Théorème de Pythagore Exercice 1 : Le triangle DEF est rectangle en F, DF = 36 mm, DE = 85 mm, calculer EF.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Théorème de Pythagore Exercice 1 : Le triangle DEF est rectangle en F, DF = 36 mm, DE = 85 mm, calculer EF."

Transcription

1 Théorème de Pythagore Exercice 1 : Le triangle D est rectangle en F, = 36 mm, DE = 85 mm, calculer. Le triangle D est rectangle en F. D'après le théorème de Pythagore : ED mm Exercice : Le triangle ABC a pour hauteur, AB 3,9 cm, AC 6 cm, CH 4,8 cm, calculer et, puis l'aire du triangle ABC. Le triangle C est rectangle en H, d'après le théorème de Pythagore : HC AC 4,8 6 3,9 B A H 4,8 6 C 36 3, 04 1,96 1,96 3, 6 cm Le triangle B est rectangle en H, d'après le théorème de Pythagore : AB 3,6 3,9 15, 1 1,96, 5 L aire d un triangle est : ABC, 5 1,5 cm BC base (1,5 4,8) 3, 6 11,34 cm hauteur Exercice 3 : Le triangle ABC a pour hauteur, AB 9, AC 35, CH 8. Calculer et. Calculer l'aire du triangle ABC.

2 Le triangle C est rectangle en H, d'après le théorème de Pythagore : HC AC Le triangle B est rectangle en H, d'après le théorème de Pythagore : AB HB 1 9 HB 9 1 HB HB cm. L aire d un triangle est : base hauteur ABC BC (8 0) cm Réciproque de l'énoncé de Pythagore Exercice 4 : Le triangle de côtés 11 cm, 13 cm et 7 cm est-il rectangle? Le plus grand côté mesure 13 cm donc la réciproque du théorème de Pythagore ne s applique pas, le triangle de côtés 11 cm, 13 cm et 7 cm n est pas rectangle. Exercice 5 : Triangle non rectangle dans un rectangle On construira la figure. On écrira le raisonnement pour chaque réponse ABCD est un rectangle de côtés AB 1cm et AD 9 cm. A B Sur le côté [BC] on place le point E tel que 13 cm. Sur le côté [DC] on place le point F tel que 5 cm. E 1) Calculer la longueur. ) Calculer la longueur. 3) Calculer les longueurs CE et CF, puis la longueur. 4) Le triangle E est-il rectangle? i D F C ABCD est un rectangle, donc ses angles sont droits. 1) Le triangle A est rectangle en D, d après le théorème de Pythagore :

3 AD cm ) Le triangle A est rectangle en B, d après le théorème de Pythagore : AB cm 3) E [BC] donc CE BC EB cm F [CD] donc CF CD cm Le triangle ECF est rectangle en C ; d après le théorème de Pythagore : EC CF cm 4) Dans le triangle A, est le plus grand côté, (il faut prendre les valeurs exactes de et ) donc La réciproque du théorème de Pythagore ne s applique pas, le triangle A n est pas rectangle. Exercice 6 : Triangle non rectangle dans un carré ABCD est un carré de côté 1 cm. Sur le côté [BC] on place le point E tel que CE 3 cm. Sur le côté [DC] on place le point F tel que 13 cm. 1) Calculer les longueurs, et. ) Le triangle A est-il rectangle? 1cm A 1cm 13cm B E 3cm ABCD est un carré, ses côtés ont pour longueur 1 cm et ses angles sont droits. 1) Le triangle A est rectangle en D, d après le théorème de Pythagore : AD D F C cm F [DC] donc FC DC cm

4 Le triangle FCE est rectangle en C, d après le théorème de Pythagore : FC CE , 6 cm E [BC] donc EB BC EC cm Le triangle A est rectangle en B, d après le théorème de Pythagore : AB cm ) Dans le triangle A, est le plus grand côté, Donc La réciproque du théorème de Pythagore ne s applique pas, le triangle A n est pas rectangle. Exercice 7 : Le triangle de côtés 1993, 103 et 1705 est-il rectangle? justifier Le plus grand côté mesure On calcule = puis = = donc = D'après la réciproque de l'énoncé de Pythagore, le triangle est rectangle et son hypoténuse mesure Exercice 8 : Le triangle de côtés 1,5 ; 1,1 et 1,14 est-il rectangle? Le plus grand côté mesure 1,5. 1,5 =,5 1,1 + 1,14 =,554 Ainsi : 1,5 1,1 + 1,14 La réciproque du théorème de Pythagore ne s applique pas, le triangle n'est pas rectangle Exercice 9 : Réciproque du théorème de Pythagore et aires du triangle rectangle 1) Construire le triangle ABC tel que CB = 169 mm, AB = 65 mm et AC = 156 mm. ) Démontrer que le triangle ABC est rectangle en A. 3) Calculer l'aire du triangle ABC. 4) Tracer la hauteur du triangle ABC. En utilisant une autre expression qu'en ) de l'aire de ABC, calculer simplement.

5 1) Utiliser le compas, garder le mm comme unité. (on ignore que le triangle est rectangle, donc on n'utilise ni équerre, ni demi cercle). ) Le plus grand côté est BC. BC BA AC Ainsi : BC BA AC D'après la réciproque de l'énoncé de Pythagore, le triangle ABC est rectangle en A. 3) L aire d un triangle est : ABC AB AC mm base hauteur 4) On utilise les deux formules de calcul d aire dans un triangle rectangle, cette fois-ci avec l hypoténuse : base hauteur BC ABC mm

Construire le triangle de côtés a, b et c. Ce triangle est-il rectangle? Refaire cette activité avec d autres triangles et essayer de conclure.

