Corrigé du baccalauréat S Centres étrangers 16 juin 2011

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Corrigé du baccalauréat S Centres étrangers 16 juin 2011"

Transcription

1 Corrigé du baccalauréat S Centres étrangers 6 juin EXERCICE Commun à tous les candidats 4 points. a. A O A A 4 A 6 A 5 A A On a a a a,5, puis a,75, a 4,65 a 5,6875 et a 6,6565 b. c. Puisque le point A n est le milieu du segment [A n A n ] cela se traduit en abscisses par a n a n a n.. Initialisation : a a. La formule est vraie au rang. Hérédité : Supposons qu il existe p N, p > tel que a p a p, qui équivaut à a p a p. Alors a p a p a p a p a p relation est vraie au rang p. a p a p, donc la On a donc démontré que pour tout naturel n N a n a n.. On a pour tout naturel n, v n a n a n a n ( a n ) v n. La relation pour tout naturel n N, v n v n montre que (v n ) est une suite géométrique de raison et de premier terme v a. ( 4. On sait que pour tout naturel n N, v n v ) n ( n. ) Or < ( < lim n. n ) Donc lim v n. n Comme a n v n, on a lim a n n. EXERCICE Candidats n ayant pas suivi l enseignement de spécialité Question Affirmation Méthode : On a AB b a i 45 ; ( AC c a ) i ( 5 ; ( ) ( ) BC c b i ) ( ) ( ) 5. On a donc AB AC BC. 5 points ( ) 4 4 ( ) 4 4

2 Méthode On considère la rotation de centre B et d angle π. L image de M d affixe z par cette ( rotation est le point M d affixe z telle que : ) z b e i π (z b) ou z i i (z i). L image ( de A d affixe i dans cette rotation est donc le point d affixe : ) ( ) i i (i i)i i ( i)i ii ( ) i soit l affixe du point C. Ceci démontre que le triangle ABC est équilatéral. Question i i ( i ) La transformation est une rotation ; or ( )( ) i i i i i cos π i sin π ei π. Question i 4 i ; d où en factorisant ce module : ( ) i i e i 5π 6. Donc a ( i ) ) (e i 5π 6 e i 5π 6 e i π 6. Un argument de cette puissance est π : ce nombre n est pas un imaginaire pur. 6 L affirmation est fausse. Question 4 On a P(X ) e λ et P(X ) e λ. P (X X ) Il faut calculer P X ( X ) P(X ) e λ. Question 5 On a une loi binomiale de paramètres n et p 5 n. e λ e λ e λ e λ La ( probabilité ) d obtenir noire en tirages est égale à : ( ) 5 ( ) 5 ( ) n 5 ( ) 5. n n n n Donc la probabilité d obtenir au moins une boule noire sur les tirages est le complément à soit : ( ) 5. n Il faut donc résoudre l inéquation : ( ) 5 ( ) 5,9999, (par croissance de la fonction logarithme népérien ln ln, ln n ( ) n ( ) 5 5 ln, n n ln, ln, ln5 ln n lnn ln5. ln, Or ln 5,5. La calculatrice donne n e,5,5. La plus petite valeur de l entier n est donc bien égale à. EXERCICE 5 points Centres étrangers 6 juin

3 Candidats ayant suivi l enseignement de spécialité Question Une { solution évidente de cette équation est ( ; ). On a : ( ) 7 (par différence membre à membre) x y 7 (x )(y ) (x )( y) (). Ceci montre que (x ) divise mais comme est premier avec, x divise. (Gauss). Il existe donc α Z tel que x α soit en remplaçant dans l équation (), α ( y) α y y α. Les solutions de (E) sont donc les couples ( α ; α), α Z. De plus le couple (9 ; ) est aussi une solution évidente de (E) et il n existe pas d entier k tel que 9k,... L affirmation est donc fausse. Question On a 4 mod 7, donc N 4 mod 7. Il reste à déterminer les restes des puissances de 4 dans la division euclidienne par 7. On a 4 4 mod 7, 4 mod 7 et 4 mod 7. Donc N ( 4 ) mod 7. Question Une figure rapide montre que le point C de coordonnées négatives n est pas situé «du bon côté de [AB]». D autre part l image du point B par la similitude de centre A, de rapport et d angle π a pour affixe e i π (zb z A ) z A i ( i)i i ( ). Le point C est l image du point B par la similitude de centre A, de rapport et d angle π. L affirmation est fausse. Question 4 L image du point A par f a pour affixe : 5 ( 4i)( i) (6i)i a. 5 L image du point B par f a pour affixe : 5 ( 4i)(i) 5 (6i) ib. La similitude f admet deux points fixes distincts A et B : c est donc l identité ou la réflexion d axe (AB). Mais l image de O n est pas O. Question 5 La surface S est un paraboloïde hyperbolique d équation z 4x y. La section avec le plan d équation z est l ensemble { des points { de l espace dont z z les coordonnées vérifient l un des deux systèmes x ou y C est donc la réunion des axes (Ox) et (Oy) qui sont deux droites orthogonales de l espace. EXERCICE Commun à tous les candidats 5 points Centres étrangers 6 juin

4 E H F G M A θ D K J B. a. C( ; ; ) ; E( ; ; ) ; I ( ; ; ) ; J ( ; ; ). I x α y α z α x α y α Finalement : z α x α M(x ; y ; z) [CE] il existe α [ ; ] tel que : y α z α Pour α, le point est en C, pour α le point est en E. b. M(x ; y ; z) (CE) il existe α R : CM α CE). a. Un point M(x ; y ; z) appartient au plan médiateur de [IJ] s il est équidistant de I et de J, c est-à-dire si MI MJ ou MI MJ (x ) ( y ) z ( x ) (y ) z x x y 4 y z x 4 xy y z xy y x équation du plan médiateur. Il est évident que C et E ont leurs coordonnées qui vérifient cette équation. b. Les coordonnées de M vérifient pour tout t [ ; ] l équation du plan médiateur donc MI MJ et le triangle MIJ est isocèle en M. c. On a IM ( t ) ( t ) (t ) t 4 t tt t t 4.. a. Sur l intervalle [ ; π] la fonction sinus est croissante sur [ ; π ] et décroissante sur [ π ; π] avec un maximum en π. Donc la mesure θ est maximale ( ) θ lorsque sin est maximal. b. Dans le triangle IMJ, soit K le milieu de [IJ]. Le triangle étant isocèle en M la droite (MK)est médiane et donc aussi hauteur. Le triangle IMK est donc rectangle en K et par définition sin θ IK. Par définition de la fonction MI inverse le sinus est maximal quand le dénominateur IM est minimal. c. On a f (t) ( t t ) [ (t ) ] 6 6 [ (t ) ] 6 8. La forme canonique du trinôme montre que le minimum de la fonction est obtenu pour x 6 et que ce minimum est égal à f ( 6 C ) 8 6. d. On a vu (question. c.) que IM f (t) et que le minimum de IM, donc de IM correspond au maximum de l angle ÎMJ. Donc le point M de [EC] Centres étrangers 4 6 juin

