorsqu il n est plus ponctuel, ne peut plus se limiter à l application

Plus en détail

Lycée Polyvalent de Montbéliard - Physique-Chimie - TSI Reconnaître et décrire une translation rectiligne, une translation circulaire.

Lycée Polyvalent de Montbéliard - Physique-Chimie - TSI Reconnaître et décrire une translation rectiligne, une translation circulaire. Mécanique 5 Mouvement d un solide en rotation autour d un axe fixe Lycée Polyvalent de Montbéliard - Physique-Chimie - TSI 1-2016-2017 Contenu du programme officiel : Notions et contenus Définition d un

Plus en détail

1 Définitions : Dynamique de translation : Dynamique de rotation :

1 Définitions : Dynamique de translation : Dynamique de rotation : M 2 Dynamique Bac pro - Faire l inventaire des forces agissant sur un système - Appliquer la relation fondamentale de la dynamique à un solide en translation, à un solide en rotation. - Calculer un moment

Plus en détail

ETUDE DES OSCILLATIONS MECANIQUE FORCEES

ETUDE DES OSCILLATIONS MECANIQUE FORCEES EXERCICE 1 ETUDE DES OSCILLATIONS MECANIQUE FORCEES A/ Un pendule élastique horizontal est formé d'un ressort (R) à spires non jointives, de masse négligeable, de raideur K=20N.m -1 dont l'une de ses extrémités

Plus en détail

TD: Référentiel non galiléen : Forces d inerties Relation fondamentale de la dynamique, Energie

TD: Référentiel non galiléen : Forces d inerties Relation fondamentale de la dynamique, Energie TD: Référentiel non galiléen : Forces d inerties Relation fondamentale de la dynamique, Energie Exercice 1: Pendule dans une voiture Un fil de plomb de longueur l, de masse m100g (figure 1) est suspendu

Plus en détail

Chapitre 7 : Travail et énergie (p. 183)

Chapitre 7 : Travail et énergie (p. 183) PRTIE 2 - COMPRENDRE : LOIS ET MODÈLES Chapitre 7 : Travail et énergie (p. 183) Compétences exigibles : Extraire et exploiter des informations relatives à la mesure du temps pour justifier l évolution

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section i-prépa - Chapitre 10 : Oscillateurs mécaniques (II) 5. Oscillateur mécanique libre amorti : En présence de frottements, il n y a plus

Plus en détail

Systèmes mécaniques oscillants : exercices

Systèmes mécaniques oscillants : exercices Systèmes mécaniques oscillants : exercices Exercice 1 : 1. Définir les notions suivantes : Oscillateur mécanique - mouvement oscillatoire - oscillation libre - amplitude de mouvement - élongation du mouvement

Plus en détail

Tronc commun scientifique Mahdade Allal année scolaire Énergie cinétique et travail : activités

Tronc commun scientifique Mahdade Allal année scolaire Énergie cinétique et travail : activités Énergie cinétique et travail : activités Application 1 a. Calculer l énergie cinétique : d une voiture de masse 1, 0tonnes roulant à 90km/h d un camion de masse 30tonnes roulant à 90km/h b. Calculer la

Plus en détail

OSCILLATIONS LIBRES D UN PENDULE ELASTIQUE

OSCILLATIONS LIBRES D UN PENDULE ELASTIQUE Prérequis OSCILLATIONS LIBRES D UN PENDULE ELASTIQUE * Encadrer l expression de l énergie cinétique m v v m Ec = Ec = Ec = mv * Cocher les facteurs dont dé pond l énergie potentielle élastique d un système

Plus en détail

Le plan sur lequel se déplace le solide S est horizontal. La position du centre d'inertie G est donnée par

Le plan sur lequel se déplace le solide S est horizontal. La position du centre d'inertie G est donnée par P12-OSCILLATIONS MECANIQUES TRAVAUX DIRIGÉS TERMINALEE S 1 Oscillateur mécanique horizontal Un oscillateur mécanique est constitué d'un ressort à spires non jointives de raideur k dont une extrémité est

Plus en détail

Énergie potentielle - Énergie

Énergie potentielle - Énergie MPSI - 2006/2007 - Mécanique I - Énergie potentielle - Énergie mécanique - Problèmes à un degré de liberté page 1/6 Énergie potentielle - Énergie mécanique - Problèmes à un degré de liberté Dans le chapitre

