7 2 4 = = ² 10-3

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "7 2 4 = = ² 10-3"

Transcription

1 EXERCICE 1 A = ,8 10 B = ) A = = = = = = = ,8 10 2) a) B = (-5) = = 3 1,8 6 = (écriture scientifique) = 0, (écriture décimale) 10² = 0, (-3)-4 = EXERCICE 2 On donne C = (2x + 3)² + (x 5)(2x + 3). 1. C = (2x + 3)² + (x 5)(2x + 3) = ((2x)² + 2 2x 3 + 3²) + (x 2x + x 3 5 2x 5 3) = 4x² + 12x x² + 3x 10x 15 = 6x² + 5x 6 (forme développée). 2. C = (2x + 3)² + (x 5)(2x + 3) = (2x + 3)[(2x + 3) + (x 5)] = (2x + 3)(3x 2).(forme factorisée) 3. L'équation (2x + 3)(3x 2) = 0 est une équation produit nul. Or, si un produit est nul, alors l un de ses facteurs est nul. Donc, 2x + 3 = 0 ou 3x 2 = 0 2x + 3 = 0 2x = 0 3 2x 2 = x = -1,5 3x 2 = 0 3x = x 3 = 2 3 x = 2 3 Vérification : (2 (-1,5) + 3)(3 (-1,5) 2) = (-3 +3)(-4,5 2) = 0 (-6,5) = 0. Donc -1,5 est bien solution de l équation. Vérification : ( )( ) = (4 3 +3)(2 2) = = 0. Donc 2 est bien solution de l équation. 3 Les solutions de l équation (2x + 3)(3x 2) = 0 sont -1,5 et Pour x = 2 : C = 6 2² = = = 28. Page 1 sur 6

2 EXERCICE 3 1. Figure en vraie grandeur. 2. Montrer que BC = 8 cm. Le triangle BCD est rectangle en D. Je connais la mesure de [BD], côté adjacent de CBD, et je cherche la mesure de [BC], hypoténuse du triangle. Donc, j utilise la formule du cosinus. côté adjacent à CBD cos CBD = hypoténuse cos (60 ) = 4 D où BC = 3. Calculer CD. = BD BC BC 4 cos (60 ) = 4 = 8. [BC] mesure 8 cm. 0,5 Le triangle BCD est rectangle en B, donc, d après le théorème de Pythagore, on a : BC² = BD² + CD² 8² = 4² + CD² 64 = 16 + CD² d où CD² = = Calculer AC. CD = 48 6,9. [CD] mesure 6,9 cm (arrondi au dixième). Le triangle ABC est rectangle en D, donc, d après le théorème de Pythagore, on a : AC² = AB² + BC² AC² = 6² + 8² = = 100 d où AC = 100 = 10. [AC] mesure 10 cm. 5. valeur de tan BAC Le triangle ABC est rectangle en D, donc tan BAC = 6. Valeur arrondie au dixième de BAC. côté opposé à BAC côté adjacent à BAC = BC BA = 8 6 = 4 3 On utilise la calculatrice : BAC = arctan (4 : 3) 53,1. Page 2 sur 6

3 EXERCICE 4 1) AB = 5,2 tan 23 2,2 cm (b) 2) IJK = = 58 (c) 3) x = arctan (c) arrondi au degré 4) a = ( ) = = 26 (c) 5) sin y = 3 5 (a) EXERCICE 5 Un confiseur décide de répartir 301 caramels et 172 chocolats dans des sachets identiques. 1) Nombre maximal de sachets réalisables : On partage les bonbons et les chocolats de la même façon pour obtenir le plus grand nombre de sachets réalisables, donc il faut chercher le PGCD de 301 et 172. J utilise l algorithme d Euclide : 301 = = = Le PGCD est le dernier reste non nul donc PGCD(301 ; 129) = 43. On peut faire au maximum 43 sachets en partageant tous les bonbons et tous les chocolats. 2) Nombre de bonbons et le nombre de chocolats contenus dans un sachet. 301 : 43 = : 43 = 4. Chaque sachet contient 7 bonbons et 4 chocolats. 3) Prix d un chocolat. Notons c le prix d un chocolat : 7 0, c = 1,30 4c = 1,30 0,70 4c = 0,60 c = 0,60 : 4 c = 0,15 Un chocolat coûte 0,15. EXERCICE 6 1) Voir l ANNEXE. 2) a) Probabilité de tirer 2 boules vertes : P(V ; V) = = 8 25 b) P(R ; R) = = 3 25 < P(V ; V). On a plus de chances de tirer 2 boules vertes. 3) Probabilité de tirer 2 boules de couleurs différentes. p = P(V ;R ou R ;V) = P(V ; R) + P(R ; V) (événements incompatibles) = = = ) Probabilité de tirer 2 boules de la même couleur. p = P(R ;R ou V ;V) = P(RR) + P(VV) (événements incompatibles) = = ou : Les événements «tirer 2 boules de couleurs différentes» et «tirer 2 boules de couleurs différentes» sont des événements contraires donc p = = Page 3 sur 6

4 EXERCICE 7 Cette courbe représente une fonction h pour des valeurs comprises entre 6 et 10. Par lecture graphique : 1) L image de 1 par h est 3.. 2) h(-1) = 1 3) Les antécédents de 0 par h sont 3 et 8. 4) Il y a 4 solutions de l équation h(x) = 2 car la courbe représentative de h coupe la droite d équation y = 2 en 4 points. EXERCICE 8 On considère le programme de calcul ci-dessous : choisir un nombre de départ ajouter 8 multiplier la somme par le nombre de départ Ajouter 16 au résultat écrire le résultat obtenu. 1. a) Vérifier que, lorsque le nombre de départ est 2, on obtient 36. b) Lorsque le nombre de départ est 3, quel résultat obtient-on? Page 4 sur 6