5 correspondant à la valeur du paramètre t est le point unique correspondant à la valeur maximale de l angle IM 6 J e. Géométriquement, on sait que la distance d un point M à une droite (EC) est obtenue avec le projeté orthogonal du point M sur la droite (EC). Donc le point M est le projeté orthogonal du point I sur le segment [EC]. EXERCICE 4 Commun à tous les candidats 6 points. Étude des fonctions f et g a. f (x)exe x et g (x)ex e x. On a lim x e x, d où par produit de limites lim f (x). x Comme lim x x, lim g (x). x b. On sait que lim x xe x, donc lim f (x). x De même comme pour tout naturel n, lim x xn e x, on a lim g (x) x. c. f produit de fonctions dérivables sur R est dérivable et sur cet intervalle f (x)e(e x xe x )ee x ( x). Comme e x > quel que soit le réel x, le signe de f (x) est celui de x qui est positif sur ] ; [ et négatif sur ] ; [. D où le tableau de variations de f : x f (x) g produit de fonctions dérivables sur R est dérivable et sur cet intervalle g (x)e ( xe x x e x) ee x x( x). Comme e x > quel que soit le réel x, le signe de g (x) est celui du trinôme x( x) qui est négatif sauf entre les racines et. D où le tableau de variations de g : x g (x) 4 e. Calcul d intégrales a. I e x dx e e x dx e[ e x ] e[ e ] e. b. On a I n xn e x dx e xn e x dx. On pose : { u(x) x n u (x) n x n v (x) e x v(x) e x Toutes les fonctions sont continues car dérivables sur R, on peut donc faire une intégration par parties : I n e [ x n e x] e (n )x n e x dx e[ e] e x n e x dx ee e(n )I n (n )I n I n. Centres étrangers 5 6 juin

6 c. La formule précédente donne pour n, I I e e. Pour n, I I (e )e 5.. Calcul d une aire plane a. Soit d la fonction définie sur R par d(x) f (x) g (x) xe x x e x xe x ( x). Comme e x > quel que soit le réel x, le signe de f (x) est celui du trinôme x( x), soit négatif sauf entre les racines du trinôme et. Ceci montre que la courbe C est au dessus de la courbe C sur ] ; [ et au dessous sur ] ; [ et sur ] ; [. b. On vient de voir que sur l intervalle [ ; ] f (x) g (x), donc l aire de la partie du plan comprise d une part entre les courbes C et C, d autre part entre les droites d équations respectives x et x est égale à la différence des intégrales : A f (x)dx g (x)dx par linéarité de l intégrale. 4. Étude de l égalité de deux aires [f (x) g (x)]dxi I e (e 5) e. a. On a S a A e a ( a a ) e e a ( a a ) e e e a ( a a ) e e a ( a a ) a a e a. b. Il reste à résoudre l équation e x x x équivalente à e x x x sur l intervalle [ ; [. Si on pose, pour tout x réel : h(x)e x x x, cela revient à chercher un zéro de la fonction h sur R. Cette fonction est deux fois dérivable sur R et sur cet intervalle h (x)e x x qui elle-même est dérivable sur R et : h (x)e x On a h (x) e x e x x ln Donc h (x)> e x > e x > x> ln. h est continue et strictement croissante sur [ln ; [ et à fortiori sur [ ; [ puisque ln,69<. On a h ()e e <. De plus lim x h (x) (limite obtenue en factorisant e x.) Donc, d après un corollaire du théorème des valeurs intermédiaires, il existe un réel unique α, <α tel que h (α). On en déduit que h est strictement négative sur ] ; α[ et strictement positive sur ]α ; [. h est donc strictement décroissante sur ] ; α[ et strictement croissante sur ]α ; [. D autre part, lim h(x)e,8 et x x> h(x). Ainsi h est strictement négative sur ] ; α[. lim x Enfin, h étant continue est strictement croissante sur [α ; [, il existe β ]α ; [, unique, tel que h(β). Avec une table de valeurs ou le solveur de la calculatrice on trouve aisément : α,6 et β,79. (Voir la figure ci-dessous) Centres étrangers 6 6 juin

7 Annexe (Courbes de l exercice 4) C O β C Centres étrangers 7 6 juin

Corrigé du baccalauréat S Centres étrangers 12 juin 2014

Corrigé du baccalauréat S Centres étrangers 12 juin 2014 Durée : 4 heures Corrigé du baccalauréat S Centres étrangers juin 4 A. P. M. E. P. Exercice 4 points Commun à tous les candidats Question Dans un hypermarché, 75 % des clients sont des femmes. Une femme

Plus en détail

Correction du baccalauréat S Polynésie 10 juin 2010

Correction du baccalauréat S Polynésie 10 juin 2010 Correction du baccalauréat S Polynésie 0 juin 00 Exercice Commun à tous les candidats. Le plan complexe est rapporté à un repère orthonormal direct O, u, ) v. 5 points Prérequis Partie A - Restitution

Plus en détail

Corrigé du baccalauréat S Centres étrangers 15 juin 2009

Corrigé du baccalauréat S Centres étrangers 15 juin 2009 Durée : 4 heures Corrigé du baccalauréat S Centres étrangers 5 juin 9 EXERCICE 5 points Restitution organisée de connaissances : ) a Démontrer que pb)=pb A)+ p B A b Démontrer que, si les évènements A