Plus en détail

Devoir n 3 de sciences physiques (2 heures)

Devoir n 3 de sciences physiques (2 heures) Lycée de Bambey erminale Sa Année: 7/8 Devoir n 3 de sciences physiques ( heures) 1 Exercice 1: Réaction entre un acide fort et une base forte (8 points) Les parties I et II sont indépendantes. Partie

Plus en détail

MΔ(F ) = F d CHAPITRE 7 : «FORCES, COUPLES, MOMENTS, TRAVAUX ET ENERGIES DANS LE TRANSPORT»

MΔ(F ) = F d CHAPITRE 7 : «FORCES, COUPLES, MOMENTS, TRAVAUX ET ENERGIES DANS LE TRANSPORT» CHAPITRE 7 : «FORCES, COUPLES, MOMENTS, TRAVAUX ET ENERGIES DANS LE TRANSPORT» Introduction : Ce chapitre a pour but de relier les concepts de forces et couples de forces (causes des mouvements) appliquées

Plus en détail

8 v 7.1 Oscillations 1

8 v 7.1 Oscillations 1 8 Oscillations v 7.1 Mouvement oscillatoire exemples d'oscillations : pendule de Galilée corde d'une guitare, air dans une flûte, dans un tuyau d'orgue propagation du son dans la matière vibrations des

Plus en détail

OSCILLATEURS MECANIQUES

OSCILLATEURS MECANIQUES OSCILLATEURS MECANIQUES 1 1. GENERALITES : 1.1.Définition : un oscillateur mécanique est un système matériel animé d un mouvement périodique. On appelle oscillateur harmonique, un oscillateur pour lequel

Plus en détail

Corrigé de la série n 2 Dynamique et Statique. A.N : d = 1,

Corrigé de la série n 2 Dynamique et Statique. A.N : d = 1, Corrigé de la série n Dynamique et Statique 1/ le volume de la sphère est V = 4 πr et ρ = V m A.N : ρ = 1,7 10 17 Kg/m ρu a densité est d = ρ eau A.N : d = 1,7 10 14 ) es forces qui s exercent sur l ascenseur

Plus en détail

Mouvement d un solide en rotation autour d un axe fixe

Mouvement d un solide en rotation autour d un axe fixe Mouvement d un solide en rotation autour d un axe fixe II. Moment cinétique scalaire d un solide en rotation autour d un axe fixe 1. Moment cinétique d un point matériel par rapport à un point On appelle

Plus en détail

Amérique du Sud 2005 Sans calculatrice I. ÉMISSION ET RÉCEPTION D UNE ONDE RADIO (4 points)

Amérique du Sud 2005 Sans calculatrice I. ÉMISSION ET RÉCEPTION D UNE ONDE RADIO (4 points) Amérique du Sud 25 Sans calculatrice I. ÉMISSION ET RÉCEPTION D UNE ONDE RADIO (4 points) Au cours d une séance de travaux pratiques, les élèves réalisent un montage permettant d émettre puis de recevoir

Plus en détail

Lycée El Hadji Omar lamine Badji Année scolaire 2013-2014 Cellules de sciences physiques Classe : TS1 OSCILLATIONS MECANIQUES LIBRES EXERCICE 1: Un oscillateur harmonique est constitué d un ressort de

Plus en détail

Oscillations forcées en mécanique

Oscillations forcées en mécanique Oscillations forcées en mécanique I. Oscillateur amorti soumis à une excitation Lorsque l'oscillateur ( amorti par frottement fluide ) est soumis à une force excitatrice () son équation différentielle

Plus en détail

Changement de référentiels

Changement de référentiels 1 MP*1-2015/2016 Changement de référentiels Une horloge est constituée d un pendule de longueur L, le fil étant sans masse, attaché en O au bout duquel est attachée en M une masse ponctuelle m. Il oscille

Plus en détail

A- MOUVEMENT CIRCULAIRE

A- MOUVEMENT CIRCULAIRE CHAPITRE 3 MOUVEMENTS PARTICULIERS A- Mouvement circulaire B- Mouvement oscillatoire Pr. M. ABD-LEFDIL Université Mohammed V- Agdal Département de Physique Année universitaire 5-6 SVI-STU A- MOUVEMENT

Plus en détail

Systèmes oscillants. I. Présentation de quelques systèmes oscillants mécaniques. 1. Les oscillateurs vus en terminale S.