5 2. L évaluation de cette question tiendra compte des observations et des étapes de recherche, même incomplètes ; les faire apparaître sur la copie. a) Amel prétend que, pour n importe quel nombre entier de départ, le résultat du programme de calcul est le carré d un nombre entier. A-t-elle raison? Appliquons le programme de calcul à un nombre entier n : (n + 8) n +16. En développant, on obtient : n² +8n En factorisant, on obtient : (n + 4) 2 qui est bien le carré d un nombre entier. Amel a raison. b) Déterminer le(s) nombre(s) qui permet(tent) d obtenir 25 lorsque l on applique ce programme de calcul. On résout l équation (n + 4)² = 25. Les nombres qui ont pour carré 25 sont -5 et 5 d où : n + 4 = -5 n + 4 = 5, n = -9 n = 1 Vérification : Les nombres 1 et -9 permettent d obtenir le nombre 25. EXERCICE 9 Dans cet exercice, toute trace de recherche, même incomplète, sera prise en compte dans l'évaluation. Une salle de spectacle a la forme ci-contre : Les sièges sont disposés dans quatre zones : deux quarts de disques et deux trapèzes, séparées par des allées ayant une largeur de 2 m. On peut placer en moyenne 1,8 sièges par m 2 dans la zone des sièges. Calculer le nombre de places disponibles dans ce théâtre. Aire d'un trapèze : petite base = (16 2) 2 = 14 2 = 7 m grande base = 13 m. hauteur = 10 m. (7 + 13) 10 Aire = = 200 = 100 m². 2 2 Aire d'un quart de disque : Rayon = 13 m Aire = π 13² 4 = 42,25π m² Aire totale : ,25π = ,5π 465,5 m². Nombre de places possibles : 465,5 1,8 837,8. Le théâtre dispose de 837 places Page 5 sur 6

6 ANNEXE EXERCICE 6 Boite B1 Boite B2 Issue Page 6 sur 6

Brevet blanc. Mathématiques. Série : Collège. Durée de l épreuve : 2h 00. Ce sujet comporte 5 pages.

Brevet blanc. Mathématiques. Série : Collège. Durée de l épreuve : 2h 00. Ce sujet comporte 5 pages. Brevet blanc Mathématiques Série : Collège Durée de l épreuve : 2h 00 Ce sujet comporte 5 pages. Dès que ce sujet vous est remis, assurez-vous qu il est complet. L annexe page 5 est à rendre avec votre

Plus en détail

SESSION 2013 MATHÉMATIQUES SÉRIE COLLÈGE. DURÉE DE L ÉPREUVE : 2 h 00. Notée sur 40. Ce sujet comporte 4 pages numérotées de 1/4 à 4/4.

SESSION 2013 MATHÉMATIQUES SÉRIE COLLÈGE. DURÉE DE L ÉPREUVE : 2 h 00. Notée sur 40. Ce sujet comporte 4 pages numérotées de 1/4 à 4/4. BREVET BLANC n 1 SESSION 2013 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Notée sur 40. Ce sujet comporte 4 pages numérotées de 1/4 à 4/4. Dès qu il vous est remis, assurez-vous qu il est complet.

Plus en détail

Correction du Brevet blanc n 1.

Correction du Brevet blanc n 1. Correction du Brevet blanc n 1. Exercice 1 : Cet exercice est un questionnaire à choix multiple (QCM). Pour chaque question, quatre réponses sont proposées : une seule d entre elles est exacte. Pour chaque

Plus en détail

Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé.

Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé. Activités numériques (12 points) Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé. Exercice 1 :(détailler chacun des calculs suivants)

Plus en détail

Correction du Brevet blanc n 2.

Correction du Brevet blanc n 2. Correction du Brevet blanc n. Exercice : 8 + ) a) Calculer le nombre : A =. +,5 b) Pour calculer le nombre A, un élève a tapé sur sa calculatrice la succession de touches ci-dessous : 8 + +. 5 = Expliquer

Plus en détail

Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net :

Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net : Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net : http://titaile.free.fr (sans le www) I. Calcul. Revoir impérativement «développer, factoriser, résoudre

Plus en détail

Exercices type brevet. EXERCICE 4 : (VOLUME) Dans une boîte cubique dont l'arête mesure 7 cm, on place une boule de 7 cm de diamètre (voir le schéma).

Exercices type brevet. EXERCICE 4 : (VOLUME) Dans une boîte cubique dont l'arête mesure 7 cm, on place une boule de 7 cm de diamètre (voir le schéma). EXERCICE 1 : (CALCULS NUMERIQUES) Soit A = 5 3 7 3 9 4 Exercices type brevet ; B = 45 1 5 ; C = ( ) 4 3 10 1, 10 3 0, 10 1) Calculer A et donner le résultat sous la forme d une fraction irréductible. )

Plus en détail

CORRECTION EXERCICES REVISONS BREVET

CORRECTION EXERCICES REVISONS BREVET CORRECTION EXERCICES REVISONS BREVET Correction DS1 5 30 98 30 68 34 7 3 7 30 35 180 145 29 A = 7 6 7 B = 10 14 14 14 14 14 7 6 5 6 5 30 30 30 6 2 2 4 2 2 7 2 14 8 14 6 3 C = : 5 5 7 5 5 4 5 20 20 20 10

Plus en détail

Correction de l épreuve commune niveau troisième 2012

Correction de l épreuve commune niveau troisième 2012 TRAVAUX NUMERIQUES : sur 12 points Exercice 1 : Alain et Charlotte décident de faire chacun une question de l'exercice suivant : 1 Calculer A et donner le résultat sous forme d'une fraction irréductible.

Plus en détail

BREVET BLANC de MATHEMATIQUES n 1 Janvier durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 1 Janvier durée : 2 heures BREVET BLANC de MATHEMATIQUES n 1 Janvier 2011 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points)

Plus en détail

Correction des exercices à savoir faire à l'entrée en 2nde

Correction des exercices à savoir faire à l'entrée en 2nde Correction des exercices à savoir faire à l'entrée en 2nde Exercice 1 : Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question, une seule des réponses proposées est exacte. Laquelle?

