PLANS et DROITES de l ESPACE LE CUBE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "PLANS et DROITES de l ESPACE LE CUBE"

Transcription

1 PLANS et DROITES de l ESPACE LE CUBE Le cube est un solide dont les six faces sont des carrés. Ces faces sont les représentations de plans Examiner les neuf schémas et retenir les différentes notions de plans parallèles, plans perpendiculaires, plans sécants ainsi que de droites perpendiculaires à un plan, droites non coplanaires

2 EXERCICES Représente en couleurs... PLANS ET DROITES DE L ESPACE

3 VERS LE PRISME DROIT - Un découpage du pavé droit On sectionne un pavé droit par un plan perpendiculaire à une de ses faces. On obtient deux prismes droits Un prisme droit à base triangulaire - Réalise le prisme dont le patron est représenté ci-dessous : Un prisme droit dont la base est un pentagone

4 LE PRISME DROIT - Définition et représentation en perspective cavalière J Le prisme droit est un solide dont I les faces latérales sont des rectangles les deux bases sont des polygones superposables F H G Exemple : ABCDEFGHIJ est un prisme droit : Ses faces latérales ABGF, BCHG, CDIH, DEJI et EAFJ sont des rectangles Ses bases ABCDE et FGHIJ sont des pentagones superposables. A E C D B - Volume du prisme droit Rappel : Le volume du pavé droit est le produit de ses trois arêtes. Or, le produit de deux de ses arêtes est l aire d une de ses faces ; la troisième arête est la hauteur du pavé. h Formule : V = (a b) h De la même façon, le volume du prisme droit est le produit de l aire de sa base par sa hauteur. J a b F H I G hv= Aire de la base h E B A C D B

5 Exemple : Le volume du prisme à base triangulaire réalisé dans la fiche préparatoire est : 1,9 cm V = aire du triangle de base hauteur 3,8,8 V = 1,9 = 5,3 1,9 = 10,108 cm 10 cm 3 3,8 cm 3,8 cm - Aire latérale du prisme droit L aire latérale du prisme droit est la somme des aires de ses faces latérales : Exemple : L aire latérale du prisme ABCDEFGHIJ (voir plus haut) est : Aire latérale = aire(abgf) + aire(bchg) + aire(cdih) + aire(deji) + aire(eafj) Aire latérale = AB AF + BC BG + CD CH + DE DI + EA EJ Aire latérale = AB h+ BC h+ CD h+ DE h+ EA h Aire latérale = (AB+ BC+ CD+ DE+ EA) h Aire latérale = périmètre de la base hauteur

6 EXERCICES LE PRISME - Complète les dessins des prismes suivants (Il manque leurs arêtes cachées) : - Exprime les volumes des prismes, 3, 4 en fonction du volume V du prisme Partage le prisme ci-dessous en trois prismes à bases triangulaires horizontales et à faces verticales. Représente séparément ces trois prismes dans le quadrillage.

7 VERS LE CYLINDRE DE RÉVOLUTION Le cylindre est engendré par le segment vertical [AB] tournant autour de l axe vertical (y y). Faire un tour complet se dit aussi faire une révolution d où le nom de cylindre de révolution. Le segment [AB] s appelle génératrice du cylindre de révolution. Sa représentation en perspective cavalière :

8 LE CYLINDRE DE RÉVOLUTION - Définition Un rectangle OABO, en rotation autour de la droite (OO ), engendre un cylindre de révolution. (OO ) est l axe du cylindre [AB] est une génératrice du cylindre A et B décrivent, lors de cette rotation, des cercles de centres O et O Ces cercles sont les bases du cylindre - Représentations du cylindre O' O B A a) Cylindre posé sur une de ses bases Les cercles de base sont représentés par des ellipses O' O' O O b) Cylindre posé sur une de ses génératrices - Patron du cylindre La surface latérale du cylindre est représentée par un rectangle dont r Une dimension est la hauteur h du cylindre L autre dimension est le périmètre π r du cercle de base de rayon r h L aire latérale du cylindre est donc : π r h L aire de chaque base est : π - Volume du cylindre de révolution de hauteur h et de rayon de base r r C est le produit de l aire de la base par la hauteur (comme pour tout prisme droit) V = π r h

9 EXERCICES PRISME ET CYLINDRE - On considère une feuille 1 x 9,7 (format A 4 ) Tu as deux façons de former un cylindre avec cette feuille : Hauteur : 1 cm et périmètre de base : 9,7 cm Hauteur : 9,7 et périmètre de base : 1 cm Lequel des deux cylindres a le plus grand volume? - Une piscine olympique mesure 50 m de long et 0 m de large. Sa profondeur va de mètres à 4 mètres a) Quel est le volume maximum d eau contenue dans la piscine? b) Sachant que le débit de son alimentation en eau est 00L/s, quel temps faut-il pour mettre cette piscine en eau? 50 m m 0 m 4 m - Quel est le volume du plus gros cylindre contenu dans un cube de 5 cm d arête?

10 EXERCICES Représente en couleurs... PLANS ET DROITES DE L ESPACE droites droites I

11 EXERCICES LE PRISME - Complète les dessins des prismes suivants (Il manque leurs arêtes cachées) : - Exprime les volumes des prismes, 3, 4 en fonction du volume V du prisme 1. 4V 4V 6V - Partage le prisme ci-dessous en trois prismes à bases triangulaires horizontales et à faces verticales. Représente séparément ces trois prismes dans le quadrillage.