Plus en détail

Corrigé du baccalauréat S (obligatoire) Polynésie septembre 2011

Corrigé du baccalauréat S (obligatoire) Polynésie septembre 2011 Corrigé du baccalauréat S obligatoire Polynésie septembre EXERCICE. Sur personnes, 5 utilisent l escalier ; p E pe= p E = 4. = 5 = 4. D où 5 points Sur les 5 personnes empruntant l ascenseur la répartition

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 007 EXERCICE Commun à tous les candidats points. Le plan (P) a une pour équation cartésienne : x+y z+ = 0. Les coordonnées de H vérifient cette équation

Plus en détail

Correction du baccalauréat S Pondichéry 16 avril 2008

Correction du baccalauréat S Pondichéry 16 avril 2008 Correction du baccalauréat S Pondichéry 6 avril 008 EXERCICE Commun à tous les candidats 4 points. a. x e x e ou encore e x e e x > par croissance de la fonction exponentielle). f est donc bien définie

Plus en détail

Corrigé du baccalauréat S La Réunion septembre 2010

Corrigé du baccalauréat S La Réunion septembre 2010 Corrigé du baccalauréat S La Réunion septembre 00 EXERCICE Commun à tous les candidats 5 points Mx ; y ; z P Q { x+y+ z = 0 x+ 3y+ z = 0 En posant, t R, le système devient : x+y = t x+ 3y = t y = + t x

Plus en détail

Corrigé du baccalauréat S Amérique du Sud novembre 2008

Corrigé du baccalauréat S Amérique du Sud novembre 2008 Durée : heures Corrigé du baccalauréat S Amérique du Sud novembre 008 EXERCICE 1 1. AB = b a = +i = +1=5 ; AC = c a = 1+i = 1+=5. AB = AC AB=AC ABC est isocèle en A. 5 points. Z I = 1 + i 7. z z ( I z

Plus en détail

Correction Amerique Nord Juin z =1 z 4i z + 2 =1 z 4i = z + 2 AM = BM

Correction Amerique Nord Juin z =1 z 4i z + 2 =1 z 4i = z + 2 AM = BM Exercice I :. Le triangle ABC est rectangle et pas isocèle car : Correction Amerique Nord Juin 005 AB i ( + i) i 7 AC,08 +,98i ( + i),08,0i 7,6868 BC,08 +,98i ( i) 5,08 +,98i,6868 Alors BC AB + AC.. L

Plus en détail

La Réunion 2010 BAC S Corrigé maths

La Réunion 2010 BAC S Corrigé maths La Réunion BAC S Corrigé maths J.-P. W. er juillet Exercice (commun) 6 points Partie A ) a) Sur ] ;+ [, la fonction affine (x x+ ) est strictement croissante et est à valeurs dans ];+ [, intervalle sur

Plus en détail

Corrigé du baccalauréat S Pondichéry 17 avril 2015

Corrigé du baccalauréat S Pondichéry 17 avril 2015 Corrigé du baccalauréat S Pondichéry 17 avril 015 EXERCICE 1 Commun à tous les candidats Partie A points C 1 j - -1 O ı a 1 1 On sait que e x > 0 quel que soit le réel x, donc 1+e x > 1>0 Le dénominateur

Plus en détail

Corrigé du baccalauréat S Métropole & La Réunion septembre 2009

Corrigé du baccalauréat S Métropole & La Réunion septembre 2009 Corrigé du baccalauréat S Métropole & La Réunion septembre 009 EXERCICE 1 (6 points) PARTIE A Commun à tous les candidats 1. Quel que soit le réel x, x 0 x + 4 4 ln ( x + 4 ) existe. La fonction f est

Plus en détail

Correction du baccalauréat S La Réunion juin 2007

Correction du baccalauréat S La Réunion juin 2007 Durée : 4 heures Correction du baccalauréat S La Réunion juin 007 EXERCICE Commun à tous les candidats y ln a. a. Aa ; ln a.mx ; y A T x a = a y = x ln a. a b. P0 ; y T y = ln a. P0 ; ln a. Longueur PQ

Plus en détail

Corrigé du baccalauréat série S Amérique du Nord juin 2003

Corrigé du baccalauréat série S Amérique du Nord juin 2003 Corrigé du baccalauréat série S Amérique du Nord juin EXERCICE 1 Commun à tous les candidats points 1. Réponse b.. En égalant les deu intégrales on obtient : e λt 1= e λt 1=e λt e λt = 1 et par croissance

Plus en détail

Baccalauréat S Centres étrangers juin 2006

Baccalauréat S Centres étrangers juin 2006 Durée : 4 heures Baccalauréat S Centres étrangers juin 6 EXERCICE Commun à tous les candidats points Partie : A Restitution organisée de connaissances En fait la démonstration n en n est pas une puisque

Plus en détail

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Corrigé

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Corrigé Baccalauréat S Nouvelle-Calédonie 17 novembre 014 Corrigé A. P. M. E. P. Exercice 1 Commun à tous les candidats Une fabrique de desserts glacés dispose d une chaîne automatisée pour remplir des cônes de

Plus en détail

Baccalauréat S Centres étrangers 10 juin 2015

Baccalauréat S Centres étrangers 10 juin 2015 Corrigé Baccalauréat S Centres étrangers 10 juin 015 A. P. M. E. P. Exercice 1 Commun à tous les candidats 4 points Partie A 1. On a p = 0, 0 et n = 500. Un intervalle de fluctuation au seuil de 95 % est

Plus en détail

Baccalauréat S Métropole La Réunion 21 juin 2012

Baccalauréat S Métropole La Réunion 21 juin 2012 Baccalauréat S Métropole La Réunion juin 0 EXERCICE Commun à tous les candidats 4 points. Sur l intervalle [ 3, ], tous les points de la courbe ont une ordonnée négative. VRAIE. Sur l intervalle ] ; [,