Plus en détail

Mercredi 28 janvier Collège La Charme

Mercredi 28 janvier Collège La Charme BREVET BLANC ÉPREUVE DE MATHÉMATIQUES Mercredi 28 janvier 2009 Collège La Charme Durée : 2 heures L emploi des calculatrices est autorisé En plus des point prévus pour chacune des trois parties de l épreuve,

Plus en détail

a. 9 x 2 25 b. 3 x 2 30 x+25 c. 9 x 2 30 x+25

a. 9 x 2 25 b. 3 x 2 30 x+25 c. 9 x 2 30 x+25 Q.C.M : (Issues de brevets) 1. L'expression développée de (3 x 5) 2 est : a. 9 x 2 25 b. 3 x 2 30 x+25 c. 9 x 2 30 x+25 (3 x 5) 2 =(3 x) 2 2 3 x 5+ 5 2 =9 x 2 30 x+ 25 2. On considère la fonction f définie

Plus en détail

Exercices à savoir faire à l'entrée en 2nde

Exercices à savoir faire à l'entrée en 2nde Exercices à savoir faire à l'entrée en 2nde Exercice 1 : Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question, une seule des réponses proposées est exacte. Laquelle? Il faut

Plus en détail

Brevet : le minimum vital à connaître

Brevet : le minimum vital à connaître Brevet : le minimum vital à connaître Thème Cours Exemples Calcul Fractions Puissances Règles de priorité: On commence par les parenthèses, puis les multiplications ou division et enfin les additions ou

Plus en détail

Cedex Thouars. Année 2011 / Brevet Blanc n 2. MathématiqueS

Cedex Thouars. Année 2011 / Brevet Blanc n 2. MathématiqueS Collège Marie de la Tour d Auvergne Rond Point du 19 Mars 1962, BP 169 79 101 Thouars Cedex Année 2011 / 2012 Brevet Blanc n 2 MathématiqueS Tous les résultats devront être justifiés. La qualité de la

Plus en détail

Activités numériques [12 Points]

Activités numériques [12 Points] Activités numériques [1 Points] EXERCICE 1 On considère les trois nombres A, B et C : A = 5 6 + 5 6 7 ; B = 1 9 5 : 1 7 + 1 ; C = 1. Calculer A et B et donner le résultat sous la forme de fraction irréductible.

Plus en détail

COLLEGE MAX BRAMERIE DE LA FORCE. Épreuve : mathématiques Date : jeudi 16 février Ce sujet comporte : 4 pages Série collège : 1/4

COLLEGE MAX BRAMERIE DE LA FORCE. Épreuve : mathématiques Date : jeudi 16 février Ce sujet comporte : 4 pages Série collège : 1/4 Il sera tenu compte de la qualité de la rédaction et de la présentation (4 points). L usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. PREMIÈRE PARTIE : ATIVITÉS NUMÉRIQUES

Plus en détail

Exercices de mathématiques pour les élèves qui entrent en seconde.

Exercices de mathématiques pour les élèves qui entrent en seconde. Eercices de mathématiques pour les élèves qui entrent en seconde. Eercice : ) Calculer (sans calculatrice) : a 8 8 ; b 8 ; e ; f ; c 8 ; g 4 ; d 8 ; h 4. ) Ecrire sous la forme a b, a et b entiers avec

Plus en détail

CORRECTION DU BREVET BLANC JANVIER 2015

CORRECTION DU BREVET BLANC JANVIER 2015 CORRECTION DU BREVET BLANC JANVIER 2015 EXERCICE 1 (5 POINTS) Emma et Arthur ont acheté pour leur mariage 3 003 dragées au chocolat et 3 731 dragées aux amandes. 1. Arthur propose de répartir ces dragées

Plus en détail

CORRECTION DU BREVET (DNB) MÉTROPOLE, RÉUNION, MAYOTTE, septembre V Exercice 1 : V Exercice 2 :

CORRECTION DU BREVET (DNB) MÉTROPOLE, RÉUNION, MAYOTTE, septembre V Exercice 1 : V Exercice 2 : Mathématiques CORRECTION DU BREVET (DNB) MÉTROPOLE, RÉUNION, MAYOTTE, septembre 200 Correction proposée par Mr MORICEAU Saint Denis (RÉUNION), le 20 octobre 200 1 partie : Activités numériques V Exercice

Plus en détail

BREVET BLANC DE MATHEMATIQUES 2013

BREVET BLANC DE MATHEMATIQUES 2013 BREVET BLANC DE MATHEMATIQUES 2013 L usage de la calculatrice est autorisée. Toutes les réponses doivent être justifiées sauf si une indication contraire est donnée. L épreuve est notée sur 40 points dont

Plus en détail

Résultats Exercice.1 Réponses, Réponse, Réponse 1, Réponse, Réponse Exercice. PGCD = 1 5 chocos+6 pralines Exercice. 1. a. 16 b.4. a. b. c. x=4 Exerci

Résultats Exercice.1 Réponses, Réponse, Réponse 1, Réponse, Réponse Exercice. PGCD = 1 5 chocos+6 pralines Exercice. 1. a. 16 b.4. a. b. c. x=4 Exerci Révision pour brevet Exercice.1 [QCM Calcul littéral, inéquation, 10 minutes ] Exercice.4 [ Pythagore, Thalès, 15 minutes ] Tous les exercices proposés sont issus du brevet, certains sont légèrement modifiés.

Plus en détail

Brevet des collèges Amérique du Nord 7 juin 2011

Brevet des collèges Amérique du Nord 7 juin 2011 Durée : 2 heures Brevet des collèges mérique du Nord 7 juin 2011 L utilisation d une calculatrice est autorisée. CTIVITÉS NUMÉRIQUES Exercice 1 Le professeur choisit trois nombres entiers relatifs consécutifs

Plus en détail

Cet exercice comporte une tâche non guidée. Toute trace de recherche, même incomplète sera prise en compte.