12 EXERCICES PRISME ET CYLINDRE - On considère une feuille 1 x 9,7 (format A 4 ) Tu as deux façons de former un cylindre avec cette feuille : Hauteur : 1 cm et périmètre de base : 9,7 cm volume V 1 Hauteur : 9,7 et périmètre de base : 1 cm volume V Lequel des deux cylindres a le plus grand volume? V V 1 Calcul de V 1 : La longueur du cercle de base est égale à 9,7 cm : π R1 = 9,7 donc : R1 Le volume V 1 est : 9,7 = π 9,7 π 88, , = π 1 = π = = V R h cm π 4 π π 4 π La longueur du cercle de base est égale à 1 cm : π R = 1 donc : R Le volume V est : 1 = π 1 π 441 9, , 7 3 = π = π = = V R h 9,7 104 cm π 4 π π 4 π C est donc le cylindre le moins haut qui a le plus grand volume. - Une piscine olympique mesure 50 m de long et 0 m de large. Sa profondeur va de mètres à 4 mètres a) Quel est le volume maximum d eau contenue dans la piscine? b) Sachant que le débit de son alimentation en eau est 00L/s, quel temps faut-il pour mettre cette piscine en eau? 50 m m 0 m 4 m

13 a) La piscine a la forme d un prisme droit dont la base est un trapèze et dont la hauteur mesure 0 mètres. ( + 4) 50 3 Son volume est donc : V = aire de la base hauteur = 0 = = 3000 m = L b) Le temps mis pour la remplir (à raison de 00 L/s) est : t = = 15000s = 50min = 40min+ 10min = 4h10min 00 - Quel est le volume du plus gros cylindre contenu dans un cube de 5 cm d arête? Le plus gros cylindre a : *un diamètre de base égal à 5 cm donc un rayon de,5 cm, *une hauteur de 5 cm. Son volume est : π π π 3 R h =,5 5 = 6, cm

1 Les solides de 6e et de 5e.

1 Les solides de 6e et de 5e. 1 Les solides de 6e et de 5e. 1.1 Le pavé droit et le cube Le pavé droit a six faces rectangulaires, 8 sommets et 12 arêtes (3 dimensions d arêtes). Vue en perspective cavalière : Patron : Aire : l aire

Plus en détail

La famille des prismes droits

La famille des prismes droits La famille des prismes droits On a représenté ci-dessus quatre solides en perspective cavalière. Pour chaque solide effectuer le travail suivant : déterminer le nombre de sommets, déterminer le nombre

Plus en détail

Chapitre 7 : Géométrie dans l espace.

Chapitre 7 : Géométrie dans l espace. Chapitre 7 : Géométrie dans l espace. I Rappels. 1 Parallélépipède rectangle et cube. Un parallélépipède rectangle, ou pavé droit, est un solide ayant 6 faces rectangulaires. Un cube est un parallélépipède

Plus en détail

I La perspective cavalière :

I La perspective cavalière : Mathématiques Année 2012 201 Module n 4 : Géométrie dans l espace 1 ( solides usuels ) 2 nde I La perspective cavalière : Pour représenter un objet en trois dimensions par une figure plane ( feuille de

Plus en détail

Pyramide et Cône de révolution

Pyramide et Cône de révolution Pyramide et Cône de révolution I ) Pyramide 1 ) Présentation : a) Une pyramide est un solide constitué d un polygone appelé base dont les sommets sont reliés à un point, n appartenant pas au plan de base,

Plus en détail

Chapitre 8 : Géométrie dans l espace

Chapitre 8 : Géométrie dans l espace Chapitre 8 : Géométrie dans l espace Seconde 11 Mme FELT 1 2 I Représentation dans l espace 1. Perspective cavalière La perspective cavalière est une convention mathématique de représentation des solides

Plus en détail

Pyramide et cône de révolution

Pyramide et cône de révolution Pyramide et cône de révolution C H A P I T R E 13 Énigme du chapitre. On dispose des boules en forme de tétraèdre comme dans l image ci-dessus. Pour faire une pyramide à un étage, on a besoin d une boule,

Plus en détail

LA PYRAMIDE ET LE CÔ NE.

LA PYRAMIDE ET LE CÔ NE. LASSE DE 4EME ATIVITES GEOMETRIQUES LA PYRAMIDE ET LE Ô NE. Rappels du programme de 5 ème. 1. Le prisme droit. 1.1 Description. Un prisme droit est un solide dont les faces sont des rectangles. Il possède

Plus en détail

GÉOMÉTRIE DANS L ESPACE

GÉOMÉTRIE DANS L ESPACE GÉOMÉTRIE DANS L ESPACE DROITE ET PLANS DE L ESPACE. Pour décrire les positions relatives de droites et de plans dans l espace voici l exemple du cube : Les 8 sommets du cube sont : A, B, C, D, E, F, G,

Plus en détail

Solides et patrons. 2 Solides de révolution Le cylindre Le cône La sphère... 5

Solides et patrons. 2 Solides de révolution Le cylindre Le cône La sphère... 5 DERNIÈRE IMPRESSION LE 30 juin 2016 à 15:12 Solides et patrons Table des matières 1 Les polyèdres 2 1.1 Définition................................. 2 1.2 Représentation d un polyèdre......................