Construire le triangle de côtés a, b et c. Ce triangle est-il rectangle? Refaire cette activité avec d autres triangles et essayer de conclure. Pythagore 1 La relation de Pythagore, activité préparatoire. 1 théorème de Pythagore 1 Réciproque de l'énoncé de Pythagore 3 triangle non rectangle dans un rectangle 3 triangle non rectangle dans un carré

Plus en détail

Théorèmes et réciproques de Pythagore et Thales

Théorèmes et réciproques de Pythagore et Thales Théorèmes et réciproques de Pythagore et Thales I) Théorème de Pythagore : Soit ABC un triangle rectangle en B : Théorème de Pythagore : Si ABC est un triangle rectangle en B alors AC² = AB² + BC² Exemple

Plus en détail

Décrire la méthode utilisée pour trouver le nombre de rosiers nécessaires.

Décrire la méthode utilisée pour trouver le nombre de rosiers nécessaires. 3 ème A IE3 théorème de Thalès 2015-2016 S1 Utiliser la figure suivante pour démontrer que les droites (TU) et (RS) sont parallèles. Calculer ensuite RS. UT = 3,5 cm OT = 3 cm OU = 2,7 cm OR = 7,2 cm OS

Plus en détail

COURS. Dans un triangle rectangle, le côté opposé à l angle droit est appelé hypoténuse.

COURS. Dans un triangle rectangle, le côté opposé à l angle droit est appelé hypoténuse. EC 4A : ELEMENTS DE MATHEMATIQUES THEOREMES DE PYTHAGORE ET DE THALES COURS Objectifs du chapitre : Déterminer des longueurs dans un triangle en utilisant le théorème de Pythagore ou de Thalès. Démontrer

Plus en détail

3 ème BREVET : théorème de Thalès

3 ème BREVET : théorème de Thalès Exercice 1 1 Tracer en triangle ABC rectangle en A tel que : AB = 5 cm et AC = 3 cm. Placer le point D sur [AB] tel que BD = 4 cm. Tracer la perpendiculaire à (AB) passant par D, elle coupe [BC] en E.

Plus en détail

1. Tracer un triangle ABC et placer le point M milieu de [AB]. Soit le point N symétrique

1. Tracer un triangle ABC et placer le point M milieu de [AB]. Soit le point N symétrique 4 ème D DS4 triangles : milieux, parallèles sujet 1 2009-2010 Agrandissement - réduction NOM : Prénom : Note : 20 Objectif Acquis En cours Non Acquis d acquisition Connaître et utiliser les théorèmes relatifs

Plus en détail

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles DEMONTRER 1) Démontrer qu un point est le milieu d un segment 2) Démontrer que deux droites sont parallèles 3) Démontrer que deux droites sont perpendiculaires 4) Démontrer qu un triangle est rectangle

Plus en détail

Théorème de Pythagore

Théorème de Pythagore Théorème de Pythagore A) Vocabulaire. Définition : Dans un triangle rectangle l hypoténuse est le côté opposé à l angle droit. Exemple : Si ABC est un triangle rectangle en A alors le côté [BC] est sont

Plus en détail

6 ème COURS : droites perpendiculaires et droites parallèles.

6 ème COURS : droites perpendiculaires et droites parallèles. 1 Droites sécantes Définition : deux droites sécantes sont deux droites qui ont un seul point commun. Ce point commun est appelé point d intersection des deux droites. Les deux droites (d1) et (d2) se

Plus en détail

Partie numérique ( 3 ) 2

Partie numérique ( 3 ) 2 Brevet blanc Janvier 07. La calculatrice est autorisée, mais les détails des calculs sont exigés. La clarté et la qualité de la rédaction prendront une part importante dans la notation. Partie numérique

Plus en détail

Exercice 1 (4 points) Dans chacun des cas suivants, calculer AB. On donnera la valeur exacte puis la valeur arrondie au dixième.

Exercice 1 (4 points) Dans chacun des cas suivants, calculer AB. On donnera la valeur exacte puis la valeur arrondie au dixième. 4 ème D DS3 théorème de Pythagore sujet 1 2009-2010 NOM : Prénom : Compétences Acquis En cours d acquisition Caractériser le triangle rectangle par le théorème de Pythagore et sa réciproque Calculer la

Plus en détail

p(p a)(p b)(p c) où p = 1 (a + b +c)

p(p a)(p b)(p c) où p = 1 (a + b +c) ème E DS4 racines carrées 01-014 sujet 1 Eercice 1 : (4 points) Les figures ci-dessous ont toutes une aire de cm². Donner la valeur eacte de en cm, dans chacun des cas. (1) () () (4) 1 Eercice : au brevet

Plus en détail

EC 9A : ELEMENTS DE MATHEMATIQUES TRANSFORMATIONS EXERCICES

EC 9A : ELEMENTS DE MATHEMATIQUES TRANSFORMATIONS EXERCICES EC 9A : ELEMENTS DE MATHEMATIQUES TRANSFORMATIONS EXERCICES EXERCICE N 1 : Pour chacun des neuf cas ci-après, préciser s il existe une transformation qui permette de passer de la figure a à la figure b.