Cet exercice comporte une tâche non guidée. Toute trace de recherche, même incomplète sera prise en compte. Il sera tenu compte de la qualité de la rédaction et de la présentation (4 points). L usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. Exercice 1 (3 points) Cet exercice

Plus en détail

Brevet blanc de mathématiques Avril 2016

Brevet blanc de mathématiques Avril 2016 Durée de l épreuve : 2 h 00 Ce sujet comporte 4 pages numérotées de 1/4 à 4/4. Dès que ce sujet vous est remis, assurez-vous qu il est complet. L usage de la calculatrice est autorisé. Exercice 1 Exercice

Plus en détail

BREVET BLANC DE MATHÉMATIQUES N janvier 2011

BREVET BLANC DE MATHÉMATIQUES N janvier 2011 CORRECTION BREVET BLANC DE MATHÉMATIQUES N 1 19 janvier 2011 -L emploi des calculatrices est autorisé. -Toutes les réponses devront être soigneusement rédigées sur la copie ( sauf indication contraire).

Plus en détail

( ) Correction du devoir surveillé n 7. Exercice 1 :

( ) Correction du devoir surveillé n 7. Exercice 1 : Correction du devoir surveillé n 7 Exercice 1 : Un géomètre mesure, à l aide d un théodolite, la hauteur d un arbre En plaçant son instrument à 5 m du pied de l arbre, il vise le sommet et mesure alors

Plus en détail

38 Questions de plus : éléments de correction

38 Questions de plus : éléments de correction 38 Questions de plus : éléments de correction Attention, ce document vous donne uniquement les réponses et quelques explications ; pour les éléments de rédaction à rajouter, merci de vous reporter à ce

Plus en détail

Questions Réponse A Réponse B Réponse C

Questions Réponse A Réponse B Réponse C Sujet d'entrainement pour le brevet Maîtrise de la langue : 4 points Calculatrice autorisée Exercice 1 ( 3 points) Dans ce questionnaire à choix multiples, pour chaque question, des réponses sont proposées

Plus en détail

CORRECTION DU BREVET 2013

CORRECTION DU BREVET 2013 CORRECTION DU BREVET 0 Amérique du Nord Exercice ) La somme des probabilités de tous les événements élémentaires est égale à a. 4 9 4 5 On effectue alors l opération : + = + = = = 9 9 9 9 9 9 La probabilité

Plus en détail

COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2013

COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2013 COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2013 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

Correction du Brevet Blanc n 2 de Mathématiques Avril 2016

Correction du Brevet Blanc n 2 de Mathématiques Avril 2016 Correction du Brevet Blanc n 2 de Mathématiques Avril 201 Exercice 1. Cet exercice est un questionnaire à choix multiple (QCM). Pour chaque question, une seule des trois réponses proposées est exacte.

Plus en détail

Racine carrée d un nombre positif ou nul

Racine carrée d un nombre positif ou nul Racine carrée d un nombre positif ou nul Introduction (Sésamath) 1) Quelques racines carrées simples a) Trouver tous les nombres dont le carré est 16 b) Même question avec 0,81 c) Donner la mesure du côté

Plus en détail

Le théorème de Pythagore.

Le théorème de Pythagore. Fiche n 1 : Le théorème de Pythagore. I- Calculer une longueur. Énoncé : Si un triangle est rectangle alors le carré de la longueur de l hypoténuse est égal à la somme des carrés des longueurs des deux

Plus en détail

Exercices de 3 ème Chapitre 2 Calcul littéral Énoncés. C = (2x 5)(3x 7) D = (2x 5)(3x 2) c] (6x +...)(...) = d] ( )² =...

Exercices de 3 ème Chapitre 2 Calcul littéral Énoncés. C = (2x 5)(3x 7) D = (2x 5)(3x 2) c] (6x +...)(...) = d] ( )² =... Énoncés Exercice 1 Développer, réduire et ordonner les expressions suivantes : A = 3(4x 7) 4(2x 9) B = 7x(2x 5) x(2x 5) C = (2x 5)(3x 7) D = (2x 5)(3x 2) Exercice 2 Développer, réduire et ordonner les

Plus en détail

EPREUVE D ENTRAÎNEMENT 21 MAI 2012

EPREUVE D ENTRAÎNEMENT 21 MAI 2012 EPREUVE D ENTRAÎNEMENT 21 MAI 2012 MATHEMATIQUES Durée : 2 heures L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation et de la rédaction entrent dans l appréciation des copies

Plus en détail

p(p a)(p b)(p c) où p = 1 (a + b +c)

p(p a)(p b)(p c) où p = 1 (a + b +c) ème E DS4 racines carrées 01-014 sujet 1 Eercice 1 : (4 points) Les figures ci-dessous ont toutes une aire de cm². Donner la valeur eacte de en cm, dans chacun des cas. (1) () () (4) 1 Eercice : au brevet

Plus en détail

Collège Jean-Pierre VERNANT, TOULOUSE Jeudi 27 Février 2014 BREVET BLANC MATHÉMATIQUES

Collège Jean-Pierre VERNANT, TOULOUSE Jeudi 27 Février 2014 BREVET BLANC MATHÉMATIQUES Collège Jean-Pierre VERNNT, TOULOUSE Jeudi 27 Février 2014 BREVET BLNC MTHÉMTIQUES Durée de l épreuve : 2 heures Le sujet est composé de 4 pages et d une annexe (Page 5), qui devra être rendue avec la

Plus en détail

Partie numérique ( 3 ) 2

Partie numérique ( 3 ) 2 Brevet blanc Janvier 07. La calculatrice est autorisée, mais les détails des calculs sont exigés. La clarté et la qualité de la rédaction prendront une part importante dans la notation. Partie numérique

Plus en détail

H = H = H =30 7 F = 15 F = F = F = F = F = 23 5

H = H = H =30 7 F = 15 F = F = F = F = F = 23 5 BREVET BLANC de MATHEMATIQUES Classe de troisième Correction des exercices 1. Racines carrées Connaître les règles de calcul avec des racines carrées Savoir effectuer un produit ou un quotient avec des

Plus en détail

Corrigé du Brevet Blanc n 1 Activités Numériques (11 points)