Plus en détail

PRISME DROIT. II- Vue en perspective et vocabulaire: Les triangles ABC et A'B'C' sont les bases du prisme

PRISME DROIT. II- Vue en perspective et vocabulaire: Les triangles ABC et A'B'C' sont les bases du prisme PRISME DROIT I- Patron: En traçant deux triangles et trois rectangles disposés de la manière ci-contre et en pliant, on obtient un prisme droit à base triangulaire II- Vue en perspective et vocabulaire:

Plus en détail

Ch.G5 : Pyramides et cônes

Ch.G5 : Pyramides et cônes 4 e A - programme 2011 mathématiques ch.g5 cahier élève Page 1 sur 8 Ch.G5 : Pyramides et cônes Activité n 1 page 20 De l'ancien vers le nouveau On a représenté, ci-dessous, des solides en perspective

Plus en détail

C h`a p i tˇr`e 16 : Eṡfi p`a`c e. Compétences évaluées dans ce chapitre

C h`a p i tˇr`e 16 : Eṡfi p`a`c e. Compétences évaluées dans ce chapitre C h`a p i tˇr`e 16 : Eṡfi p`a`c e Compétences évaluées dans ce chapitre Intitulé des compétences G60 G61 M13 Reconnaître et construire des solides. Utiliser et construire des représentations de solides.

Plus en détail

Chapitre 12 : Aires et volumes. Module 1 : Calculs d aires

Chapitre 12 : Aires et volumes. Module 1 : Calculs d aires Module 1 : Calculs d aires Tous les calculs d aires s appuient sur ce formulaire : Exemples : Exemple 1 : L aire du carré représenté ci-contre est : A 9 81 cm Exemple : L aire du rectangle représenté ci-contre

Plus en détail

A] Propriétés et classement des solides. Exercice supplémentaire 1 Théorie. a) Donne la définition précise d un polyèdre.

A] Propriétés et classement des solides. Exercice supplémentaire 1 Théorie. a) Donne la définition précise d un polyèdre. A] Propriétés et classement des solides Exercice supplémentaire 1 Théorie a) Donne la définition précise d un polyèdre. b) Remplis le tableau suivant (coche sous la bonne colonne) Nom Polyèdre Prisme droit

Plus en détail

CHAPITRE 16 : GEOMETRIE DANS L ESPACE

CHAPITRE 16 : GEOMETRIE DANS L ESPACE CHAPITRE 16 : GEOMETRIE DANS L ESPACE Ce chapitre rappelle les notions de base pour connaitre le vocabulaire et les propriétés attachées aux solides, pour savoir lire les représentations planes de ces

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace I - Prismes Prisme droit : Un prisme droit est un solide composé : De deux bases polygonales parallèles et superposables, De faces latérales rectangulaires perpendiculaires aux

Plus en détail

SECTIONS PLANES DE SOLIDES DE L ESPACE

SECTIONS PLANES DE SOLIDES DE L ESPACE SECTIONS PLANES DE SOLIDES DE L ESPACE I) Activité : 1) Visionnage de la vidéo 2) Questions a) A quelle condition deux plans sont-ils parallèles? b) A quelle condition une droite est perpendiculaire à

Plus en détail

Solides et patrons. Table des matières. Paul Milan. Professeurs des écoles le 29 septembre 2009 TABLE DES MATIÈRES 1

Solides et patrons. Table des matières. Paul Milan. Professeurs des écoles le 29 septembre 2009 TABLE DES MATIÈRES 1 TABLE DES MATIÈRES 1 Solides et patrons. Paul Milan Professeurs des écoles le 29 septembre 2009 Table des matières 1 Les polyedres 2 1.1 Définition.................................. 2 1.2 Représentation

Plus en détail

7. Grandeurs et mesures

7. Grandeurs et mesures - 1 - Grandeurs et mesures 7. Grandeurs et mesures 7.1 Longueurs et périmètres Unités de longueur : km hm dam m dm cm mm Figure : Nom de la figure : Périmètre : Carré P= 4 a Rectangle P = a+ b= ( a+ b)

Plus en détail

Pyramides et Cônes de révolution

Pyramides et Cônes de révolution Pyramides et Cônes de révolution Objectifs : Connaître la définition et les caractéristiques d'une pyramide Connaître la définition et les caractéristiques d'une pyramide régulière Connaître la définition

Plus en détail

Ch 10 Solides de l'espace : Prisme et cylindres 5 ème F

Ch 10 Solides de l'espace : Prisme et cylindres 5 ème F Ch 10 Solides de l'espace : Prisme et cylindres 5 ème F Table des matières I. Prismes droits...2 A. Description...2 B. Patron d'un prisme droit...2 II. Cylindres de révolution...2 A. Description...2 B.

Plus en détail

Géométrie dans l espace (Chapitre 4)

Géométrie dans l espace (Chapitre 4) Géométrie dans l espace (Chapitre 4) I. Représentations planes de figures de l espace 1) Les patrons d un solide Définition : Un patron d un solide est obtenu en plaçant toutes ses faces dans un même plan.

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace Dossier de........................................ Critères d évaluation : Travail rendu à la date demandée : Soin et présentation : Réalisation des exercices : Travail en groupe

Plus en détail

Chaque face d un tétraèdre peut être une base.

Chaque face d un tétraèdre peut être une base. Chapitre 6 : Ô I ) Pyramides : 1 ) Définition : On appelle pyramide tout solide qui a pour base un polygone et pour faces latérales des triangles ayant un sommet en commun : c est le sommet de la pyramide.

Plus en détail

GEOMETRIE CM1. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté.

GEOMETRIE CM1. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. x I x K x F Une droite est un alignement infini de points. On la désigne par

Plus en détail

La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d

La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d C3 Géométrie : droite, segment, milieu Leçon Géom1 CM1/2 La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d

Plus en détail

Seconde Chap 8 Géométrie dans l espace 1/7 GEOMETRIE DANS L ESPACE.