Plus en détail

MATHÉMATIQUES 3e. 3 e - Contrôle d acquisitions. DURÉE 1h 50. Devoir n 6 - ALGEBRE. h(t) 1/7. Devoirs n 6 (Algèbre) et n 7 (géométrie)

MATHÉMATIQUES 3e. 3 e - Contrôle d acquisitions. DURÉE 1h 50. Devoir n 6 - ALGEBRE. h(t) 1/7. Devoirs n 6 (Algèbre) et n 7 (géométrie) e - Contrôle d acquisitions er Trimestre Novembre 200 MATHÉMATIQUES e Devoirs n 6 (Algèbre) et n 7 (géométrie) Les deux devoirs sont à faire sur des copies différentes. On mettra les copies l une dans

Plus en détail

NOM : GEOMETRIE 4ème

NOM : GEOMETRIE 4ème Exercice 1 Soit une droite (d) et un point G situé en dehors de la droite (d). On veut construire la parallèle à la droite (d) passant par le point G. Dans chacun des cas suivants, faire une figure, en

Plus en détail

a. 9 x 2 25 b. 3 x 2 30 x+25 c. 9 x 2 30 x+25

a. 9 x 2 25 b. 3 x 2 30 x+25 c. 9 x 2 30 x+25 Q.C.M : (Issues de brevets) 1. L'expression développée de (3 x 5) 2 est : a. 9 x 2 25 b. 3 x 2 30 x+25 c. 9 x 2 30 x+25 (3 x 5) 2 =(3 x) 2 2 3 x 5+ 5 2 =9 x 2 30 x+ 25 2. On considère la fonction f définie

Plus en détail

2 e Devoir. a d c. 6 2 b 1

2 e Devoir. a d c. 6 2 b 1 e Devoir I. Le but de l exercice est de déterminer les réels x, y, z, t de telle sorte que la somme des nombres d une même ligne ou d une même colonne du tableau ci-dessous donne le même nombre S. 5 x

Plus en détail

AIRES Cette leçon complète la leçon "Aires" de sixième Se reporter éventuellement à cette leçon pour des révisions. I- Aire d'un parallélogramme:

AIRES Cette leçon complète la leçon Aires de sixième Se reporter éventuellement à cette leçon pour des révisions. I- Aire d'un parallélogramme: AIRES Cette leçon complète la leçon "Aires" de sixième Se reporter éventuellement à cette leçon pour des révisions I- Aire d'un parallélogramme: Calculer l'aire d'un parallélogramme de base 4,7 cm et de

Plus en détail

RELATION TRIGONOMETRIQUE DANS UN TRIANGLE QUELCONQUE

RELATION TRIGONOMETRIQUE DANS UN TRIANGLE QUELCONQUE Pré-requis : I-mise en situations RELATION TRIGONOMETRIQUE DANS UN TRIANGLE QUELCONQUE -Trigonométrie dans le triangle rectangle -le radian -la proportionnalité Pour connaître la hauteur de la falaise

Plus en détail

x(a + b) = 2 Pythagore et Thalès

x(a + b) = 2 Pythagore et Thalès Pythagore et Thalès Exercice 1 : On a découpé 4 exemplaires de la figure 0 pour les assembler et obtenir la figure 1. La mesure de l aire de la figure 1 est celle d un carré dont le côté a pour mesure

Plus en détail

4 ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : Note : ème C IE5 triangles : milieux, parallèles sujet

4 ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : Note : ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : ABC est un triangle rectangle en A. Le point I est le milieu du segment [BC]. Le point J est le milieu du segment [AB]. Démontrer que les droites (IJ) et (AB) sont perpendiculaires. Note

Plus en détail

Cercles et polygones

Cercles et polygones Cercles et polygones I) Le cercle : a) Soit O un point donné et R un nombre décimal positif. On appelle cercle C de centre O et de rayon R, l ensemble des points M situés à la distance R du point O. On

Plus en détail

THEOREME DE THALES. 3 e. Trois situations possibles où le théorème de Thalès peut s'appliquer : N [AC] et M [AC]

THEOREME DE THALES. 3 e. Trois situations possibles où le théorème de Thalès peut s'appliquer : N [AC] et M [AC] THEOREME DE THALES 3 e Hypothèses de départ Dans ce chapitre nous travaillerons avec les hypothèses suivantes : - (d1) et (d2) sont deux droites sécantes en un point A. - B et M sont deux points appartenant

Plus en détail

D après des exemples tirés des manuels Cap Maths, sauf mention contraire

D après des exemples tirés des manuels Cap Maths, sauf mention contraire 1 / 6 Exemples d'activités géométriques D après des exemples tirés des manuels Cap Maths, sauf mention contraire Reproduction de figures Activité 1 : Avec la règle, sans mesurer... On a commencé à reproduire

Plus en détail

Théorème de Pythagore

Théorème de Pythagore Théorème de Pythagore A) Vocabulaire. Définition : Dans un triangle rectangle l hypoténuse est le côté opposé à l angle droit. Exemple : Si ABC est un triangle rectangle en A alors le côté [BC] est sont

Plus en détail

La boîte P ne peut pas paver la boîte Q car par exemple 200 n'est multiple ni de 36, ni de 48, ni de 54.