Corrigé du Brevet Blanc n 1 Activités Numériques (11 points) Activités Numériques (11 points) Exercice 1 ( 6 points) : Pour toutes les questions, écrire les différentes étapes du calcul. 1) Calculer et donner une écriture scientifique du résultat, puis une écriture

Plus en détail

Contrôle continu d Outils Mathématiques pour Scientifiques

Contrôle continu d Outils Mathématiques pour Scientifiques Contrôle continu d Outils Mathématiques pour Scientifiques (LM 130) (6 novembre 010 durée : h) Les calculatrices et les documents ne sont pas autorisés pages imprimées Les différents exercices sont indépendants

Plus en détail

DIPLÔME NATIONAL DU BREVET. Série Collège MATHÉMATIQUES

DIPLÔME NATIONAL DU BREVET. Série Collège MATHÉMATIQUES Collège Georges Brassens PERSAN Janvier 2011 DIPLÔME NATIONAL DU BREVET Série Collège MATHÉMATIQUES Durée : 2 heures (aucune sortie ne sera acceptée avant ce temps) L emploi de la calculatrice est autorisé.

Plus en détail

M. MORICEAU, brevet (DNB) CORRECTION de l épreuve de mathématiques (DNB) de 2012

M. MORICEAU, brevet (DNB)  CORRECTION de l épreuve de mathématiques (DNB) de 2012 M. MORICEAU [Collège Montgaillard - Saint Denis (REUNION)] Mathématiques, 28 juin 2012, ème, BREVET (DNB) CORRECTION de l épreuve de mathématiques (DNB) de 2012 Activités numériques (12 points) V Premier

Plus en détail

3 ème : ENTRAINEMENT AU BREVET DES COLLEGES

3 ème : ENTRAINEMENT AU BREVET DES COLLEGES 3 ème : ENTRAINEMENT AU BREVET DES COLLEGES Janvier 2012 Epreuve de : MATHEMATIQUES Durée : 2 heures L emploi de la calculatrice est autorisé. En plus des 36 points prévus pour les 3 parties de l épreuve,

Plus en détail

Identités remarquables Equations Calculs-Racines carrées Trigonométrie Thalès et Pythagore Geométrie dans l'espace. Le / 02 / 2008 classe : 3

Identités remarquables Equations Calculs-Racines carrées Trigonométrie Thalès et Pythagore Geométrie dans l'espace. Le / 02 / 2008 classe : 3 ompétences: Identités remarquables Equations alculs-racines carrées Trigonométrie Thalès et Pythagore Geométrie dans l'espace Le / 02 / 2008 classe : Devoir de mathématiques n 6. (sujet ) Durée 2h calculatrice

Plus en détail

1. L arbre ci-dessous est un arbre de probabilité. La probabilité manquante sous la tache est :

1. L arbre ci-dessous est un arbre de probabilité. La probabilité manquante sous la tache est : CORRIGE SUJET DNB AMERIQUE DU NORD JUIN 013 EXERCICE 1 : Pour chacune des 4 questions suivantes, plusieurs propositions de réponses sont faites. Une seule des propositions est exacte. Aucune justification

Plus en détail

Brevet des collèges Amérique du Sud 24 novembre 2012

Brevet des collèges Amérique du Sud 24 novembre 2012 Durée : heures Brevet des collèges Amérique du Sud 4 novembre 01 L utilisation d une calculatrice est autorisée. ACTIVITÉS NUMÉRIQUES Exercice 1 1 points Cet exercice est un exercice à choix multiples

Plus en détail

EXERCICE 1 : (6 points)

EXERCICE 1 : (6 points) EXERCICE 1 : (6 points) Corrigé Un jeu de fléchettes consiste à lancer trois fléchettes sur une cible. La position des fléchettes sur la cible détermine le nombre de points obtenus. La cible est installée

Plus en détail

(6 points) c. En déduire les dimensions de la boîte ayant le plus grand volume et donner la valeur de volume maximal. (5 points)

(6 points) c. En déduire les dimensions de la boîte ayant le plus grand volume et donner la valeur de volume maximal. (5 points) Bac Blanc - Maths - 1S - 08/0/01 (sur 0 durée : h - calculatrice autorisée La présentation et la qualité de rédaction seront prises en compte dans la note EXERCICE 1 Un chocolatier veut faire fabriquer

Plus en détail

CORRECTION DU BREVET (DNB) MÉTROPOLE, RÉUNION, MAYOTTE, juin V Exercice 1 :

CORRECTION DU BREVET (DNB) MÉTROPOLE, RÉUNION, MAYOTTE, juin V Exercice 1 : Mathématiques CORRECTION DU BREVET (DNB) MÉTROPOLE, RÉUNION, MAYOTTE, juin 2010 Correction proposée par Mr MORICEAU Saint Denis (RÉUNION), le 01 juillet 2010 1 partie : Activités numériques V Exercice

Plus en détail

TRIGONOMETRIE DANS UN TRIANGLE RECTANGLE

TRIGONOMETRIE DANS UN TRIANGLE RECTANGLE TRIGONOMETRIE DANS UN TRIANGLE RECTANGLE Trigonométrie vient de deux mots grecs «trigone» et «metron» qui signifient respectivement «triangle» et» mesure». Ainsi la trigonométrie» est la science de la

Plus en détail

NOM : Prénom : A traité la fiche (cocher)

NOM : Prénom : A traité la fiche (cocher) L objectif des fiches suivantes est de t aider à faire le lien entre la classe de troisième et celle de seconde. Il s agit de te permettre de t entraîner mais aussi et surtout de t aider à cibler les difficultés

Plus en détail

Troisième Résumé de cours de mathématiques

Troisième Résumé de cours de mathématiques 1 Algèbre Troisième Résumé de cours de mathématiques 1.1 Arithmétique 1.1.1 Divisibilité m est un multiple de b lorsqu'il existe c tel que m=b c Les multiples de 2 sont les nombres pairs : ils se terminent

Plus en détail

Exercices pour préparer le brevet blanc n 2. Collège Maurice Rollinat. Programme de révisions : Chapitres 1 à 10.