Systèmes oscillants. I. Présentation de quelques systèmes oscillants mécaniques. 1. Les oscillateurs vus en terminale S. Systèmes oscillants I. Présentation de quelques systèmes oscillants mécaniques. 1. Les oscillateurs vus en terminale S. Les oscillateurs étudiés en terminale S sont : - le pendule pesant (simple) - le

Plus en détail

Deuxième séance de regroupement PHR004

Deuxième séance de regroupement PHR004 Deuxième séance de regroupement PHR4 Rappels de cours (Leçons 3 à 5) Commentaires sur les exercices Questions / Réponses Dynamique du point matériel Rappels On nomme "Référentiel" un système d'axes, pouvant

Plus en détail

Lycée Galilée Gennevilliers. chap. 10. Jallu Laurent

Lycée Galilée Gennevilliers. chap. 10. Jallu Laurent ycée alilée ennevilliers chap. 10 Jallu aurent I. Présentation d oscillateurs libres... 1. e pendule simple... Définition... a période du pendule simple.... e pendule élastique... 3 Définition... 3 a période

Plus en détail

Mécanique du point. Contrôle final. Sans documents - calculatrice autorisée LES NUMEROS DE GROUPE ET DE PROMO DEVRONT ETRE ECRITS SUR LES COPIES

Mécanique du point. Contrôle final. Sans documents - calculatrice autorisée LES NUMEROS DE GROUPE ET DE PROMO DEVRONT ETRE ECRITS SUR LES COPIES E. S. I. E. E. Année 2013/2014 Mécanique du point SFP-1003 Contrôle final Temps : 3h Mercredi 15/01/2014 Sans documents - calculatrice autorisée E. Algré LES NUMEROS DE GROUPE ET DE PROMO DEVRONT ETRE

Plus en détail

M7 - Mécanique des solides indéformables. Mécanique. Chapitre 7 : Mécanique des solides indéformables

M7 - Mécanique des solides indéformables. Mécanique. Chapitre 7 : Mécanique des solides indéformables Mécanique Chapitre 7 : Mécanique des solides indéformables Sommaire 1 Cinématique des solides indéformables 1 1.1 Le solide indéformable............................................. 1 1.2 Mouvement de

Plus en détail

SERIE N 7 ETUDE DES OSCILLATIONS MECANIQUE LIBRES

SERIE N 7 ETUDE DES OSCILLATIONS MECANIQUE LIBRES SERIE N 7 ETUDE DES OSCILLATIONS MECANIQUE LIBRES EXERCICE 1 Dans cet eercice, les réponses attendues doivent être rédigées de façon succincte. Le modèle d'oscillateur étudié est décrit ci-contre, et les

Plus en détail

oscillateurs et ondes progressive

oscillateurs et ondes progressive oscillateurs et ondes progressive Ce cours reprend le cours de madame Grenier de 2007, il constitue une aide et en aucun cas une référence pour le concours! C est un résumé du cours de madame Grenier,

Plus en détail

Dynamique du point en référentiel

Dynamique du point en référentiel MPSI - Mécanique I - Dynamique du point en référentiel galiléen page 1/6 Dynamique du point en référentiel galiléen Il faut bien comprendre que la e loi de Newton rappelée dans le chapitre d introduction

Plus en détail

Exercices Mécanique du solide

Exercices Mécanique du solide Exercices Mécanique du solide Exo 1 Balançoire Un enfant sur une balançoire est schématisé par un pendule oscillant autour d un axe horizontal grâce à une liaison parfaite. L angle avec la verticale est

Plus en détail

La conservation de l énergie

La conservation de l énergie Chapitre 8 La conservation de l énergie 8.0 Introduction Les interrogations sur le mouvement d un pendule avec Galilée, marque le début de l emploi du concept de l énergie pour expliquer et surtout prédire

Plus en détail

L.E.I.D/G.S.A DEVOIR DE PC N 2 TS2A 2013/

L.E.I.D/G.S.A DEVOIR DE PC N 2 TS2A 2013/ DUREE :03heures EXERCICE N 1 :06 points Lorsque les pommes murissent, leurs membranes cellulaires s oxydent, engendrant la dégradation des acides gras à longues chaines qu elles contiennent. Il en résulte