Seconde Chap 8 Géométrie dans l espace 1/7 GEOMETRIE DANS L ESPACE. Seconde Chap 8 Géométrie dans l espace 1/7 GEOMETRIE DANS L ESACE. I. Solides. 1. atrons Un patron d un solide est une figure géométrique plane, en un seul morceau, qui permet d obtenir le solide après

Plus en détail

Pyramides et cônes. A) Pyramides. 1. Premières définitions.

Pyramides et cônes. A) Pyramides. 1. Premières définitions. Pyramides et cônes A) Pyramides.. Premières définitions. Une pyramide est un solide dont : une face est un polygone (c est la base de la pyramide), les autres faces sont des triangles qui ont un sommet

Plus en détail

PRISME DROIT ET CYLINDRE DE REVOLUTION

PRISME DROIT ET CYLINDRE DE REVOLUTION TP 2 PRIS ROIT T YLINR RVOLUTION 1. Je me souviens 1. Un parallélépipède rectangle à 4 faces? 6 faces? ou 12 faces? 2. Un parallélépipède rectangle a.. 6 sommets? 8 sommets? ou 12 sommets? 3. Un parallélépipède

Plus en détail

Les formules de la géométrie spaciale

Les formules de la géométrie spaciale Troisième, chapitre n o 1 Les formules de la géométrie spaciale L'ensemble des formules permettent de déterminer les volumes et les surfaces des solides usuels. L'étude s'enrichit du cas de la sphère.

Plus en détail

COURS. Le polyèdre représenté ci-dessus n est pas convexe : il n est pas situé tout entier du même côté du plan contenant la face JBCK.

COURS. Le polyèdre représenté ci-dessus n est pas convexe : il n est pas situé tout entier du même côté du plan contenant la face JBCK. EC 9A : ELEMENTS DE MATHEMATIQUES GEOMETRIE DANS L ESPACE COURS Objectifs du chapitre : Reconnaître et utiliser les propriétés relatives aux faces, arêtes et sommets pour les solides suivants : cube, pavé

Plus en détail

Mathématiques SOLIDES

Mathématiques SOLIDES SOLIDES I. Prismes 1. Définitions Prisme Un prisme est un polyèdre délimité par : - deux faces polygonales isométriques situées dans des plans parallèles. Ce sont les bases du prisme. - des parallélogrammes.

Plus en détail

Chapitre 12 Géométrie dans l Espace Cours

Chapitre 12 Géométrie dans l Espace Cours Capitre 12 Géométrie dans l Espace Cours I. SOLIDES USUELS 1) Prisme droit Un prisme droit est un polyèdre dont les bases (faces parallèles) sont deux polygones identiques et dont les faces latérales sont

Plus en détail

Symétrie centrale: AB = A'B' Figures symétriques

Symétrie centrale: AB = A'B' Figures symétriques Symétrie centrale: Figures symétriques ide mémoire Géométrie 5 ème Le symétrique d'un segment par rapport à un point est un segment de même longueur. La symétrie centrale conserve les longueurs. ' = ''

Plus en détail

1 Définitions Représentation dans l espace La sphère Les pyramides Les plans. 10

1 Définitions Représentation dans l espace La sphère Les pyramides Les plans. 10 Sommaire 1 Définitions. 2 2 Représentation dans l espace. 4 3 La sphère. 5 4 Les pyramides. 8 5 Les plans. 10 6 Section d un solide par un plan. 11 6.1 Section d un cylindre par un plan..................

Plus en détail

2 Construire et représenter un cylindre de révolution

2 Construire et représenter un cylindre de révolution 1 Construire et représenter un prisme droit OJECTIF 1 Description DÉFINITION Un prisme droit est un solide qui a : deux faces parallèles et superposables qui sont des polygones, appelées bases ; des faces

Plus en détail

GEOMETRIE. Point, droite, segment

GEOMETRIE. Point, droite, segment GEOMETRIE Gé 1 Point, droite, segment Le point : - Il désigne un endroit bien précis. - Il est représenté par une croix. - On le nomme avec une lettre majuscule. La droite : A X Le point B est situé exactement

Plus en détail

1 : VOCABULAIRE, REPRÉSENTATION. e. La figure de gauche représente un cylindre de révolution.

1 : VOCABULAIRE, REPRÉSENTATION. e. La figure de gauche représente un cylindre de révolution. SÉRI 1 : VOBULIR, RPRÉSNTTION 1 omplète le tableau suivant. Nom du solide Prisme droit Prisme droit Pavé droit Pyramide ylindre Tronc de cône Nombre de sommets 6 8 8 4 Nombre de faces 5 6 6 4 Nombre d'arêtes

Plus en détail

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. Géom 1 CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. Géom 1 CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE La géométrie exige rigueur et précision dans le vocabulaire utilisé. Géom 1 Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix

Plus en détail

Le vocabulaire de géométrie

Le vocabulaire de géométrie Géom1 Le vocabulaire de géométrie En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire : Un point A A X Un segment [AB] (d) Une droite (d)

Plus en détail

Vocabulaire géométrique (Cm1) Vocabulaire géométrique (Cm2)

Vocabulaire géométrique (Cm1) Vocabulaire géométrique (Cm2) Vocabulaire géométrique (Cm1) La droite : c est un trait qui passe par un nombre infini de points alignés. On ne peut donc pas mesurer une droite. Le point : on le représente par une croix et on le nomme