Plus en détail

Corrigé du baccalauréat S Amérique du Sud 22 novembre 2016

Corrigé du baccalauréat S Amérique du Sud 22 novembre 2016 Corrigé du baccalauréat S Amérique du Sud novembre 06 A P M E P EXERCICE Commun à tous les candidats 5 points Les courbes C f O, ı, j et C g données en annexe sont les représentations graphiques, dans

Plus en détail

Corrigé du baccalauréat S Antilles-Guyane Septembre 2015

Corrigé du baccalauréat S Antilles-Guyane Septembre 2015 Corrigé du baccalauréat S Antilles-Guyane Septembre 5 EXERCICE Commun à tous les candidats 6 points Soit n un entier naturel non nul. On considère la fonction f n définie et dérivable sur l ensemble R

Plus en détail

Corrigé du baccalauréat S Liban 31 mai 2016

Corrigé du baccalauréat S Liban 31 mai 2016 Corrigé du baccalauréat S Liban 3 mai 6 Exercice points Commun à tous les candidats A. P. M. E. P.. a) Le triangle AI E est rectangle en I. Par le théorème de Pythagore, on en déduit E I = AE AI. D autre

Plus en détail

Corrigé du baccalauréat S Asie 16 juin 2009

Corrigé du baccalauréat S Asie 16 juin 2009 Corrigé du baccalauréat S Asie juin 9 EXERCICE. a. On a : p (F ) ; p (F ). Puis : p F () 5 ; p F (),5 5 ; p(),5 5 7. F F F b. Cette probabilité est égale à p (F ) p F () 4 5. c. e la même façon cette probabilité

Plus en détail

Corrigé du baccalauréat S Amérique du Sud novembre 2005

Corrigé du baccalauréat S Amérique du Sud novembre 2005 Corrigé du baccalauréat S Amérique du Sud novembre 5 EXERCICE 4 points Partie A. On a une loi binomiale de paramètres n = 5 et p =,. On a donc px = )= 5),,98 48,858,9.. La probabilité cherchée est px >

Plus en détail

Corrigé du baccalauréat S Asie 20 juin 2012

Corrigé du baccalauréat S Asie 20 juin 2012 Corrigé du baccalauréat S Asie 0 juin 01 EXERCICE 1 1. Il est évident que le point de coordonnées (1 ; 0 ; 5 appartient à D mais pas à P. Donc, si parallélisme il y a, il est strict. La droite D est parallèle

Plus en détail

Corrigé du baccalauréat S Nouvelle-Calédonie novembre 2009

Corrigé du baccalauréat S Nouvelle-Calédonie novembre 2009 Durée : 4 heures Corrigé du baccalauréat S Nouvelle-Calédonie novembre 9 EXERCICE 1 1 a On a lim lim x x x =+ et f (x =+ f (x = x e x lim x e x =+,donc On sait que pour n N, lim x + xn e x =, donc lim

Plus en détail

Corrigé du baccalauréat S Antilles-Guyane septembre 2007

Corrigé du baccalauréat S Antilles-Guyane septembre 2007 Corrigé du baccalauréat S Antilles-Guyane septembre 7 EXERCICE 6 points n= 3, b= 7, r = 5. p(g= p(nn+ p(bb+ p(r r = 3 5 4 + 7 5 6 4 + 5 5 4 4 = 6+4+ = 68 5 4 = 34 5.. g (n, b, r = n 5 n 4 + b 5 b 4 + r

Plus en détail

Baccalauréat S La Réunion juin 2004

Baccalauréat S La Réunion juin 2004 Durée : 4 heures Baccalauréat S La Réunion juin 4 XRCIC 4 points A - Lecture graphique. On lit graphiquement : Si k

Plus en détail

Correction Bacalauréat S Centres Etrangers Juin 2007

Correction Bacalauréat S Centres Etrangers Juin 2007 Correction Bacalauréat S Centres Etrangers Juin 00 Exercice. Modélisation de l expérience aléatoire : l univers Ω est l ensemble des combinaisons (choix non ordonnés et sans répétition de trois éléments

Plus en détail

Corrigé du baccalauréat S Métropole La Réunion 20 juin 2016

Corrigé du baccalauréat S Métropole La Réunion 20 juin 2016 Corrigé du baccalauréat S Métropole La Réunion juin 6 A. P. M. E. P. EXERCICE Commun à tous les candidats 6 POINTS Partie A. Utilisons un arbre pondéré :.8 S : A S Les hypothèses s écrivent : ( ) P(A)=,4

Plus en détail

Corrigé du bac S blanc Lycée Français de Valence 4 avril 2013

Corrigé du bac S blanc Lycée Français de Valence 4 avril 2013 Corrigé du bac S blanc Lycée Français de Valence avril EXERCICE 5 points VRAI ou FAUX? Pour chacun des énoncés suivants, indiquer si la proposition correspondante est vraie ou fausse et proposer une justification

Plus en détail

Baccalauréat Blanc 2016 : correction

Baccalauréat Blanc 2016 : correction Baccalauréat Blanc 016 : correction EXERCICE 1 Le chikungunya est une maladie virale transmise d un être humain à l autre par les piqûres de moustiques femelles infectées. Un test a été mis au point pour

Plus en détail

Correction du baccalauréat S Liban 27 mai 2015

Correction du baccalauréat S Liban 27 mai 2015 Correction du baccalauréat S Liban 27 mai 25 A. P. M. E. P. EXERCICE 6 points E J H G I A L D B K C. a) Par lecture sur le dessin ci-dessus on détermine facilement les coordonnées des points représentés

Plus en détail

Corrigé du baccalauréat S Métropole 22 juin 2015

Corrigé du baccalauréat S Métropole 22 juin 2015 Corrigé du baccalauréat S Métropole juin 015 EXERCICE 1 6 POINTS Partie 1 A. P. M. E. P. 1. a. Soient c et d deux réels tels que 0 c < d. Par définition, P(c X d)= d c = e λd ( e λc) = e λc e λd. f (x)

Plus en détail

Corrigé du bac blanc n 2 Terminales S Février 2010

Corrigé du bac blanc n 2 Terminales S Février 2010 Corrigé Bac Blanc n Terminale S Février 010 1 / 6 Corrigé du bac blanc n Terminales S Février 010 Exercice 1 Partie A Spécialité maths 1. = Soit d = PGCD(a, b) d est un diviseur de a et b donc il existe