La boîte P ne peut pas paver la boîte Q car par exemple 200 n'est multiple ni de 36, ni de 48, ni de 54. Corrigé Exercice 1 1 point On prolonge le côté de 11cm jusqu'à 17 cm. On trace un angle droit. On trace la diagonale et on complète le rectangle. "Lors de l'agrandissement d'une figure, les angles restent

Plus en détail

Seconde 2 DST2 vecteurs Sujet 1-9 février 2015

Seconde 2 DST2 vecteurs Sujet 1-9 février 2015 Seconde DST vecteurs Sujet 1-9 février 01 Exercice 1 : ( points) Soit ABCD un parallélogramme. I, J, K et L sont les milieux respectifs de [AB], [BC], [CD] et [DA]. Recopier et compléter les égalités suivantes

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 : Sur les expressions du produit scalaire Pour les sept figures suivantes, calculer AB AC. Exercice : Sur les expressions du produit scalaire Sur la figure

Plus en détail

Volume d une boule = 4 3 π r3

Volume d une boule = 4 3 π r3 Page 1 sur 5 Figure : Calcul d aires : exemple Parallélogramme Rectangle... Base hauteur Triangles base hauteur 2 Aire du parallélogramme ABCD = DC AE pour repérer la hauteur et la base, j ai repassé l

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui compose ce polygone

Plus en détail

DIPLÔME NATIONAL DU BREVET MÉTROPOLE - LA RÉUNION - MAYOTTE SESSION 2007

DIPLÔME NATIONAL DU BREVET MÉTROPOLE - LA RÉUNION - MAYOTTE SESSION 2007 1 sur 7 http://www.ilemaths.net/maths_3-sujet-brevet-07-07-correction.php#c... DIPLÔME NATIONAL DU BREVET MÉTROPOLE - LA RÉUNION - MAYOTTE SESSION 2007 L'emploi de la calculatrice est autorisé. La rédaction

Plus en détail

Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé.

Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé. Activités numériques (12 points) Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé. Exercice 1 :(détailler chacun des calculs suivants)

Plus en détail

Les droites parallèles et perpendiculaires

Les droites parallèles et perpendiculaires Les droites parallèles et perpendiculaires 1. Rappels du vocabulaire Je lis Point Droite Segment Demi- droite J écris Je dessine M [AB] est (AB) est AB est Le point A appartient à la droite (d). On note

Plus en détail

Partie I : Activités numériques (12 points)

Partie I : Activités numériques (12 points) Correction du brevet blanc mars 2012 Partie I : Activités numériques (12 points) Exercice 1 ( points) Voici un programme de calcul : - Prendre un nombre et calculer le produit de ce nombre par 2,5 ; -

Plus en détail

Fiche(1) Trigonométrie. Exercice 1. Exercice 2. Exercice 3. Exercice 4. Exercice 5

Fiche(1) Trigonométrie. Exercice 1. Exercice 2. Exercice 3. Exercice 4. Exercice 5 Trigonométrie Fiche(1) La droite (PP ) est le support de la bissectrice de l angle. (RR ) est perpendiculaire à (PP ). 1) Par quels réels sont repérés chacun des points P, P, R, R sur le cercle trigonométrique?

Plus en détail

Bilan de géométrie n 5. Dans le plan

Bilan de géométrie n 5. Dans le plan Groupe 1 Bilan de géométrie n 5 Dans le plan Nom : Prénom : Date : / / Reconnaître, décrire, nommer et reproduire, tracer des figures planes en utilisant la règle graduée, l'équerre, le compas. S.C A B

Plus en détail

TRANSLATION et VECTEURS : Composition de deux symétries centrales. 3ème_Chap.5_Translation et Vecteurs

TRANSLATION et VECTEURS : Composition de deux symétries centrales. 3ème_Chap.5_Translation et Vecteurs TRANSLATION et VECTEURS : Composition de deux symétries centrales 1 Activité «avant de démarrer» p200 LIEN ENTRE TRANSLATION ET VECTEUR 2 I VECTEURS 1. Définition Un vecteur est défini par une direction,

Plus en détail

Question Réponse A Réponse B Réponse C 1. La factorisation de 4 X 2 25 est : (2 X 5)² (2 X 5) (2 X + 5) (4 X 5) (4 X + 5)

Question Réponse A Réponse B Réponse C 1. La factorisation de 4 X 2 25 est : (2 X 5)² (2 X 5) (2 X + 5) (4 X 5) (4 X + 5) Année scolaire 2014-2015 Mathématiques 9 décembre 2014 Classe de ème Brevet Blanc N 1 Durée : 1h50min Les calculatrices sont autorisées ainsi que les instruments usuels de dessin 4 points sont réservés

Plus en détail

Justifier. 2) Comment déceler des transformations dans une figure? 7-8

Justifier. 2) Comment déceler des transformations dans une figure? 7-8 Justifier 1) Comment justifier que page a) un quadrilatère est un parallélogramme, 2 b) un quadrilatère est un rectangle, 3 c) un quadrilatère est un losange, 4 d) un quadrilatère est un carré, 4 e) un

Plus en détail

EPREUVE D ENTRAÎNEMENT 21 MAI 2012

EPREUVE D ENTRAÎNEMENT 21 MAI 2012 EPREUVE D ENTRAÎNEMENT 21 MAI 2012 MATHEMATIQUES Durée : 2 heures L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation et de la rédaction entrent dans l appréciation des copies

Plus en détail

EXERCICES SUR LES SUITES

EXERCICES SUR LES SUITES EXERCICES SUR LES SUITES EXERCICE 1 u est une suite définie sur IN par u 7 = 6 et u 10 = 162 Déterminer sa raison, son premier terme u 0, ainsi que la somme S = u 10 + u 11 + + u 25 : 1) dans le cas où

Plus en détail

Angles IJ = Exercice : (Rennes 99)