Plus en détail

Sections planes de solides

Sections planes de solides Sections planes de solides C H A P I T R E 8 Énigme du chapitre. On dipose d un cylindre dont le cercle de base fait 4 cm de rayon et d une pyramide regulière de hauteur 10 cm et dont la base est un carré

Plus en détail

Seconde 1 Géométrie dans l espace. page n

Seconde 1 Géométrie dans l espace. page n Seconde 1 Géométrie dans l espace. page n 1 Dans le plan, il existe autant de polygones réguliers distincts qu'il y a d'entiers supérieurs ou égaux à trois. Mais, dans l'espace, Euclide a démontré qu'il

Plus en détail

Seconde Exercices sur le chapitre 1 «Géométrie dans l espace» Page 1 sur 5

Seconde Exercices sur le chapitre 1 «Géométrie dans l espace» Page 1 sur 5 Seconde xercices sur le chapitre 1 «éométrie dans l espace» Page 1 sur 5 xercice 1 : alculs des longueurs des petites et grandes diagonales du cube. xercice 2 : ans le cube, quel est le trajet de plus

Plus en détail

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE.

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE. CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points alignés : on ne peut donc pas

Plus en détail

Thème N 20 : GEOMETRIE DANS L ESPACE (2) Pavé droit - Cylindre de révolution Volume Logiciel de Géométrie

Thème N 20 : GEOMETRIE DANS L ESPACE (2) Pavé droit - Cylindre de révolution Volume Logiciel de Géométrie Thème N 20 : GEOMETRIE DANS L ESPACE (2) Pavé droit - Cylindre de révolution Volume Logiciel de Géométrie A la fin du thème, tu dois savoir : Représentation du pavé droit dans l espace En trois dimensions

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace A) Positions relatives dans l espace. Tous les résultats de géométrie plane s appliquent à chaque plan de l espace. 1. Détermination d un plan. Définition : Un plan est déterminé

Plus en détail

Vocabulaire de base de la géométrie

Vocabulaire de base de la géométrie Géom 1 Vocabulaire de base de la géométrie Un point En géométrie, un point est représenté par une petite croix. On lui donne le nom d une lettre en majuscule, qu on écrit juste à côté. X A Un segment C

Plus en détail

Géom 1 Connaître le vocabulaire et le codage géométrique

Géom 1 Connaître le vocabulaire et le codage géométrique Géom 1 Connaître le vocabulaire et le codage géométrique En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. La règle sert à mesurer, tracer

Plus en détail

Vocabulaire en géométrie

Vocabulaire en géométrie G1 Vocabulaire en géométrie : on trace une petite croix. On utilise des lettres pour désigner les points. x A : c est un trait qui passe par 2 points. On l écrit avec des parenthèses. Une droite est infinie

Plus en détail

Les faces latérales sont représentées par des parallélogrammes, mais dans la réalité, ce sont des rectangles.

Les faces latérales sont représentées par des parallélogrammes, mais dans la réalité, ce sont des rectangles. Chapitre 8 GEOMETRIE GEOMETRIE DANS L ESPACE 1 ) Solides usuels de l espace le cube La face avant et la face arrière sont représentées par des carrés. Les faces latérales sont représentées par des parallélogrammes,

Plus en détail

SOLIDES. 1) Le parallélépipède rectangle (ou pavé droit) Le mot vient du grec Parallelos = parallèle et epipedon = surface plane

SOLIDES. 1) Le parallélépipède rectangle (ou pavé droit) Le mot vient du grec Parallelos = parallèle et epipedon = surface plane SOLIDES 1 I. Rappels 1) Le parallélépipède rectangle (ou pavé droit) Le mot vient du grec Parallelos = parallèle et epipedon = surface plane h L Volume du parallélépipède = L x l x h l Exemple : Calculer

Plus en détail

SECTIONS PLANES DE SOLIDES DE L ESPACE

SECTIONS PLANES DE SOLIDES DE L ESPACE ECTION PLNE DE OLIDE DE L EPCE I) ctivité : 1) Visionnage de la vidéo 2) Questions a) quelle condition deux plans sont-ils parallèles? b) quelle condition une droite est perpendiculaire à un plan? c) quelle

Plus en détail

THEME : PYRAMIDES ET CONES - RAPPELS PRISME. V = B x h B. Prisme ( oblique ) Remarque : Un parallélépipède rectangle ( ou pavé droit ) est un prisme

THEME : PYRAMIDES ET CONES - RAPPELS PRISME. V = B x h B. Prisme ( oblique ) Remarque : Un parallélépipède rectangle ( ou pavé droit ) est un prisme THEME : PYRAMIDES ET CONES - RAPPELS PRISME B Prisme ( oblique ) Un prisme est le solide délimité par deux polygones ( bases ), situés dans des plans parallèles, dont les sommets sont joints. Il y a autant

Plus en détail

Chapitre 11 : Géométrie dans l espace.