Exercices pour préparer le brevet blanc n 2. Collège Maurice Rollinat. Programme de révisions : Chapitres 1 à 10. Exercices pour préparer le brevet blanc n 2. Collège Maurice Rollinat. Programme de révisions : Chapitres 1 à 10. Exercice 1 : 1) Les nombres 255 et 612 sont-ils premiers entre eux? Justifier. (sans calculer

Plus en détail

Epreuve de Mathématiques Durée 2 heures

Epreuve de Mathématiques Durée 2 heures Collège Jules Ferry Session 2014 Diplôme National du Brevet Blanc n 1 Epreuve de Mathématiques Durée 2 heures L utilisation de la calculatrice est autorisée (circulaire n 99 186 du 16 Novembre 1999). L

Plus en détail

Exercice 1 (8 points) a. Effectue avec soin les différentes constructions suivantes.

Exercice 1 (8 points) a. Effectue avec soin les différentes constructions suivantes. 3 ème B DS4 calcul littéral -trigonométrie 2012-2013 sujet 1 Exercice 1 (8 points) a. Effectue avec soin les différentes constructions suivantes. Trace un demi-cercle () de centre O et de diamètre [AB]

Plus en détail

2 ) a) Développer, réduire, ordonner l expression suivante : M = (2x +11) 2 (2x 11) 2

2 ) a) Développer, réduire, ordonner l expression suivante : M = (2x +11) 2 (2x 11) 2 3 Eléments abordés Socle Calculer le PGCD de deu entiers Calcul avec les fractions, Connaître et utiliser un algorithme donnant le PGCD de entiers Puissances Identités remarquables Triangle rectangle et

Plus en détail

PROGRESSION 3 EME 0) LE THEOREME DE PYTHAGORE COMPETENCES DU SOCLE : FIGURES PLANES

PROGRESSION 3 EME 0) LE THEOREME DE PYTHAGORE COMPETENCES DU SOCLE : FIGURES PLANES 1 PROGRESSION 3 EME 0) LE THEOREME DE PYTHAGORE FIGURES PLANES Triangle rectangle : Théorème de PYTHAGORE. Caractériser le triangle rectangle par l égalité de PYTHAGORE. Calculer la longueur d un côté

Plus en détail

4 32 = 1 8. c. C: «La carte tirée n est pas une figure rouge.» : = =0

4 32 = 1 8. c. C: «La carte tirée n est pas une figure rouge.» : = =0 EXERCICE 1 : Un jeu de 32 cartes à jouer est constitué de quatre «familles» : trèfle et pique, de couleur noire ; carreau et cœur, de couleur rouge. Dans chaque famille, on trouve ; 4 cartes numérotées

Plus en détail

Chapitre 8 : Géométrie

Chapitre 8 : Géométrie Chapitre 8 : Géométrie I. Triangles rectangles.le théorème de Pythagore Le côté le plus long dans un triangle rectangle est l hypoténuse ; c est le côté où il n y a pas d angle droit. Le théorème de Pythagore

Plus en détail

Contrôle n 4 3 ème 1 2heures.

Contrôle n 4 3 ème 1 2heures. Contrôle n 4 ème 1 2heures. Calculatrices autorisées. Partie numérique: 21 points Exercice 1: 4 points Les rennes et les lutins du père Noël ont décidé de partager leur dernier repas avant la grande tournée

Plus en détail

Copyright 2012 PLANETE WORK

Copyright 2012 PLANETE WORK Page 1 sur 36 TABLE DES MATIÈRES CALCUL LITTÉRAL... 5 DÉVELOPPER UNE EXPRESSION LITTÉRALE... 5 FACTORISER UNE EXPRESSION LITTÉRALE... 6 SUPPRESSION DE PARENTHÈSES DEVANT DES SOMMES ALGÉBRIQUES... 6 RÉDUCTION

Plus en détail

Première partie : Travaux Numériques

Première partie : Travaux Numériques L épreuve comporte trois parties obligatoires, indépendantes, notées chacune sur 12 points. Il sera tenu compte de la rédaction et du soin apporté à la présentation (4 points). L épreuve comporte 7 pages

Plus en détail

RACINE CARRÉE D'UN NOMBRE DÉCIMAL POSITIF

RACINE CARRÉE D'UN NOMBRE DÉCIMAL POSITIF FICHE DE PRÉSENTATION FICHE DE PRÉSENTATION FICHE DE PRÉSENTATION OBJECTIF(S) Calculer la racine carrée à tant près d'un nombre décimal positif. EXPLICITATION Être capable à l'issue des travaux de calculer

Plus en détail

PARTIE NUMERIQUE. Brevet Blanc de Mathématiques 18/01/11. Exercice 1. 1) Ecrire les nombres A et B sous la forme de fractions irréductibles

PARTIE NUMERIQUE. Brevet Blanc de Mathématiques 18/01/11. Exercice 1. 1) Ecrire les nombres A et B sous la forme de fractions irréductibles Brevet Blanc de Mathématiques 18/01/11 PARTIE NUMERIQUE Exercice 1 1) Ecrire les nombres A et B sous la forme de fractions irréductibles A= 13 3 4 3 2 5 B=5+ 1+ 1 8 3 4 A= 13 3 4 3 5 2 A= 13 3 10 3 B=

Plus en détail

PROPRIETES, THEOREME DE GEOMETRIE

PROPRIETES, THEOREME DE GEOMETRIE PROPRIETES, THEOREME DE GEOMETRIE Droites Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles. (6ème) Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

Exercice (4 points) Deux bateaux et sont au large d une île et souhaitent la rejoindre pour y passer la nuit. Ils constatent qu ils sont séparés de 80

Exercice (4 points) Deux bateaux et sont au large d une île et souhaitent la rejoindre pour y passer la nuit. Ils constatent qu ils sont séparés de 80 Les exercices présentés sont soit des 0 02 0 04 05 exercices DST DE MATHEMATIQUES de brevet, soit extraits d ouvrages Mardi Mars 205 Nom : Prénom ( : Nathan et Hatier je crois ). Classe :. Le copyright