Plus en détail

BACCALAUREAT GENERAL

BACCALAUREAT GENERAL BACCALAUREAT GENERAL Session de juin 9 MATHEMATIQUES - Série S - Enseignement de Spécialité France métropolitaine EXERCICE 1 1) a) Soit n un entier naturel. v n+1 u n+1 6 1 u n + 4 6 1 u n 1 (u n 6) 1

Plus en détail

BACCALAUREAT GENERAL

BACCALAUREAT GENERAL BACCALAUREAT GENERAL Session de juin 9 MATHEMATIQUES - Série S - Enseignement Obligatoire France métropolitaine EXERCICE ) a) Soit n un entier naturel. v n+ u n+ 6 u n + 4 6 u n u n 6) v n. La suite v

Plus en détail

Corrigé du baccalauréat S Métropole juin 2004

Corrigé du baccalauréat S Métropole juin 2004 Corrigé du baccalauréat S Métropole juin 4 EXERCICE. On a pour tout n N, u n+ = u n + n+, donc u n+ u n = n+. Or n+>, donc u n+ u n > quel que soit n N. Conclusion : la suite (u n ) est strictement croissante..

Plus en détail

Baccalauréat S Antilles-Guyane ჼ septembre 2011

Baccalauréat S Antilles-Guyane ჼ septembre 2011 Baccalauréat S Antilles-Guyane ჼ septembre 011 EXERCICE 1 Commun à tous les candidats ( point) On considère la fonction f définie ]0 ; + [ par : f (x) = x ln x 1. Partie A : Étude d une fonction 1. a.

Plus en détail

Corrigé du Baccalauréat S Antilles-Guyane 18 juin 2010

Corrigé du Baccalauréat S Antilles-Guyane 18 juin 2010 Corrigé du Baccalauréat S Antilles-Guane 8 juin EXERCICE Commun à tous les candidats points Les justifications n étaient pas demandées, elles sont données ici à titre purement pédagogique.. On tire au

Plus en détail

Antilles Guyane. Septembre Enseignement spécifique. Corrigé

Antilles Guyane. Septembre Enseignement spécifique. Corrigé Antilles Guyane Septembre 15 Enseignement spécifique Corrigé EXERCICE 1 Partie A : étude de la fonction f 1 1) a) f 1 est dérivable sur R en tant que produit de fonctions dérivables sur R et pour tout

Plus en détail

Correction du baccalauréat S Asie 18 juin 2013

Correction du baccalauréat S Asie 18 juin 2013 Correction du baccalauréat S Asie 18 juin 01 EXERCICE 1 Commun à tous les candidats 5 points 1 Le grossiste a deux fournisseurs et il y a dans chaque boîte des traces de pesticides ou non On a donc un

Plus en détail

TS Bac blanc n 4 (corrigé) Avril 2016

TS Bac blanc n 4 (corrigé) Avril 2016 TS Bac blanc n (corrigé) Avril 06 Exercice (Pour les non spécialistes) Les parties sont indépendantes. Partie A ) Avec la calculatrice, PX 85 0, La probabilité qu un bocal soit mal rempli est 0,. ) Avec

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2006

Corrigé du baccalauréat S Polynésie juin 2006 Durée : heures Corrigé du baccalauréat S Polynésie juin 006 EXERCICE. Si z, z = z z+ z + z = z z = z = i ou z = i. Les points invariants par f sont les deux points d affixes i et i ) z. a. z, z )z+ )=

Plus en détail

mod 11 ou encore mod 11 car 3 5 = 243 = = 1 [11].

mod 11 ou encore mod 11 car 3 5 = 243 = = 1 [11]. Terminale S Bac blanc. Mathématiques Février Exercice 5 points Pour les candidats ayant choisi la spécialité mathématiques. (a) Quel est le reste de la division euclidienne de 6 0 par? Justifier. On a

Plus en détail

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles.

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles. TS - Maths - D.S.5 Samedi 17 janvier 015-4h Spécialités : SVT - Physique Exercice 1 (5 points) Pour les candidats n ayant pas suivi l enseignement de spécialité Pour chaque proposition, indiquer si elle

Plus en détail

Corrigé du bac blanc TS 2008

Corrigé du bac blanc TS 2008 Corrigé du bac blanc TS 008 Exercice Conjectures D après la figure donnée sur le sujet, il semble que : f est strictement croissante sur [ 3; ], la courbe représentative de f est en dessous de l axe x

Plus en détail

Corrigé du baccalauréat S Métropole La Réunion 16 septembre 2011

Corrigé du baccalauréat S Métropole La Réunion 16 septembre 2011 Corrigé du baccalauréat S Métropole La Réunion 16 septembre 11 EXERCICE 1 Partie A 1 La loi suivie par la variable aléatoire X prenant pour valeur le nombre de moteurs tombant en panne est une loi binomiale

Plus en détail

Correction du sujet de mathématiques, section S [Baccalauréat] à la REUNION. Ile de la REUNION, juin 2011

Correction du sujet de mathématiques, section S [Baccalauréat] à la REUNION. Ile de la REUNION, juin 2011 Correction du sujet de mathématiques, section S [Baccalauréat] à la REUNION. Ile de la REUNION, juin 11 Exercice 1 : commun à tous les candidats 1. Réponse : Le plan P et la droite D n ont aucun point

Plus en détail

Éléments de correction du contrôle type bac

Éléments de correction du contrôle type bac Éléments de correction du contrôle type bac Exercice (Restitution organisée de connaissances points) Pré-requis : Si une variable aléatoire T suit la loi exponentielle de paramètre λ (avec λ > ), la densité

Plus en détail

Baccalauréat S Polynésie, correction

Baccalauréat S Polynésie, correction Baccalauréat S Polynésie, correction 0 juin 00 Exercice 5 points Commun à tous les candidats. Le plan complexe est rapporté à un repère orthonormal direct (O; u ; v). Partie A - Restitution organisée de

Plus en détail

Concours Fesic mai 2007

Concours Fesic mai 2007 Concours Fesic mai 7 Calculatrice interdite ; traiter 1 exercices sur les 16 en h 3 ; répondre par Vrai ou Faux sans justification. + 1 si bonne réponse, 1 si mauvaise réponse, si pas de réponse, bonus

Plus en détail

Courbe n 2. Courbe n 3 b. Montrer que, pour toute fonction f de (E), I f 0.