Chapitre 11 : Géométrie dans l espace. Chapitre 11 : Géométrie dans l espace. I Agrandissement- Réduction. Agrandir ou réduire une figure, c est la reproduire en multipliant toutes ses longueurs par un même nombre k. Si k>1, il s agit d un

Plus en détail

Cours géométrie dans l espace

Cours géométrie dans l espace I. Solides usuels : volume et section par un plan avé droit yramide Tétraèdre a b c V = abc Si le plan est parallèle à une arête, la section est un rectangle. V = 1 Base hauteur Si est parallèle à la base,

Plus en détail

Activité 1 Construire et représenter un prisme droit Objectif 1

Activité 1 Construire et représenter un prisme droit Objectif 1 Activité 1 Construire et représenter un prisme droit Objectif 1 Un menuisier doit réaliser pour l un de ses clients un meuble d angle de rangement (avec une porte) de dimensions : - 60 cm, 80 cm et 1 m

Plus en détail

Géom 1 Connaître le vocabulaire et le codage géométrique

Géom 1 Connaître le vocabulaire et le codage géométrique Géom 1 Connaître le vocabulaire et le codage géométrique La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points alignés : on ne peut donc

Plus en détail

Solides de l espace. A) Parallélépipède rectangle (ou pavé droit). B) Cylindre de révolution. 1. Définition.

Solides de l espace. A) Parallélépipède rectangle (ou pavé droit). B) Cylindre de révolution. 1. Définition. Solides de l espace A) Parallélépipède rectangle (ou pavé droit). 1. Définition. Définition : Un parallélépipède rectangle (ou pavé droit) est un solide formé de six faces rectangulaires. Le cube est un

Plus en détail

Chapitre 5 : agrandissement, réduction ; sections de solides

Chapitre 5 : agrandissement, réduction ; sections de solides Chapitre 5 : agrandissement, réduction ; sections de solides I. Rappels et sections de solides 1/ Parallélépipède rectangle Description/Figure Un parallélépipède ou un pavé droit est solide de l'espace

Plus en détail

Géométrie Année

Géométrie Année Géométrie nnée 2012-2013 Sommaire G1- Le vocabulaire de géométrie G2- Les droites perpendiculaires G3- Les droites parallèles G4- Les polygones G5- Les quadrilatères G6- Les triangles G7- Les cercles G8-

Plus en détail

L'espace en cinquième avec GéoSpace

L'espace en cinquième avec GéoSpace L'espace en cinquième avec GéoSpace Géométrie dans l'espace : prisme droit - Patron du prisme - Cylindre. Sommaire 1. Prisme de base triangulaire 2. Prisme dont la base est un parallélogramme 3. Cylindre

Plus en détail

Classe : 3 éme Chapitre : G3 Titre : SPHERES et SECTIONS

Classe : 3 éme Chapitre : G3 Titre : SPHERES et SECTIONS lasse : 3 éme hapitre : 3 Titre : P et TIN 1) phères de l espace 1.1) éfinition n géométrie dans l espace, on ne parle pas de figures mais de solides. (objets en 3) Une sphère de centre et de rayon r est

Plus en détail

Activité 1 : La machine à prismes

Activité 1 : La machine à prismes 161 Activité 1 : La machine à prismes 1. Prends une feuille de papier A puis réalise les pliages nécessaires pour obtenir les marques en pointillés de la figure ci-contre. 2. Repasse en rouge les marques

Plus en détail

2. La base d'une pyramide a x côtés. Exprimer en fonction de x le nombre de faces, de sommets et d'arêtes de la pyramide.

2. La base d'une pyramide a x côtés. Exprimer en fonction de x le nombre de faces, de sommets et d'arêtes de la pyramide. Énoncés Exercice 1 1. Pour chaque pyramide ci-contre, colorier : en bleu, son sommet ; en vert, ses arêtes latérales ; en rouge, sa hauteur ; en jaune, le polygone représentant sa base. P 1 P P. Compléter

Plus en détail

Je fais le point sur mes objectifs

Je fais le point sur mes objectifs Je fais le point sur mon cours 1 Quelle figure représente un prisme droit en perspective cavalière? 2 Quelle figure représente un patron de prisme droit à base triangulaire? Quelle figure représente un

Plus en détail

Symétrie centrale - Exercices

Symétrie centrale - Exercices Symétrie centrale - Exercices Exercice 1 On considère le triangle ABC tel que AB = 4, 5 cm, AC = 6cm et BC = 4cm. a. Construire ce triangle. b. Tracer les symétriques A et C de A et C par rapport à B.

Plus en détail

NOM : GEOMETRIE DANS L ESPACE 4ème

NOM : GEOMETRIE DANS L ESPACE 4ème Exercice 1 E H F G On dispose d un pavé droit dont les dimensions sont indiquées sur la figure ci-contre. On extrait de ce pavé droit une pyramide DBCG. 1) Donne la nature la plus précise possible des

Plus en détail

TAGE 2 / TAGE MAGE SOUS-TEST : CALCUL

TAGE 2 / TAGE MAGE SOUS-TEST : CALCUL TAGE 2 / TAGE MAGE SOUS-TEST : CALCUL GEOMETRIE AUCUN DOCUMENT N EST AUTORISE CALCULATRICES INTERDITES Le sujet a été réalisé par l équipe pédagogique de Mes Concours Blancs et n engage en rien le concours

Plus en détail

EXERCICES ET PROBLÈMES Ch. 8 : Sections planes de solides

EXERCICES ET PROBLÈMES Ch. 8 : Sections planes de solides XRS T PROÈMS h. 8 : Sections planes de solides : Oral : pplication : pprofondissement Parallélépipède rectangle 2 1 ans chacun des cas suivants, le parallélépipède rectangle est coupé par le plan (). ndiquer

Plus en détail

6G7 - PAVE DROIT. 3. On découpe et on plie

6G7 - PAVE DROIT. 3. On découpe et on plie NOM :. 6G7 - PAVE DROIT I. SOLIDES EN PERSPECTIVE CAVALIERE. Un solide, est une figure «en relief», conçue par assemblage de différentes figures planes (polygones). Puisqu il est impossible de la faire

Plus en détail

EC 9A : ELEMENTS DE MATHEMATIQUES GEOMETRIE DANS L ESPACE EXERCICES

EC 9A : ELEMENTS DE MATHEMATIQUES GEOMETRIE DANS L ESPACE EXERCICES EC 9A : ELEMENTS DE MATHEMATIQUES GEOMETRIE DANS L ESPACE EXERCICES EXERCICE N 1 : Voici un certain nombre de solides. Déterminer, si possible, le nombre de faces, de sommets, d arêtes pour chacun d eux.