Plus en détail

Angles IJ = Exercice : (Rennes 99)

Angles IJ = Exercice : (Rennes 99) Angles Exercice : (Lyon 96) 1) Construire un triangle IJK tel que : JK 8 cm ; IJ 4,8 cm ; KI 6,4 cm. 2) Démontrer que le triangle IJK est un triangle rectangle. 3) Calculer la mesure en degrés de l'angle

Plus en détail

CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6)

CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6) 3D2 LMRL CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6) 1 Rappels - classe de quatrième Théorème de Pythagore : Dans un triangle rectangle, le carré de l hypoténuse est égal à la somme des

Plus en détail

Test de Mathématiques 1 er partie (sans calculatrice)

Test de Mathématiques 1 er partie (sans calculatrice) Test de Mathématiques 1 er partie (sans calculatrice) 2 nd Exercice 1 : Activité mentale 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) Exercice 2 : QCM Parmi les choix proposés, une seule réponse est correcte. Entoure

Plus en détail

Les programmes de calcul

Les programmes de calcul Activités numériques sur 12 points Exercice 1 Arithmétique 1) J utilise l algorithme d Euclide pour calculer le PGCD de 1105 et 935. Nombre a Nombre b Reste de la division euclidienne de a par b 1105 935

Plus en détail

COLLÈGE NAZARETH BREVET BLANC N MATHÉMATIQUES Durée : 2 heures.

COLLÈGE NAZARETH BREVET BLANC N MATHÉMATIQUES Durée : 2 heures. COLLÈGE NAZARETH BREVET BLANC N 2-2009- MATHÉMATIQUES Durée : 2 heures. Les calculatrices sont autorisées ainsi que les instruments usuels de dessin. Présentation, orthographe et rédaction : 4 points.

Plus en détail

Exercice p 94, n 17 : Maréva et Anne affichent toutes les deux un même nombre sur leur calculatrice.

Exercice p 94, n 17 : Maréva et Anne affichent toutes les deux un même nombre sur leur calculatrice. Exercice p 94, n 7 : Maréva et Anne affichent toutes les deux un même nombre sur leur calculatrice. Elles obtiennent le même résultat. Quel était le nombre affiché au départ par les deux jeunes filles?

Plus en détail

Epreuve de Mathématiques Durée 2 heures

Epreuve de Mathématiques Durée 2 heures Collège Jules Ferry Session 2012 Diplôme National du Brevet Blanc n 1 Epreuve de Mathématiques Durée 2 heures L emploi des calculatrices est autorisé (circulaire n 99 186 du 16 Novembre 1999 publiée au

Plus en détail

Trigonométrie dans un triangle rectangle

Trigonométrie dans un triangle rectangle Trigonométrie dans un triangle rectangle Définitions A est un triangle rectangle en. On s intéresse à l angle A. Le côté opposé à l angle A est. Le côté adjacent à l angle A est A. Propriétés (démonstrations

Plus en détail

PARTIE NUMÉRIQUE MATHÉMATIQUE. Classe de Troisième CORRECTION DU BREVET BLANC EXERCICE N 2 : Année 2012

PARTIE NUMÉRIQUE MATHÉMATIQUE. Classe de Troisième CORRECTION DU BREVET BLANC EXERCICE N 2 : Année 2012 Classe de Troisième CORRECTION DU BREVET BLANC Année 2012 MATHÉMATIQUE PARTIE NUMÉRIQUE EXERCICE N 1 : Un nombre entier : - Est compris entre 100 et 150 ; - Est divisible par 3 ; - N est pas divisible

Plus en détail

IDENTITES REMARQUABLES ET RAPPELS DE CALCUL LITTERAL... 2 PGCD DE DEUX NOMBRES... 3 LES EQUATIONS... 5 FONCTIONS LINEAIRES... 6 FONCTIONS AFFINES...

IDENTITES REMARQUABLES ET RAPPELS DE CALCUL LITTERAL... 2 PGCD DE DEUX NOMBRES... 3 LES EQUATIONS... 5 FONCTIONS LINEAIRES... 6 FONCTIONS AFFINES... IDENTITES REMARQUABLES ET RAPPELS DE CALCUL LITTERAL.... 2 PGCD DE DEUX NOMBRES... 3 LES EQUATIONS... 5 FONCTIONS LINEAIRES... 6 FONCTIONS AFFINES... 7 LES PROBABILITES... 8 PUISSANCES... 9 RACINES CARREES...

Plus en détail

Exercice 1 : (4 points)

Exercice 1 : (4 points) Exercice 1 : (4 points) Un confiseur a préparé 840 nougats et 1 176 pralines. Il souhaite faire des paquets, tous identiques, en mélangeant les nougats et les pralines. Il veut utiliser tous les nougats

Plus en détail

Diplôme National du Brevet Brevet Blanc n 2

Diplôme National du Brevet Brevet Blanc n 2 Session 2009 Diplôme National du Brevet Brevet Blanc n 2 MATHÉMATIQUES Série Collège L usage de la calculatrice est autorisé Le candidat remettra sa copie et les 2 annexes (1 feuille recto verso) au surveillant

Plus en détail

Trop, trop trop de fautes de signe!!

Trop, trop trop de fautes de signe!! Corrigé Contrôle C8 COSINUS ET EQUIDISTANCE (55 ) Compte rendu : Contrôle à peine meilleur que le test. Equations : Trop de fautes de signe! Que de points perdus! Relisez! Dit mille fois et répété : réduire

Plus en détail

Exercices de Mathématiques 1 ère S

Exercices de Mathématiques 1 ère S Exercices de Mathématiques 1 ère S Pour préparer la rentrée en TS Fonctions, équations et inéquations Exercice 1 1. Pour quelle(s) valeur(s ) de m, l'équation x² - (m+1) x +4 = 0 a-t-elle une seule solution

Plus en détail

Partie I : Activités numériques (12 points)

Partie I : Activités numériques (12 points) Correction du brevet blanc mars 2012 Partie I : Activités numériques (12 points) Exercice 1 ( points) Voici un programme de calcul : - Prendre un nombre et calculer le produit de ce nombre par 2,5 ; -