Plus en détail

Travail et puissance d une force

Travail et puissance d une force Travail et puissance d une force Exercice 1 : Un morceau de savon de masse m = 200g glisse sans frottement sur un plan incliné d un angle de 30 par rapport à l horizontale. Donnée : g = 9,8N. kg 1 1- Quelles

Plus en détail

CINEMATIQUE. I) Généralités : 1) Définition et champ d étude :

CINEMATIQUE. I) Généralités : 1) Définition et champ d étude : CINEMATIQUE I) Généralités : 1) Définition et champ d étude : Définition : La cinématique a pour objet l étude du mouvement des solides (et des points) sans tenir compte des causes de ce mouvement. Champ

Plus en détail

Formulaire de Mécanique appliquée

Formulaire de Mécanique appliquée Formulaire de Mécanique appliquée Ce formulaire est un document de travail. Il ne peut en aucun cas remplacer le cours de mécanique. Tout le référentiel de mécanique ne s y trouve pas. (mécanique graphique,

Plus en détail

Exercices et Problèmes de renforcement en Mécanique

Exercices et Problèmes de renforcement en Mécanique Exercices et Problèmes de renforcement en Mécanique I Un ressort de raideur k = 9 N/m et de longueur à vide L = 4 cm, fixé par une de ces deux extrémités en un point O, d un plan, incliné de 3 sur l horizontal,

Plus en détail

LES OSCILLATEURS R L C. I(t) Les analogies électriques et mécaniques sont indiquées dans le tableau suivant : 1/LC K/m

LES OSCILLATEURS R L C. I(t) Les analogies électriques et mécaniques sont indiquées dans le tableau suivant : 1/LC K/m LES OSCILLATEURS Rappels théoriques Quelques domaines concernés... Electromagnétisme, électronique Acoustique Microscope à force atomique, vibrations intramoléculaires Sismographie Marées : résonances

Plus en détail

On constate que l accélération est positive et donc le système monte bien.

On constate que l accélération est positive et donc le système monte bien. Université Cadi Ayyad Année Universitaire 05/06 Faculté des Sciences Semlalia-Marrakech Département de Physique Module de Mécanique du Point Matériel Corrigé de la série N 3 Filières SMA Corrigé : Peintre

Plus en détail

QCM Physiques. 1. Deux masses sont reliées par un l.

QCM Physiques. 1. Deux masses sont reliées par un l. . Deux masses sont reliées par un l. QCM Physiques Le l est inextensible et de masse négligeable. Il glisse sans frottement sur une poulie suspendue au plafond. Sachant que, m = kg et m = kg. On peut armer

Plus en détail

Professeur : Mohamed lemine ould Hasnat

Professeur : Mohamed lemine ould Hasnat Énoncé de l exercice 1 Un solide C, de dimensions négligeables, de masse m =100 g, pouvant glisser sans frottement sur une table horizontale, est fixée à l extrémité d un ressort à spires non jointives,

Plus en détail

PHY332 Électricité et magnétisme

PHY332 Électricité et magnétisme PHY33 Électricité et magnétisme Vous ne vous rappelez plus trop de votre cours de mécanique (ING50/CTN58/MEC)? Il se peut que quelques sessions se soient passées depuis. Voici les quelques notions de ces

Plus en détail

1 Description d un système oscillant

1 Description d un système oscillant Notions et contenus Oscillations mécaniques Amortissement Oscillations libres Oscillations forcées Résonance Objectifs Décrire un système oscillant autour de sa position d équilibre Décrire l oscillateur

Plus en détail

TRAVAUX DIRIGÉS DE S 1

TRAVAUX DIRIGÉS DE S 1 Travau Dirigés S 1 Correction PCSI 2016 2017 TRAVAUX DIRIGÉS DE S 1 Eercice 1 : Homogénéité 1. ontrer que l epression obtenue en cours ω = k est homogène. m 2. n trouve epérimentalement ω = 250 /min, convertir

Plus en détail

TD ELECTROTECHNIQUE 1 ère année Module MC2-2. V. Chollet - TD-Trotech07-28/08/2006 page 1

TD ELECTROTECHNIQUE 1 ère année Module MC2-2. V. Chollet - TD-Trotech07-28/08/2006 page 1 TD ELECTROTECHNIQUE 1 ère année Module MC2-2 V. Chollet - TD-Trotech07-28/08/2006 page 1 IUT BELFORT MONTBELIARD Dpt Mesures Physiques TD ELECTROTECHNIQUE n 1 Avec l aide du cours, faire une fiche faisant