Plus en détail

Ex 1 : Vrai ou faux. Géom 1

Ex 1 : Vrai ou faux. Géom 1 CONNAITRE LE VOCABULAIRE ET LES INSTRUMENTS GEOMETRIQUES Géom 1 En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. Ex 1 : Vrai ou faux

Plus en détail

Corrections des exercices sur les pyramides et cônes de révolution Exercice 1 :

Corrections des exercices sur les pyramides et cônes de révolution Exercice 1 : Corrections des exercices sur les pyramides et cônes de révolution Exercice 1 : Bien que sa base soit un polygone régulier ( un carré), la pyramide 1 n est pas régulière car sa hauteur ne passe pas par

Plus en détail

On considère le prisme droit ABCDEF dont la base est un triangle ABC rectangle en A, et dont la hauteur est [AD].

On considère le prisme droit ABCDEF dont la base est un triangle ABC rectangle en A, et dont la hauteur est [AD]. Prismes 1 Prisme à base un triangle rectangle 1 Pavés droits 1 Le pavé droit 1 Le cube Pyramides pyramide dans pavé droit ctivité pyramide à base rectangulaire, d'arêtes égales. alques et résultats. 4

Plus en détail

Activité 1 : La machine à prismes

Activité 1 : La machine à prismes Activités Activité 1 : La machine à prismes a. Prends une feuille de papier A4, puis plie-la afin d'obtenir les marques de pliages suivantes : b. Repasse en rouge les pointillés et en vert les bords de

Plus en détail

J ai 3 côtés de même longueur. J ai 4 côtés égaux, 4 angles droits et mes diagonales sont de même longueur et perpendiculaires. J ai 2 côtés de même longueur. J ai 4 angles droits et mes côtés opposés

Plus en détail

ESPACE. Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d Alexandrie. Index

ESPACE. Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d Alexandrie. Index Index I- Premières observations dans l'espace:... 2 I-1- Patrons de cube... 2 I-1-1- Un cube... 2 I-1-2- Des patrons?...2 I-1-3- Surface... 3 I-1-4- Volume... 3 I-1-5- Numéroter un dé... 3 I-2- un parallélépipède

Plus en détail

Repérage et section :

Repérage et section : 3 e Repérage et section : ESPACE ET GEOMETRIE ABCDEFGH est un pavé droit tel que AB = 10 cm, AD = 8 cm et AE = 4 cm. On repère des points dans ce pavé droit à l aide de leur abscisse, de leur ordonnée

Plus en détail

S23. Autour des CUBES et POLYEDRES Géométrie dans l espace. B. Voir et reconnaître des formes planes dans une représentation en perspective 1

S23. Autour des CUBES et POLYEDRES Géométrie dans l espace. B. Voir et reconnaître des formes planes dans une représentation en perspective 1 CRPE S23. Autour des CUBES et POLYEDRES Géométrie dans l espace Mise en route A. Observer ( BE) ( EK )? ( BG) //(CJ )? AL DK? Les plans (AGL) et (EFK) sont-ils sécants? Quelle est l intersection des plans

Plus en détail

12.2 Les solides L aire des prismes et des pyramides Le cylindre et l aire des solides décomposables Les mesures manquantes

12.2 Les solides L aire des prismes et des pyramides Le cylindre et l aire des solides décomposables Les mesures manquantes 12.2 Les solides 12.3 L aire des prismes et des pyramides 14.4 Le cylindre et l aire des solides décomposables 12.4 Les mesures manquantes Notes de cours Mathématiques 2 e secondaire Mars et avril 2016

Plus en détail

FICHES OUTILS GEOMETRIE CM2

FICHES OUTILS GEOMETRIE CM2 FICHES OUTILS GEOMETRIE 1 Les instruments pour reproduire 2 Reproduire des figures planes 3 Les polygones 4 Les quadrilatères 5 Le carré et le rectangle 6 Les triangles 7 Construire des figures géométriques

Plus en détail

FICHES OUTILS GEOMETRIE CM2

FICHES OUTILS GEOMETRIE CM2 FICHES OUTILS GEOMETRIE Constructions pour le plaisir avec des cercles: page 25: la cible page 26: la rosace page 27: la rosace double page 28: la rose page 29: le mandala Pages 2 à 9: 1 Les instruments

Plus en détail

Géom1. Connaître le vocabulaire et le codage en géométrie. La géométrie exige rigueur et précision dans le vocabulaire utilisé.