Courbe n 2. Courbe n 3 b. Montrer que, pour toute fonction f de (E), I f 0. Polynésie septembre 007 EXERCICE 7 points Commun à tous les candidats On désigne par (E) l ensemble des fonctions f continues sur l intervalle [0 ; ] et vérifiant les conditions (P ), (P ) et (P ) suivantes

Plus en détail

Nombres Complexes Exercice 1. [5 pts] Équations

Nombres Complexes Exercice 1. [5 pts] Équations Nombres Complexes Exercice 1. [5 pts] Équations On se propose d étudier les solutions de l équation (E) z + 1 = 0 1. Vérifier que pour tout nombre complexe z, on a : z + 1 = (z + 1)(z z + 1). En déduire

Plus en détail

Chapitre 6. Fonctions trigonométriques

Chapitre 6. Fonctions trigonométriques Chapitre 6 Fonctions trigonométriques Corrigés des exercices-tests Vrai La hauteur issue de M dans le triangle OIM est également médiane Donc le triangle OIM est isocèle en M Étant aussi isocèle en O,

Plus en détail

ELEMENTS DE CORRECTION DE L EPREUVE DE MATHEMATIQUES (SERIE S) ( T) P T = P T P(V) + P (T) P V = 0,99 0,02 + (1 0,97) (1 0,02) = 0,0492.

ELEMENTS DE CORRECTION DE L EPREUVE DE MATHEMATIQUES (SERIE S) ( T) P T = P T P(V) + P (T) P V = 0,99 0,02 + (1 0,97) (1 0,02) = 0,0492. Eercice : ELEMENTS DE CORRECTION DE L EPREUVE DE MATHEMATIQUES (SERIE S). a) Les données de l énoncé permettent de donner directement : P(V) =,2 ; P V (T) =,99 ; PV ( T) =,97. b) P( V T) = P V (T) P(V)

Plus en détail

Corrigé du baccalauréat S Asie 18 juin 2008

Corrigé du baccalauréat S Asie 18 juin 2008 Corrigé du baccalauréat S Asie 8 juin 28 www.mathoman.com Exercice Commun à tous les candidats A - Vrai ou faux? Dans l espace soient P, P 2 et P 3 trois plans distincts et D une droite. ) Si P P 2 et

Plus en détail

Corrigé du bac S Antilles-Guyane juin 2014

Corrigé du bac S Antilles-Guyane juin 2014 orrigé du bac S Antilles-Guyane juin 204 EXERIE ommun à tous les candidats Partie A 5 points. a. L arbre pondéré est le suivant : 0,80 0,85 J 0,20 0,5 J 0,0 b. D après l arbre : 0,90 ( ) p J = 0,5 0,0=0,05.

Plus en détail

Antilles Guyane Juin 2013

Antilles Guyane Juin 2013 Juin 0 / 5 Exercice. Les plans (AEC) et (IEC) sont confondus. J n appartient pas à (AEC). Réponse b.. = ( ). ( ) = ( ). ( ) =. + +. +. = ² = Réponse c. ( ;0 ;) (0 ; ;) sont vecteurs non colinéaires. Ce

Plus en détail

Terminale S Bac Blanc Février 2013 Corrigé

Terminale S Bac Blanc Février 2013 Corrigé Terminale S Bac Blanc Février 2013 Corrigé Métropole Juin 2006 (6 points) 1) Soit la fonction définie sur par. On désigne par sa courbe représentative dans un repère orthonormé d unité graphique 2cm. a)

Plus en détail

I. Equation et inéquation du second degré

I. Equation et inéquation du second degré I. Equation et inéquation du second degré Théorème : Soient a, b et c des nombres réels avec a non nul, on appelle discriminant et on note Δ le nombre b 2 4ac. L équation ax 2 + bx + c = 0, - admet deux

Plus en détail

Exercices sur la fonction logarithme népérien - Corrigé

Exercices sur la fonction logarithme népérien - Corrigé Lycée Secondaire El Ksour Année Scolaire 213-214 Exercices sur la fonction logarithme népérien - Corrigé ExerciceN 1 Soient et les fonctions définies sur l intervalle par et On note C et C les courbes

Plus en détail

BACCALAUREAT GENERAL

BACCALAUREAT GENERAL BACCALAUREAT GENERAL Session de juin 9 MATHEMATIQUES - Série S - Enseignement de Spécialité Centres étrangers EXERCICE 1 1) Restitution organisée de connaissances a) Les événements B A et B A constituent

Plus en détail

Exercice On vérifient simplement que AB. CD = 0, donc (AB) et (CD) sont orthogonales.

Exercice On vérifient simplement que AB. CD = 0, donc (AB) et (CD) sont orthogonales. Corrigé Baccalauréat S National 26 Exercice 1 1. Les coordonnées des trois A, B et C vérifient bien l équation 2x + 2y z 11 =. De plus, ces trois points ne sont pas alignés et définissent donc bien un

Plus en détail

Sujet Asie 2013 EXERCICE 1. [5 pts] Probabilités

Sujet Asie 2013 EXERCICE 1. [5 pts] Probabilités Sujet Asie 203 EXERCICE. [5 pts] Probabilités Dans cet exercice, les probabilités seront arrondies au centième. Partie A Une grossiste achète des boîtes de thé chez deux fournisseurs. Il achète 80% de

Plus en détail

Corrigé du baccalauréat S Polynésie 12 juin 2015

Corrigé du baccalauréat S Polynésie 12 juin 2015 Corrigé du baccalauréat S Polynésie 1 juin 015 A. P. M. E. P. EXERCICE 1 points 1. AI = 1 AB AB = 6AI B(6 ; 0 ; 0) ; 6 AJ = 1 AD AD = 4 AJ D(0 ; 4 ; 0) ; 4 AK = 1 AE AE = AK K(0 ; 0 ; ). Comme AG = AC