Plus en détail

Collège PITHOU Brevet Blanc Avril Vendredi 18 Avril Mathématiques. Durée de l épreuve : 2 heures 9h à 11h

Collège PITHOU Brevet Blanc Avril Vendredi 18 Avril Mathématiques. Durée de l épreuve : 2 heures 9h à 11h BREVET BLANC Vendredi 18 Avril 2014 Mathématiques Durée de l épreuve : 2 heures 9h à 11h Les calculatrices sont autorisées Conseils : Dans un même exercice, fais les questions dans l ordre. N oublie pas

Plus en détail

Correction PONDICHÉRY - Avril 2016 Exercice 1 Calculons la distance entre la sortie 11 et la sortie 3 16 km+16 km+6 km+13 km=51 km Comme elle rentre sortie 11 à 16h33 et qu elle à rendez-vous à 17h, il

Plus en détail

Trigonométrie dans le triangle rectangle

Trigonométrie dans le triangle rectangle Trigonométrie dans le triangle rectangle I Relations métriques dans le triangle rectangle : A) Le théorème de Pythagore : Propriété : Dans un triangle rectangle, le carré de la longueur de l hypoténuse

Plus en détail

Numéro de candidat : Ce questionnaire doit être agrafé à la copie du candidat. Mathématiques. Durée de l épreuve : 2h00

Numéro de candidat : Ce questionnaire doit être agrafé à la copie du candidat. Mathématiques. Durée de l épreuve : 2h00 ième Brevet blanc Mai 009 Numéro de candidat : Ce questionnaire doit être agrafé à la copie du candidat Mathématiques Durée de l épreuve : h00 I- Activités numériques points II- Activités géométriques

Plus en détail

Chapitre 8 : Nombres complexes QCM Pour bien commencer (cf. p. 280 du manuel)

Chapitre 8 : Nombres complexes QCM Pour bien commencer (cf. p. 280 du manuel) Chapitre 8 : Nombres complexes QCM Pour bien commencer (cf. p. 80 du manuel) Pour chaque question, il y a une ou plusieurs bonnes réponses. Exercice n 1 La mesure principale de l angle A 1 π. B 1π est

Plus en détail

Examen Blanc n 2 (3 Avril 2012)

Examen Blanc n 2 (3 Avril 2012) Lycée Franco-Australien de Canberra, Telopea Park School. Examen Blanc n 2 (3 Avril 2012) Le sujet comporte 7 pages, les neuf exercices sont indépendants, l exercice 4 comporte une Annexe en fin de sujet

Plus en détail

Correction DNB Maths Asie (Groupe 2) - 22 Juin 2015

Correction DNB Maths Asie (Groupe 2) - 22 Juin 2015 Correction DNB Maths Asie (Groupe 2) - 22 Juin 2015 Exercice 1 (5 points) 1 2 3 4 5 L écriture en notation scientifique du nombre 587 000 000 est : Si on développe et réduit l expression on obtient : Dans

Plus en détail

CHAPITRE 16 COSINUS D UN ANGLE AIGU DANS UN TRIANGLE RECTANGLE.

CHAPITRE 16 COSINUS D UN ANGLE AIGU DANS UN TRIANGLE RECTANGLE. CHAPITRE 1 COSINUS D UN ANGLE AIGU DANS UN TRIANGLE RECTANGLE. I. VOCABULAIRE. DÉFINITION. On considère un triangle ABC rectangle en A. A Angle droit Côté adjacent à l angle ACB B C Angle ACB Hypoténuse

Plus en détail

Volume d une boule = 4 3 π r3

Volume d une boule = 4 3 π r3 Page 1 sur 5 Figure : Calcul d aires : exemple Parallélogramme Rectangle... Base hauteur Triangles base hauteur 2 Aire du parallélogramme ABCD = DC AE pour repérer la hauteur et la base, j ai repassé l

Plus en détail

Trigonométrie. 1 Une nouvelle unité de mesure des angles. 2 Rappel - Trigonométrie dans le triangle rectangle. 2.1 Rappels sur le triangle rectangle

Trigonométrie. 1 Une nouvelle unité de mesure des angles. 2 Rappel - Trigonométrie dans le triangle rectangle. 2.1 Rappels sur le triangle rectangle Trigonométrie 1 Une nouvelle unité de mesure des angles On considère un cercle de centre O et de rayon r. B θ r A Exercice 1. 1. Quelle est la circonférence de ce cercle? L aire du disque associé? O. Exprimer,

Plus en détail

Brevet Métropole - La Réunion - Mayotte juin 2009

Brevet Métropole - La Réunion - Mayotte juin 2009 Brevet Métropole - La Réunion - Mayotte juin 2009 ACTIVITÉS NUMÉRIQUES 12 points EXERCICE 1 1. Calculer A A= 8 4 12 1,5 2. Pour calculer A un élève a tapé sur sa calculatrice la succession de touches ci-dessous

Plus en détail

Théorème de Pythagore

Théorème de Pythagore Théorème de Pythagore C H A P I T R E 6 Énigme du chapitre. Objectifs du chapitre. Tom veut rejoindre l école le plus rapidement possible. Il doit traverser une rivière de 1 mètre de large. Où faut-il

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

Brevet blanc de mathématiques

Brevet blanc de mathématiques Classe : Nom : Vendredi 31 mai Brevet blanc de mathématiques durée : 2 heures L usage d une calculatrice est autorisé. La présentation, la clarté du raisonnement, la rigueur de la rédaction seront des

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Décembre 0 ÉPREUVE DE MATHÉMATIQUES classe de e Durée : heures Présentation et orthographe : points Les calculatrices sont autorisées, ainsi que les instruments usuels

Plus en détail

Exercice A confondu avec Q M B D P

Exercice A confondu avec Q M B D P Corrigé (non officiel) de la partie mathématique de l épreuve de mathématique et sciences. CRPE session 01, groupement académique 3, 8 septembre 011 Les parties en italique sont soit des commentaires soit

Plus en détail