Angles IJ = Exercice : (Rennes 99) Angles Exercice : (Lyon 96) 1) Construire un triangle IJK tel que : JK 8 cm ; IJ 4,8 cm ; KI 6,4 cm. 2) Démontrer que le triangle IJK est un triangle rectangle. 3) Calculer la mesure en degrés de l'angle

Plus en détail

Seconde 4 Repérage dans le plan Vecteurs

Seconde 4 Repérage dans le plan Vecteurs Exercice 1 : repères du plan coordonnées de points et de vecteurs Quadrillage à maille carrée Lire les coordonnées dans le repère (O ; i ; j ) : a) des points A, B, C, D, E b) des vecteurs u et v Exercice

Plus en détail

S13. Autour des théorèmes de PYTHAGORE et THALES

S13. Autour des théorèmes de PYTHAGORE et THALES CRPE S1. Autour des théorèmes de PYTHAGORE et THALES Mise en route A. Dans chaque exercice, une configuration à reconnaître une propriété à connaitre une démonstration à rédiger 1. ARC est un triangle

Plus en détail

Correction et barème.

Correction et barème. Correction et barème. Activités numériques (12 points) Exercice 1 : (0,5 points par réponses) Réponses : 1 0,028 2 5 2 3 5 16 4 5 6 5 12 5 Exercice 2 : (4,5 points) 1) Développer et réduire D (1 point)

Plus en détail

Théorème de Pythagore

Théorème de Pythagore Théorème de Pythagore C H A P I T R E 6 Énigme du chapitre. Objectifs du chapitre. Tom veut rejoindre l école le plus rapidement possible. Il doit traverser une rivière de 1 mètre de large. Où faut-il

Plus en détail

LE TRIANGLE RECTANGLE ET LE THEOREME DE PYTHAGORE

LE TRIANGLE RECTANGLE ET LE THEOREME DE PYTHAGORE Corrigés 1/10 Corrigé 01 Théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés de l'angle droit. Réciproque du théorème de Pythagore : Si dans

Plus en détail

3 e Révisions Pythagore

3 e Révisions Pythagore 3 e Révisions Pythagore Pour prendre un bon départ. Compléter le tableau suivant en utilisant la figure Triangle Rectangle en Théorème de Pythagore ACI C AI² = AC² + CI² DEI CHI HIM JLM JLK JKM HJK GFH

Plus en détail

FG² = EF² + EG² 7² = 2² + EG² 49 = 4 + EG² EF = 2, FG = 7, EG =? EG² = 49 4 = 45 EG = = 3 EG 6,7

FG² = EF² + EG² 7² = 2² + EG² 49 = 4 + EG² EF = 2, FG = 7, EG =? EG² = 49 4 = 45 EG = = 3 EG 6,7 EC 4A : ELEMENTS DE MATHEMATIQUES THEOREMES DE PYTHAGORE ET DE THALES EXERCICES CORRECTION EXERCICE N 1 : Figure 1 : ABC est rectangle en A, donc, BC² = AB² + AC² BC² = 5² + 7² BC² = 25 + 49 AB = 5, AC

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

Club de mathématiques 2 Le théorème de Pythagore et les triplets Pythagoriciens. Et comment tracer des triangles si on connait les trois côtés.

Club de mathématiques 2 Le théorème de Pythagore et les triplets Pythagoriciens. Et comment tracer des triangles si on connait les trois côtés. Club de mathématiques 2 Le théorème de Pythagore et les triplets Pythagoriciens. Et comment tracer des triangles si on connait les trois côtés. Ce club de mathématique peut être adapté à différent niveaux

Plus en détail

Géométrie 1 Vecteurs Translation et vecteurs

Géométrie 1 Vecteurs Translation et vecteurs Géométrie 1 Vecteurs Translation et vecteurs Compétences Construire l image d un point (d une figure) par une translation Exemples 1 à 5 Connaître le vocabulaire lié aux vecteurs Exemples 6 et 7 Utiliser

Plus en détail

Diplôme National du Brevet Métropole - La Réunion - Mayotte Session 2007

Diplôme National du Brevet Métropole - La Réunion - Mayotte Session 2007 Diplôme National du Brevet Métropole - La Réunion - Mayotte Session 2007 L emploi de la calculatrice est autorisé. La rédaction et la présentation seront notées sur 4 points. Coefficient : 2 Activités

Plus en détail

Triangle rectangle, cercle et médiane

Triangle rectangle, cercle et médiane Triangle rectangle, cercle et médiane A) Activités préparatoires. 1. Parallèles et milieux. Exercice n 1 : Recopier et compléter les chaînons suivants : 1 er cas : (AB) est parallèle à (CD). (MN) est parallèle

Plus en détail

Chapitre 5 : Droites perpendiculaires et droites parallèles

Chapitre 5 : Droites perpendiculaires et droites parallèles Chapitre 5 : Droites perpendiculaires et droites parallèles Dans ce chapitre, on utilisera la règle et l équerre. 1) Droites perpendiculaires : Rappel : Si deux droites se coupent en un point, on dit qu

Plus en détail

I Rappels sur les symétries :

I Rappels sur les symétries : I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ AB ]. On appelle médiatrice du segment [ AB ] la droite perpendiculaire en I à ( AB ). Propriétés : La médiatrice de [ AB ]

Plus en détail

Symétrie axiale. La médiatrice d un segment est la droite qui passe par le milieu de ce segment et qui lui est perpendiculaire.