Plus en détail

T-STL-PL Exercices sur les vitesses de rotation. T-STL-PL Exercices sur les vitesses de rotation

T-STL-PL Exercices sur les vitesses de rotation. T-STL-PL Exercices sur les vitesses de rotation T-STL-PL Exercices sur les vitesses de rotation T-STL-PL Exercices sur les vitesses de rotation T-STL-PL Exercices sur les moments des forces 1- Un disque homogène (S) de rayon R est mobile autour de son

Plus en détail

Documents de Physique-Chimie M. MORIN

Documents de Physique-Chimie M. MORIN 1 Afin de décrire le mouvement d un solide, il faut : Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 16 : Cinématique - Mouvement d un point au cours du temps. Comment décrire le

Plus en détail

SOMMAIRE. Chapitre correspondant dans le livre

SOMMAIRE. Chapitre correspondant dans le livre Devoir commun EXERCICES DE RÉVISIONS PARTIE PHYSIQUE 1S SOMMAIRE tableau de synthèse des révisions exercices supplémentaires corrigés des exercices supplémentaires TABLEAU DE SYNTHÈSE Chapitre du cours

Plus en détail

TP Oscillateur de torsion

TP Oscillateur de torsion TP Oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

S14 - Oscillateurs mécaniques amortis. Signaux physiques. Chapitre 14 : Oscillateurs mécaniques amortis

S14 - Oscillateurs mécaniques amortis. Signaux physiques. Chapitre 14 : Oscillateurs mécaniques amortis Signaux physiques Chapitre 14 : Oscillateurs mécaniques amortis Sommaire 1 Etude du régime libre de l oscillateur harmonique amorti 1 1.1 Définition d un OH amorti...........................................

Plus en détail

4 ème : Sc.Exp Profs : Abid - Hrizi- Feki et Cherchari. Collège Sadiki Devoir de synthèse n : 2 Samedi Chimie ( 9 points )

4 ème : Sc.Exp Profs : Abid - Hrizi- Feki et Cherchari. Collège Sadiki Devoir de synthèse n : 2 Samedi Chimie ( 9 points ) Collège Sadiki Devoir de synthèse n : 2 Samedi 9-3-213 Sciences physiques On donnera l expression littérale avant de passer à l application numérique. L utilisation de la calculatrice non programmable

Plus en détail

TD Mécanique du solide

TD Mécanique du solide TPC2 TD Mécanique du solide Solide en rotation autour d un axe fixe Exercice n o 1 : Ordres de grandeur des moments cinétiques 1 Le moment d inertie de la Terre en rotation uniforme autour de l axe passant

Plus en détail

Loi du moment cinétique

Loi du moment cinétique Loi du moment cinétique Cas d un point matériel, d un système de points matériels et d un solide en rotation autour d un axe fixe Introduction...3 I Quelques rappels sur la mécanique du solide...4 1 Les

Plus en détail

Circuit mobile dans un champ magnétique stationnaire

Circuit mobile dans un champ magnétique stationnaire Circuit mobile dans un champ magnétique stationnaire II. Conversion de puissance mécanique en puissance électrique 1. Retour sur les rails de Laplace ( générateur ) Les rails de Laplace vus dan des chapitres

Plus en détail

Objectifs d apprentissage du chapitre 1 Physique et mécaniques, analyse dimensionnelle et ordres de grandeur

Objectifs d apprentissage du chapitre 1 Physique et mécaniques, analyse dimensionnelle et ordres de grandeur Objectifs d apprentissage du chapitre 1 Physique et mécaniques, analyse dimensionnelle et ordres de grandeur Principes de la démarche scientifique Cadre d étude de la physique Définition des mécaniques

Plus en détail

Travaux Pratiques de Physique Expérience n 9

Travaux Pratiques de Physique Expérience n 9 Expérience n 9 PENDULES Domaine: Mécanique Lien avec le cours de Physique Générale: Cette expérience est liée aux chapitres suivants du cours de Physique Générale (Physique I): - Physique I, Chapitre 11:

Plus en détail

MECA MÉCANIQUE RATIONNELLE

MECA MÉCANIQUE RATIONNELLE L G L G Août 011 MECA0003-1 - MÉCANIQUE RATIONNELLE Prof. Éric J.M.DELHEZ Durée de l épreuve : 4h. Répondez aux différentes questions sur des feuilles séparées. Indiquez sur chacune de vos feuilles vos

Plus en détail

Corrigés des exercices

Corrigés des exercices Il est intéressant d insister sur la définition du vecteur accélération pour enlever l idée qu un système accélère uniquement lors de variations de la valeur de son vecteur vitesse 4 Comment énoncer la

Plus en détail

TP SFP-1003: Etude d un oscillateur forcé

TP SFP-1003: Etude d un oscillateur forcé TP SFP-1003: Etude d un oscillateur forcé Nous allons étudier au cours de ce TP le comportement d un pendule élastique vertical en régime forcé. Pour forcer les oscillations du système masse-ressort à

Plus en détail

THEOREME DE L'ENERGIE CINETIQUE

THEOREME DE L'ENERGIE CINETIQUE THEOREME DE L'ENERGIE CINETIQUE I MOUVEMENT DE TRANSLATION : LA CHUTE LIBRE 1 Expérience et référentiel L'origine des temps(t = 0) se situe lorsque la bille quitte l'électro-aimant et l'origine des abscisses

Plus en détail

CHAPITRE II Oscillations libres amorties Système à un degré de liberté CHAPITRE II

CHAPITRE II Oscillations libres amorties Système à un degré de liberté CHAPITRE II Page 1 CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté Introduction : Le pendule élastique comme le pendule pesant, se comporte comme un oscillateur harmonique à la condition

Plus en détail

Chapitre-III Dynamique dans un référentiel non galiléen

Chapitre-III Dynamique dans un référentiel non galiléen Chapitre-III Dynamique dans un référentiel non galiléen A- Changements de référentiels Aspect Cinématique I. Introduction L objet de ce paragraphe est d établir, d un point de vue cinématique, les lois

Plus en détail

MINESTRE DE L EDUCATION ET DE LAFORMATION SERIE N 8 SEANCE N 16 SCIENCE-TECHNIQUE-EXP-MATHS

MINESTRE DE L EDUCATION ET DE LAFORMATION SERIE N 8 SEANCE N 16 SCIENCE-TECHNIQUE-EXP-MATHS REPUBLIQUETUNISIENNE PROF/ MABROUKI SALAH MINESTRE DE L EDUCATION ET DE LAFORMATION SERIE N 8 SEANCE N 16 SECTION / SCIENCE-TECHNIQUE-EXP-MATHS Osc ~ Libre ~. ~ 2 EXERCICEN 1 On dispose d un pendule élastique

Plus en détail

Robot ramasseur de fruits

Robot ramasseur de fruits CI 3 CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES SYSTÈMES CHAPITRE 5 CINÉMATIQUE DU SOLIDE INDÉFORMABLE Activité proposée par F. Mathurin Robot ramasseur de fruits On étudie un robot ramasseur de fruits.

Plus en détail

Série physique : Mécanique forcée. Exercice n 1. 4éme M-S exp

Série physique : Mécanique forcée. Exercice n 1. 4éme M-S exp Exercice n 1 Un pendule élastique horizontal est formé par un solide de masse m = 0,1 Kg lié à un ressort à spires non jointives de masse négligeable et de raideur k = 25,6 N.m -1. Le pendule est soumis

Plus en détail

1. DYNAMIQUE DU POINT MATÉRIEL

1. DYNAMIQUE DU POINT MATÉRIEL . DYNAMIQUE DU PINT MATÉRIEL.. Grandeurs cinétiques fondamentales Pour un point matériel M, de masse m, animéd une vitesse v par rapport à un référentiel R donné, on définit les grandeurs cinétiques suivantes

Plus en détail

Série physique: oscillation mécanique libre. Exercice N 1. 4 éme M-S.exp

Série physique: oscillation mécanique libre. Exercice N 1. 4 éme M-S.exp Exercice N 1 Un solide ponctuel (S), de masse m, est attaché à l une des extrémités d un ressort (R), à spires non jointives, de raideur K et de masse négligeable. L autre extrémité du ressort est fixe.