Plus en détail

Corrigé du baccalauréat S (obligatoire) Polynésie septembre 2010

Corrigé du baccalauréat S (obligatoire) Polynésie septembre 2010 Corrigé du baccalauréat S (obligatoire) Polynésie septembre 00 EXERCICE points. Proposition : Vraie Quel que soit n N, (n+ )(n+ ) = n+ n+, donc t n+ = t n + n+ n+. En écrivant cette égalité pour n= 0,,

Plus en détail

Corrigé du baccalauréat S Antilles-Guyane 22 juin 2015

Corrigé du baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé du baccalauréat S Antilles-Guyane juin 15 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 6 POINTS 1. Pour toutes les courbes, on a g a (1)= a. Donc on a de bas en haut les courbes Γ,5, Γ,1,

Plus en détail

Athénée Royal d Uccle 1. Cours de Mathématique 6 ème année Révision de juin

Athénée Royal d Uccle 1. Cours de Mathématique 6 ème année Révision de juin Athénée Royal d Uccle 1 Cours de Mathématique 6 ème année Révision de juin A.Droesbeke Version : 016 Chapitre 1 Algèbre 1.1 Exercices { (1 + i)x + y = 1 i 1. Résoudre dans C : x iy = i. Démontrer que

Plus en détail

corrigé Bac blanc Terminale S Mathématiques

corrigé Bac blanc Terminale S Mathématiques corrigé Bac blanc Terminale S Mathématiques EXERIE 1 7 points Soit f la fonction dérivable, définie sur l intervalle ]0 ; + [ par f (x)=e x + 1 x. 1. Étude d une fonction auxiliaire a. Soit la fonction

Plus en détail

Baccalauréat S Pondichéry 17 avril 2015

Baccalauréat S Pondichéry 17 avril 2015 Baccalauréat S Pondichéry 17 avril 2015 EXERCICE 1 Commun à tous les candidats Partie A 4 points Soit f la fonction définie sur R par f x)= 3 1+e 2x Sur le graphique ci-après, on a tracé, dans un repère

Plus en détail

Soutien cours PI centre du Havre

Soutien cours PI centre du Havre ENSM - cours PI - Marc Bizet 0-0 Soutien cours PI centre du Havre Situation A Dans le plan affine euclidien P rapporté au repère orthonormé Oy, on donne les points A( ;0 ) et B( 0;m ), où m est un paramètre

Plus en détail

Concours Fesic Puissance mai 2016

Concours Fesic Puissance mai 2016 Concours Fesic Puissance mai 0 Calculatrice interdite ; traiter exercices sur les en h ; répondre par Vrai ou Faux sans justification. + si bonne réponse, si mauvaise réponse, 0 si pas de réponse, bonus

Plus en détail

Correction Baccalauréat S Amérique du Nord Mai 2008 http ://www.maths-express.com

Correction Baccalauréat S Amérique du Nord Mai 2008 http ://www.maths-express.com Correction Baccalauréat S Amérique du Nord Mai 28 http ://www.maths-express.com Exercice. Voir la figure finale à la fin de l exercice! 2. (a) Le cercle Γ est l ensemble des points M du plan tels que AM

Plus en détail

Type bac janvier Corrigé

Type bac janvier Corrigé Exercice (Métropole 24) Commun à tous les élèves Type bac janvier 27 - Corrigé Partie A ) L image de par la fonction f est : f () +e. Le point d abscisse sur la courbe C, représentative de la fonction

Plus en détail

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où :

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où : DST 3 Corrigé Exercice 1 (4 points) Avant le début des travaux de construction d une autoroute, une équipe d archéologie préventive procède à des sondages successifs en des points régulièrement espacés

Plus en détail

Lycée de la Plaine de l Ain Bac. blanc Mathématiques Terminale S. Mars 2005

Lycée de la Plaine de l Ain Bac. blanc Mathématiques Terminale S. Mars 2005 Lycée de la Plaine de l Ain Bac. blanc Mathématiques Terminale S Mars 2005 1 Exercice 1 (4 points). A ne traiter que par les élèves ne suivant pas l enseignement de spécialité. 1. Résoudre dans C l équation

Plus en détail

Corrigé du baccalauréat S France 19 juin 2008

Corrigé du baccalauréat S France 19 juin 2008 Corrigé du baccalauréat S France 9 juin 2008 www.mathoman.com Exercice Commun à tous les candidats 5 points (0,75+,5+0,25+0,75+,5) ) a) La fonction F est dérivable et avec les règles habituels de dérivation

Plus en détail

Baccalauréat S Asie juin 2006

Baccalauréat S Asie juin 2006 Baccalauréat S Asie juin 2006 EXERCICE 1 4 points ( Le plan complexe est muni d un repère orthonormal direct O, u, v (unité graphique : 2 cm. On rappelle que pour tout vecteur w non nul, d affixe z, on

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 01 mars 2016 BACCALAURÉAT BLANC DE MATHÉMATIQUES. correction SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 01 mars 2016 BACCALAURÉAT BLANC DE MATHÉMATIQUES. correction SÉRIE S Lycée Municipal d Adultes de la ville de Paris Mardi 0 mars 06 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 4 HEURES Les calculatrices sont AUTORISÉES correction obligatoire et spé

Plus en détail

Sujets de bac : Géométrie dans l espace 1

Sujets de bac : Géométrie dans l espace 1 Sujets de bac : Géométrie dans l espace Sujet n : La Réunion juin 23 On considère un cube d arête. Le nombre désigne un réel strictement positif. On considère le point de la demi-droite défini par. ) Déterminer

Plus en détail

Corrigé du baccalauréat S Asie juin 2007

Corrigé du baccalauréat S Asie juin 2007 Corrigé du baccalauréat S Asie juin 7 EXERCICE. On a f (x)=cos x sin x= sin x. Vrai. En intégrant par parties car toutes les fonctions sont continues : { u(t)= t ; u (t)= 4 points v (t)= f (t) ; v(t)=