Symétrie axiale. La médiatrice d un segment est la droite qui passe par le milieu de ce segment et qui lui est perpendiculaire. Symétrie axiale I) Médiatrice d un segment : Définition : La médiatrice d un segment est la droite qui passe par le milieu de ce segment et qui lui est perpendiculaire. Exemple : La droite (d) est perpendiculaire

Plus en détail

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle.

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle. 6 e Décrire des figures usuelles Objectif 04 Livre 12 Mots clefs. Cercle Rayon, diamètre, corde et arc d un cercle Équidistance Triangle, triangle isocèle, triangle rectangle, triangle équilatéral Base

Plus en détail

Chapitre 11 : Symétrie axiale.

Chapitre 11 : Symétrie axiale. Chapitre 11 : Symétrie axiale. I Approche expérimentale. Définition : Deux figures sont symétriques par rapport à une droite si, en pliant suivant cette droite, les deux figures se superposent. Cette droite

Plus en détail

Le vocabulaire de géométrie

Le vocabulaire de géométrie Géom1 Le vocabulaire de géométrie En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire : Un point A A X Un segment [AB] (d) Une droite (d)

Plus en détail

3 ème BREVET THEOREME DE THALES

3 ème BREVET THEOREME DE THALES Exercice 1 1 Construire un triangle ABC tel que AB = 6 cm AC = 7,2 cm et BC = 10 cm Placer les points R, T et E tels que : R [AB] et AR = 4,5 cm T [AC] et (RT) // (BC) E [AB) et E [AB] et BE = 2 cm 1 2

Plus en détail

Exercice 1 (8 points) a. Effectue avec soin les différentes constructions suivantes.

Exercice 1 (8 points) a. Effectue avec soin les différentes constructions suivantes. 3 ème B DS4 calcul littéral -trigonométrie 2012-2013 sujet 1 Exercice 1 (8 points) a. Effectue avec soin les différentes constructions suivantes. Trace un demi-cercle () de centre O et de diamètre [AB]

Plus en détail

correction EXERCICES D ENTRAINEMENT

correction EXERCICES D ENTRAINEMENT DEVOIR NUMERO 6 : REVISION DE GEOMETRIE ETUDE DES FIGURES Révision ; inégalité triangulaire et triangles particuliers quadrilatères, quadrilatères particuliers et les symétries correction EXERCICES D ENTRAINEMENT

Plus en détail

I. Propriétés de géométrie analytique.

I. Propriétés de géométrie analytique. I. Propriétés de géométrie analytique. Activité 1 Dans un repère orthonormé (O ; I ; J), a. Distance entre deux points. Dans un repère orthonormée (O ; I ; J) on considère deux point A(2 ; 1) et B(5 ;

Plus en détail

Connaître et représenter des figures géométriques et des objets de l'espace. Utiliser leurs propriétés.

Connaître et représenter des figures géométriques et des objets de l'espace. Utiliser leurs propriétés. Connaître et représenter des figures géométriques et des objets de l'espace. Utiliser leurs propriétés. Fin de cycle 3 Connaître les figures planes : carré, rectangle, losange, triangle, triangle rectangle,

Plus en détail

Corrections des exercices sur les pyramides et cônes de révolution Exercice 1 :

Corrections des exercices sur les pyramides et cônes de révolution Exercice 1 : Corrections des exercices sur les pyramides et cônes de révolution Exercice 1 : Bien que sa base soit un polygone régulier ( un carré), la pyramide 1 n est pas régulière car sa hauteur ne passe pas par

Plus en détail

BREVET BLANC 02 février Épreuve de MATHÉMATIQUES

BREVET BLANC 02 février Épreuve de MATHÉMATIQUES Collège de la Coutancière BREVET BLANC 02 février 2005 Épreuve de MATHÉMATIQUES L'usage des instruments de calcul est autorisé. La précision de la rédaction et la qualité de la présentation seront notées

Plus en détail

RELATIONS METRIQUES du TRIANGLE RECTANGLE - Propriétés de Pythagore.

RELATIONS METRIQUES du TRIANGLE RECTANGLE - Propriétés de Pythagore. RELATIONS METRIQUES du TRIANGLE RECTANGLE - Propriétés de Pythagore. - Les relations trigonométriques dans le triangle rectangle. COURS I ) propriétés de Pythagore Pré requis Théorème : Dans un triangle

Plus en détail

Fiche 1 Calcul vectoriel dans R 2 et R 3

Fiche 1 Calcul vectoriel dans R 2 et R 3 Université Paris, IUT de Saint-Denis Année universitaire 0-0 Licence Pro MDQ Géométrie Fiche Calcul vectoriel dans R et R Dans les exercices suivants, on suppose le plan muni d un repère orthonormal (O,,

Plus en détail

Mathématiques Brevet blanc n 1

Mathématiques Brevet blanc n 1 Section 3 ème Mathématiques Brevet blanc n 1 Partie numérique Exercice 1 : Pour chaque ligne du tableau ci-dessous, choisir et entourer la bonne réponse parmi les trois proposées. Aucune justification

Plus en détail

ABCD est un carré donc les distances des côtés sont égales. On note.