Plus en détail

I Travail et puissance d une force II L énergie cinétique III Théorème de l énergie cinétique THÉORÈME DE L ÉNERGIE CINÉTIQUE

I Travail et puissance d une force II L énergie cinétique III Théorème de l énergie cinétique THÉORÈME DE L ÉNERGIE CINÉTIQUE I Travail et puissance d une force II L énergie cinétique III Théorème de l énergie cinétique THÉORÈME DE L ÉNERGIE CINÉTIQUE I travail et puissance d une force Notion de force : Une action mécanique peut

Plus en détail

Chap. 9 : La mécanique de Newton Exercices

Chap. 9 : La mécanique de Newton Exercices Terminale S Physique Chapitre 9 : La mécanique de Newton Page 1 sur 7 Exercice n 1 p219 1. Le mouvement de ce mobile est rectiligne et uniforme. 2. La valeur de la vitesse est constante. 3. Le vecteur-vitesse

Plus en détail

SYSTEMES OSCILLANTS. L étude des oscillations d un mobile en translation (MOt) ou d un mobile en rotation (MOr) est le sujet de cette manipulation.

SYSTEMES OSCILLANTS. L étude des oscillations d un mobile en translation (MOt) ou d un mobile en rotation (MOr) est le sujet de cette manipulation. MO 1 SYSTEMES OSCILLANTS On rencontre fréquemment en physique des phénomènes périodiques (ou oscillants ou vibratoires): mouvement autour d'une position d'équilibre d'un pendule, d'un poids suspendu à

Plus en détail

Dynamique, lois de COULOMB

Dynamique, lois de COULOMB Exercice de mécanique du solide EXERCICE 1 Dynamique en référentiel non galiléen_ Un prisme de masse, sur lequel roule sans glisser un rouleau, de masse et de rayon, peut glisser sans frottements sur une

Plus en détail

DEVOIR SURVEILLE DE PHYSIQUE II :

DEVOIR SURVEILLE DE PHYSIQUE II : I.P.S.A. 5 / 9 rue Maurice Grandcoing 94200 Ivry Sur Seine Tél. : 01.56.20.60.71 Date de l'epreuve : 9 mai 2016 Classe : AERO-1 S,T,U,V,W,X,Y Corrigé Devoir Surveillé Physique II Ph12 Professeurs:Bouguechal

Plus en détail

T H E O R E M E D U M O M E N T C I N E T I Q U E

T H E O R E M E D U M O M E N T C I N E T I Q U E ECANIQUE Lycée F.BUISSN PTSI T H E R E E D U E N T C I N E T I Q U E PRELUDE (Pour la culture et pour mieux comprendre l intérêt de ce que l on étudie, mais ce n est pas au programme) La mécanique classique

Plus en détail

Oscillateurs mécaniques

Oscillateurs mécaniques Oscillateurs mécaniques I. Mouvement Harmonique Simple (MHS) + + =. Projection sur [ ) : = + = Equation différentielle régissant le mouvement du dispositif {solide-ressort} Les solutions sont de la forme

Plus en détail

I. Les oscillateurs mécaniques.

I. Les oscillateurs mécaniques. Chapitre 9 : Comment exploiter des phénomènes périodiques pour accéder à la mesure du temps? I. Les oscillateurs mécaniques. On appelle oscillateur (ou système oscillant) un système pouvant évoluer, du

Plus en détail

RAPPEL DE QUELQUES UNITÉS DE MESURE ET DE FORMULES MATHÉMATIQUES

RAPPEL DE QUELQUES UNITÉS DE MESURE ET DE FORMULES MATHÉMATIQUES RAPPEL DE QUELQUES UNITÉS DE MESURE ET DE FORMULES MATHÉMATIQUES Quelques unités de mesure Grandeur Symbole Unité de mesure Symbole de l unité de mesure Quelques correspondances Accélération a Mètre par

Plus en détail

Sujet de révision N o 4

Sujet de révision N o 4 Sujet de révision N o 4 CHIMIE Exercice 1 : 1- Le dibrome Br 2 est à la fois un oxydant et un réducteur.il intervient dans les couples BrO 3 - /Br 2 et Br 2 /Br -. Préciser dans quel couple il est oxydant

Plus en détail

Mécanique Analytique, Partiel 1

Mécanique Analytique, Partiel 1 Mécanique Analytique, Partiel 1 009-010 Epreuve du avril 010 ; durée : 110 minutes ; sans document ni calculatrice Exercice 1 : Lagrange (6 points) Soit un système de trois masses m a, m b et M dans un

Plus en détail