Plus en détail

Corrigé du baccalauréat S Amérique du Sud novembre 2010

Corrigé du baccalauréat S Amérique du Sud novembre 2010 Durée : 4 heures Corrigé du baccalauréat S Amérique du Sud novembre 2 EXERCICE Commun à tous les candidats points La droite D a pour vecteur directeur u ( ; 3 ; lequel n est manifestement pas colinéaire

Plus en détail

Baccalauréat S Pondichéry 8 avril 2014

Baccalauréat S Pondichéry 8 avril 2014 Baccalauréat S Pondichéry 8 avril 014 EXERCICE 1 Commun à tous les candidats 4 points Dans cet exercice, sauf indication contraire, les résultats seront arrondis au centième. 1. La durée de vie, exprimée

Plus en détail

Baccalauréat S Métropole 11 septembre 2014 Corrigé

Baccalauréat S Métropole 11 septembre 2014 Corrigé Baccalauréat S Métropole 11 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 Commun à tous les candidats Sur le graphique ci-dessous, on a tracé, dans un repère orthonormé AB) où A et B sont les points

Plus en détail

Correction du Baccalauréat S Centres étrangers 10 juin 2015

Correction du Baccalauréat S Centres étrangers 10 juin 2015 urée : 4 heures Correction du Baccalauréat S Centres étrangers 10 juin 015 A. P. M. E. P. Exercice 1 4 points Commun à tous les candidats Tous les résultats demandés dans cet exercice seront arrondis au

Plus en détail

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2 NOMBRES COMPLEXES Ph DEPRESLE janvier 06 Table des matières Les nombres complexes-forme algébrique d un nombre complexe Opérations dans l ensemble C. Addition dans C...........................................

Plus en détail

Fonction exponentielle Bac Série S

Fonction exponentielle Bac Série S Fonction exponentielle Bac Série S - 3 EXERCICE N Pondichéry 6 avril Partie On s intéresse à l évolution de la hauteur d un plant de maïs en fonction du temps. Le graphique ci-après représente cette évolution.,,8,6,4,,,8,6,4,

Plus en détail

Fiche BAC 09 Terminale S Nombres complexes (2ème partie) Exercice 1 ( Ex n 2 Antilles-Guyane juin 2000 adapté) Commun à tous les candidats

Fiche BAC 09 Terminale S Nombres complexes (2ème partie) Exercice 1 ( Ex n 2 Antilles-Guyane juin 2000 adapté) Commun à tous les candidats Fiche BAC 09 Terminale S Nombres complexes (ème partie) Exercice 1 ( Ex n Antilles-Guyane juin 000 adapté) Commun à tous les candidats 1 ) Pour tout nombre complexe z, on pose P (z)=z 3 3 z +3 z+7. a)

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes 8 novembre 009 Table des matières Définitions Forme algébrique Représentation graphique Opérations sur les nombres complexes Addition et multiplication Inverse d un nombre complexe

Plus en détail

π π ; 2 π tel que z = 1 + e i θ.

π π ; 2 π tel que z = 1 + e i θ. EXERIE 1 (5 points) Dans le plan complexe muni d'un repère orthonormal (O ; u, v ) (unité graphique : cm), on considère les points, et d'affixes respectives a, b 1 i et c 1 + i. 1. a. Placer les points,

Plus en détail

Fonctions trigonométriques - Corrigé. 2 2 cos 1

Fonctions trigonométriques - Corrigé. 2 2 cos 1 Exercice 1 : Fonctions trigonométriques - Corrigé 1. a. est dérivable sur comme somme de fonctions dérivables sur et =1 cos On sait que, pour tout réel et donc en particulier pour tout, cos 1 donc 0 et

Plus en détail

TERMINALES S CORRECTION DU BACCALAUREAT BLANC SESSION 2012

TERMINALES S CORRECTION DU BACCALAUREAT BLANC SESSION 2012 TERMINALES S CORRECTION DU BACCALAUREAT BLANC SESSION 01 Exercice n 1 : 1. On transforme l expression de cette façon : 4 = 4 = 1 = 4 = 4 = 41 + 1 1 + = 41 + = + 1. L équation + 4 = 0 est une équation du

Plus en détail

BAC BLANC DE MATHEMATIQUES Durée : 4 heures

BAC BLANC DE MATHEMATIQUES Durée : 4 heures Terminale S Jeudi 1 avril 2010 BAC BLANC DE MATHEMATIQUES Durée : 4 heures L usage de la calculatrice est autorisé. Le sujet comporte pages. Exercice 1 (6 points) : Pour les candidats n ayant pas suivi

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL Session 2010 MATHÉMATIQUES Série S ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 4 heures Coefficient : 7 Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Baccalauréat S Polynésie septembre 2007

Baccalauréat S Polynésie septembre 2007 Durée : 4 heures accalauréat S Polynésie septembre 2007 EXERIE 7 points ommun à tous les candidats n désigne par (E) l ensemble des fonctions f continues sur l intervalle [0 ;] et vérifiant les conditions

Plus en détail

Baccalauréat S Asie 16 juin 2015 Corrigé

Baccalauréat S Asie 16 juin 2015 Corrigé Baccalauréat S Asie 16 juin 015 Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats Partie A Un concurrent participe à un concours de tir à l arc, sur une cible circulaire. À chaque

Plus en détail

Concours Fesic Puissance mai 2015

Concours Fesic Puissance mai 2015 Concours Fesic Puissance 6 mai 05 Calculatrice interdite ; traiter exercices sur les 6 en h 30 ; répondre par Vrai ou Faux sans justification + si bonne réponse, si mauvaise réponse, 0 si pas de réponse,

Plus en détail

Proposition de corrigé

Proposition de corrigé Externat Notre Dame Bac Blanc n 2 (Tle S) Lundi 27 Avril 2015 durée : 4 h calculatrice autorisée Dans tout ce devoir, la qualité de la rédaction et le soin seront pris en compte dans la notation. Les exercices

Plus en détail

Rochambeau Enseignement spécifique. Corrigé

Rochambeau Enseignement spécifique. Corrigé Rochambeau 05. Enseignement spécifique. orrigé EXERIE Partie A Le point U est le point d intersection de la parallèle à la droite OB passant par D et de la droite SB. S D E U O A B Les points A et E ne

Plus en détail