ABCD est un carré donc les distances des côtés sont égales. On note. Exercice 1 ABCD est un carré donc les distances des côtés sont égales. On note. Pour construire E et F, on a tracé un quart de cercle de centre D passant par B. On peut ainsi noter car ils correspondent

Plus en détail

Questions Réponse A Réponse B Réponse C

Questions Réponse A Réponse B Réponse C Sujet d'entrainement pour le brevet Maîtrise de la langue : 4 points Calculatrice autorisée Exercice 1 ( 3 points) Dans ce questionnaire à choix multiples, pour chaque question, des réponses sont proposées

Plus en détail

Cours de mathématiques Classe de Quatrième

Cours de mathématiques Classe de Quatrième CHAPITRE 5 PROJECTION ET COSINUS Le calcul d'erathostène 76 Cosinus d'un angle aigu 77 Projection ; Cosinus d'un angle aigu 78 Projection et milieu 83 Exercices de démonstration 83 Utilisation du Cos 85

Plus en détail

I- RACINE CARRÉE D UN NOMBRE

I- RACINE CARRÉE D UN NOMBRE Fiche d activités : activité 1 (vérification des acquis de 5 ème ) I- RACINE CARRÉE D UN NOMBRE Rappel : le carré d un nombre s obtient en multipliant ce nombre par lui-même. Soit a un nombre : a² = a

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Novembre 0 ÉPREUVE DE MATHÉMATIQUES classe de e Durée : heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments usuels

Plus en détail

1 Préambule Vocabulaire La racine carré d un nombre Qui était Pythagore... 3

1 Préambule Vocabulaire La racine carré d un nombre Qui était Pythagore... 3 Sommaire 1 Préambule. 2 1.1 Vocabulaire............................... 2 1.2 La racine carré d un nombre..................... 3 1.3 Qui était Pythagore.......................... 3 2 Théorème de Pythagore.

Plus en détail

PYRAMIDE. Pour nommer une pyramide on écrit le nom de son sommet, suivi du nom de sa base. La pyramide ci-dessus se nomme SABCDE

PYRAMIDE. Pour nommer une pyramide on écrit le nom de son sommet, suivi du nom de sa base. La pyramide ci-dessus se nomme SABCDE PYRAMIDE I- Vue en perspective et définitions: Soit un polygone (ici le pentagone ABCDE) et S un point n'appartenant pas au plan de ce polygone. En joignant S à chacun des sommets du polygone on obtient

Plus en détail

Chapitre 2 : Symétrie centrale

Chapitre 2 : Symétrie centrale Chapitre 2 : Symétrie centrale I- Symétrie axiale (rappel) Deux figures sont symétriques par rapport à une droite (d) lorsque, en pliant suivant cette droite, les deux figures se superposent. Cette droite

Plus en détail

TAGE 2 / TAGE MAGE SOUS-TEST : CALCUL

TAGE 2 / TAGE MAGE SOUS-TEST : CALCUL TAGE 2 / TAGE MAGE SOUS-TEST : CALCUL GEOMETRIE AUCUN DOCUMENT N EST AUTORISE CALCULATRICES INTERDITES Le sujet a été réalisé par l équipe pédagogique de Mes Concours Blancs et n engage en rien le concours

Plus en détail

Trigonométrie et angles orientés

Trigonométrie et angles orientés Trigonométrie et angles orientés A) Angles orientés. 1. Le radian. Le radian est une unité de mesure d un angle comme le degré. Il est défini comme la longueur de l arc entre deux points du cercle unité

Plus en détail

Seconde sujet 1 IE3 vecteurs et parallélogrammes somme de vecteurs. NOM : Prénom : Note :

Seconde sujet 1 IE3 vecteurs et parallélogrammes somme de vecteurs. NOM : Prénom : Note : Seconde 2009-2010 sujet 1 NOM : Prénom : Exercice 1 : (3 points) Dire pour chaque affirmation, si elle est vraie ou fausse. 1) ABCD est un parallélogramme a) AB = CD Vrai Faux b) BC = AD Vrai Faux c) AC

Plus en détail

SYMETRIE CENTRALE EXERCICES

SYMETRIE CENTRALE EXERCICES SYMETRIE CENTRALE EXERCICES DÉMONTRER EN UTILISANT LES PROPRIÉTÉS DE LA SYMÉTRIE Exercice 1. Etant donnés trois points non alignés A, B et O, on appelle A' et B' les symétriques respectifs de A et B par

Plus en détail

3 ème A DS4 équations sujet NOM : Prénom :

3 ème A DS4 équations sujet NOM : Prénom : 3 ème A DS équations sujet 009-00 NOM : Prénom : Note : Compétences Acquis En cours d acquisition Non acquis Mettre en équation un problème Résoudre une équation mise sous la forme A(x) B(x) = 0 0 Exercice

Plus en détail

DIPLÔME NATIONAL DU BREVET. Série Collège MATHÉMATIQUES

DIPLÔME NATIONAL DU BREVET. Série Collège MATHÉMATIQUES Collège Georges Brassens PERSAN Janvier 2011 DIPLÔME NATIONAL DU BREVET Série Collège MATHÉMATIQUES Durée : 2 heures (aucune sortie ne sera acceptée avant ce temps) L emploi de la calculatrice est autorisé.

Plus en détail

Figures usuelles et axes de symétrie

Figures usuelles et axes de symétrie Chapitre 4 Figures usuelles et axes de symétrie I. Figures usuelles 1) Triangles un triangle est un polygone ayant 3 côtés. Vocabulaire : ABC est un triangle. A A, B et C sont ses 3 sommets. [AB], [AC]

Plus en détail

Corrigé géométrie collège

Corrigé géométrie collège Exercices sur les particularités des triangles Exercice 1 Puisque J est sur la médiatrice de [AC] et que O est le point de rencontre des médiatrices du triangle ABC, alors (OJ) est la médiatrice de [AC]

Plus en détail

Aide : Vecteurs distance - colinéarité

Aide : Vecteurs distance - colinéarité Exercice : calculs de distances en repère orthonormal On donne les points A(- ;) B( ;) et C( ;-). Placer ces points dans un repère. ) Calculer les longueurs AB, BC et CA. En déduire la nature du triangle

Plus en détail

Exercice p 240, n 38 : MAG est un triangle rectangle en G tel que MA = 6,1cm et MG = 4,3 cm. Calculer la mesure de l angle AMG arrondie au degré près.