Géom1. Connaître le vocabulaire et le codage en géométrie. La géométrie exige rigueur et précision dans le vocabulaire utilisé. Connaître le vocabulaire et le codage en géométrie Géom1 La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points alignés : on ne peut donc

Plus en détail

Géom1. Connaitre le vocabulaire et les instruments géométriques

Géom1. Connaitre le vocabulaire et les instruments géométriques Connaitre le vocabulaire et les instruments géométriques Géom1 En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. La règle sert à mesurer,

Plus en détail

Géométrie CM1/CM2 - FH

Géométrie CM1/CM2 - FH Gm1 : Connaître le vocabulaire et les instruments de géométrie. En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. Gm2 : Identifier et

Plus en détail

Récupération 3 e secondaire Vision 5 : Solides semblables

Récupération 3 e secondaire Vision 5 : Solides semblables Récupération 3 e secondaire Vision 5 : Solides semblables 1. Dans chaque cas, détermine si les deux polygones illustrés sont semblables. S ils le sont, détermine le rapport de similitude (k). S ils ne

Plus en détail

Mathématiques - programmation C.M. 2 -

Mathématiques - programmation C.M. 2 - Période 1 L addition des nombres L addition en ligne des nombres L addition des nombres La soustraction en ligne des nombres Le système de numération des nombres Lecture et écriture des nombres Décomposition

Plus en détail

Polyèdre régulier: Toutes ses faces sont congruentes et ses angles sont congrus (tétraèdre, hexaèdre, octaèdre, dodécaèdre et icosaèdre).

Polyèdre régulier: Toutes ses faces sont congruentes et ses angles sont congrus (tétraèdre, hexaèdre, octaèdre, dodécaèdre et icosaèdre). Définitions Surface: Figure à 2 dimensions. Elle n'a pas d'épaisseur. Solide: Figure à 3 dimensions. Corps rond : Solide qui contient au moins une surface courbée. Polygone: Surface plane qui est fermée.

Plus en détail

Séance 1. Activité 1.: Réflexion. Construction tétraèdre par pliage. En déduire un patron de pyramide.

Séance 1. Activité 1.: Réflexion. Construction tétraèdre par pliage. En déduire un patron de pyramide. Séance 1 Année 2016-2017 Séquence 03 : Pyramides et cônes Objectifs : Connaitre les noms des polyèdres ; Connaitre les propriétés des pyramides et celles de cônes ; Propriétés sur les quadrilatères particuliers

Plus en détail

Seconde Chapitre 1 «Géométrie dans l espace» Page 1 sur 7

Seconde Chapitre 1 «Géométrie dans l espace» Page 1 sur 7 Seconde hapitre 1 «éométrie dans l espace» Page 1 sur 7 I) Solides usuels 1) Objets droits Nom Solide escription Volume xercice 1 : alculs des longueurs des petites et grandes diagonales du cube. xercice

Plus en détail

5 ème AIRE ET VOLUME (PREPARATION) AIRE D UN PARALLELLOGRAMME. Exercice 1

5 ème AIRE ET VOLUME (PREPARATION) AIRE D UN PARALLELLOGRAMME. Exercice 1 AIRE D UN PARALLELLOGRAMME Si le parallélogramme au chocolat pèse 40 grammes, alors le rectangle au chocolat pèse. On peut découper le parallélogramme pour obtenir le rectangle. Comparer les aires du parallélogramme

Plus en détail

Chapitre 07 : Les solides

Chapitre 07 : Les solides Chapitre 7 : Les solides Le «volume d'un solide» est le nombre de cubes (dont les arrêtes mesurent unité de longueur) nécessaires pour le remplir complètement. Unités de volume Le mètre cube (m) est l'unité

Plus en détail

À la première étape, on considère un grand cube d'arête 9 cm formé de petits cubes de volume 1 cm 3.

À la première étape, on considère un grand cube d'arête 9 cm formé de petits cubes de volume 1 cm 3. À la première étape, on considère un grand cube d'arête 9 cm formé de petits cubes de volume 1 cm 3. À la deuxième étape, on enlève tous les cubes moyens situés au centre des faces et à l'intérieur comme

Plus en détail

1) Une demi-droite est une partie d une droite délimitée par un point appelé origine de cette demidroite

1) Une demi-droite est une partie d une droite délimitée par un point appelé origine de cette demidroite 6 ème - 5 ème Géométrie de base Notation : On note un point à l aide d une croix pour indiquer le lieu et d une lettre MAJUSCULE à côté pour indiquer son nom Attention : Une MÊME lettre ne peut désigner

Plus en détail

GÉOMÉTRIE. Ecole santa cruz M.Cohen

GÉOMÉTRIE. Ecole santa cruz M.Cohen GÉOMÉTRIE GM.01 Objets et notations GM.02 Les instruments de dessin GM.03 Tracer 2 droites perpendiculaires GM.04 Tracer 2 droites parallèles GM.05 Les polygones GM.06 Les quadrilatères GM.07 Les carrés

Plus en détail

Construire et représenter un prisme droit

Construire et représenter un prisme droit Tous les fichiers texte modifiables de ces activités sont disponibles sur le site www.bordas-myriade.fr. Construire et représenter un prisme droit Un menuisier doit réaliser pour l un de ses clients un

Plus en détail

Sommaire géométrie. Le segment de droite Point, droite, demi-droite et segment de droite. Droites perpendiculaires Droites parallèles

Sommaire géométrie. Le segment de droite Point, droite, demi-droite et segment de droite. Droites perpendiculaires Droites parallèles Sommaire géométrie ans le plan Géom 01 Géom 02 Géom 03 Géom 04 Géom 05 Géom 06 Géom 07 Géom 08 Géom 09 Géom 10 Géom 11 Géom 12 Géom 13 Géom 14 Géom 15 Géom 16 Dans l espace Géom 17 Géom 18 Géom 19 Géom

Plus en détail