Exercice p 240, n 38 : MAG est un triangle rectangle en G tel que MA = 6,1cm et MG = 4,3 cm. Calculer la mesure de l angle AMG arrondie au degré près. Exercice p 240, n 38 : MAG est un triangle rectangle en G tel que MA,1cm et MG 4,3 cm. Calculer la mesure de l angle AMG arrondie au degré près. Dans le triangle MAG rectangle en G, on a : MG cos( AMG)

Plus en détail

CORRECTION DE L EXAMEN DE FIN D ANNEE 2003 EPREUVE DE MATHEMATIQUES

CORRECTION DE L EXAMEN DE FIN D ANNEE 2003 EPREUVE DE MATHEMATIQUES CORRECTION DE L EXAMEN DE FIN D ANNEE 003 EPREUVE DE MATHEMATIQUES 1. PARTIE NUMERIQUE : 1 points Exercice 1 Effectue les calculs suivants en inscrivant toutes les étapes : A = [ - ( - 6 + 7 ) + ( - 3

Plus en détail

CLASSE DE SECONDE ACTIVITÉS MODULE

CLASSE DE SECONDE ACTIVITÉS MODULE ACTIVITÉS MODUL TRIANGLS SMBLABLS. 1. Calculs de longueurs. Méthode utilisée : On établit que les triangles sont semblables, puis on établit la proportionnalité de leurs côtés. 1.1 On considère la figure

Plus en détail

Activités numériques sur 12 points. Fonction : image et antécédents. Exercice 2 Décomposition d un multiple de 4

Activités numériques sur 12 points. Fonction : image et antécédents. Exercice 2 Décomposition d un multiple de 4 Activités numériques sur 12 points Rappels : Exercice 1 Fonction : image et antécédents L image d un nombre par une fonction se lit sur l axe des ordonnées (axe vertical). Le ou les antécédents d un nombre

Plus en détail

Rappel cours sur le cône:

Rappel cours sur le cône: Correction contrôle ( 3 marine) Points de cours testés dans ce contrôle Produits remarquables pour développer: ( a + b )² =a² + ab + b² ( a - b )² =a² - ab + b² (a + b) ( a b) = a² b² Utilisation du vocabulaire:

Plus en détail

Correction du Brevet blanc n 1.

Correction du Brevet blanc n 1. Correction du Brevet blanc n 1. Exercice 1 : Cet exercice est un questionnaire à choix multiple (QCM). Pour chaque question, quatre réponses sont proposées : une seule d entre elles est exacte. Pour chaque

Plus en détail

Seconde Sujet 1 DST1 configurations du plan généralités sur les fonctions

Seconde Sujet 1 DST1 configurations du plan généralités sur les fonctions Seconde 2 2-24 Sujet Exercice : ( points) DBG est un triangle équilatéral. C est le demi-cercle de centre A et de diamètre [BD]. ) Montrer que (DP) et (BG) sont perpendiculaires. M est le point d intersection

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Décembre 0 ÉPREUVE DE MATHÉMATIQUES classe de e Durée : heures Présentation et orthographe : points Les calculatrices sont autorisées, ainsi que les instruments usuels

Plus en détail

Les sommets homologues A et F coïncident et les droites DE et BC sont parallèles.

Les sommets homologues A et F coïncident et les droites DE et BC sont parallèles. Triangles semblables. Défintions Deux triangles sont semblables s'ils ont trois angles de même mesure. C' C A B A' [ AB] et [ A' B '], [ AC] et [ A' C '] ainsi que [ ] et [ ' '] BC B C sont des côtés homologues.

Plus en détail

Translations et vecteurs

Translations et vecteurs Translations et vecteurs A) Translation. 1. Définition. Soient trois points A, B et M. L image du point M par la translation qui transforme A en B est le point M tel que ABM M, dans cet ordre, soit un

Plus en détail

3 ème : ENTRAINEMENT AU BREVET DES COLLEGES

3 ème : ENTRAINEMENT AU BREVET DES COLLEGES 3 ème : ENTRAINEMENT AU BREVET DES COLLEGES Janvier 2012 Epreuve de : MATHEMATIQUES Durée : 2 heures L emploi de la calculatrice est autorisé. En plus des 36 points prévus pour les 3 parties de l épreuve,

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) BREVET BLANC Novembre 008 - CORRECTION DE MATHÉMATIQUES PARTIE 1 : ACTIVITÉS NUMÉRIQUES (1 points) Exercice 1 (3 points) Effectuer les calculs suivants et donner les résultats sous forme de fractions irréductibles.

Plus en détail

Ungroup, then double click to edit text. 8.3 Les propriétés des angles dans un cercle. OBJECTIF de 8.3

Ungroup, then double click to edit text. 8.3 Les propriétés des angles dans un cercle. OBJECTIF de 8.3 OBJECTIF de 8.3 Découvrir les propriétés des angles inscrits et des angles au centre Résoudre des problèmes. Un joueur de soccer tente de marquer un but. Au cours d un entraînement, les joueurs s alignent

Plus en détail