CHAPITRE 2 SÉRIES ENTIÈRES

Dimension: px
Commencer à balayer dès la page:

Download "CHAPITRE 2 SÉRIES ENTIÈRES"

Transcription

1 CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R. Ue série etière est otée ( a ). Comme pour les séries de foctios, o cherche l esemble : = R: a coverge qu o appelle domaie de covergece de la série etière. Eemple 2.. Eemple :!. Posos f ()= et appliquos le critère de D Alembert ;! f + () lim f () = lim =. La série etière est absolumet covergete pour tout R ; + doc =R. Eemple 2 :. 2 Posos f ()= f + () o a : lim 2 f () = lim ( ) 2 + =. Si <, la série est absolumet covergete et si > la série diverge. Etudios le cas où =. o a f () = = 2 2 La série est alors absolumet covergete das [, ] ; et alors 2 =[, ] 2

2 SÉRIES ENTIÈRES Eemple :!. f + () Cette série e coverge que si = car lim f () = lim (+) et la limite eiste que si =:d où : ={}. Eemple 4 :. Posos f ()= f + () o a lim f () = lim ( ) + =. Si <, la série est absolumet covergete et si >la série diverge. Etudios le cas où =. ( = : c est la série harmoique, elle est divergete. ) ( ) ( ) = : c est la série harmoique alterée, elle est covergete. D où : =[, [. Lemme 2.. (Lemme d Abel) Soit ( a ) ue série etière. O suppose qu il eiste R tel que la suite (a ) soit borée. Alors :. La série ( a ) est absolumet covergete pour <. 2. La série ( a ) est ormalemet covergete pour <r pour tout <r<. Preuve. La suite (a ) est borée, il eiste M> tel que N a M..) Pour < : a a = = a M La série est ue série géométrique de rai- so <, doc covergete. D après le théorème de comparaiso, la série a est covergete et par coséquet la série a coverge absolumet pour <. 2.) Soit <r< et soit r. a a = = a r ( ) M r Comme M est ue série umérique covergete, la série etière a est ormalemet covergete pour tout tel que <r et tout r tel que <r<. M r AMROUN NOUR-EDDINE 22

3 2.2 Rayo de covergece d ue série etière 2.2 Rayo de covergece d ue série etière Pour les séries etières, la otio de covergece pred ue forme assez simple. Théorème 2.2. Soit ( a ) ue série etière ; alors il eiste u uique ombre réel R (évetuellemet ifii) tel que :. ( a ) coverge absolumet das ] R, R[. 2. ( a ) diverge si >R. Preuve. Soit I= r R+ : a r coverge R+. I car I. O distiguera trois cas : I={}, I=R + et{} I R +. ) I={}. O pose R=. Soit R. Ceci implique que > et par suite Iet la série que a diverge. Pour cela, o raisoera par l absurde. Supposos que a diverge. Motros a coverge pour >. Soit Ctel que < <. La série a est covergete d après le lemme d Abel (2..) et doc I. D où la cotradictio avec le fait que I={}. 2) I=R +. O pose R=. O doit prouver que ( a ) est absolumet covergete pour tout R. La série a r coverge pour tout r>. Soit R. Il eiste r>tel que <r. Ceci implique a a r et d après le théorème de comparaiso la série ( a ) coverge absolumet. ){} I R, I {} et I R. a) I est majoré. E effet, soit r R \I et supposos que r est pas u majorat de I. Il eisterait alors r I tel r<r. D après la défiitio de I, la série ( a r) est covergete aisi que ( a r ) (car a r < a r ) et doc r I ce qui est e cotradictio avec l hypothèse r R \I. I est alors u esemble o vide et majoré doc admet ue bore supérieure R=sup I. Pour r I coclure, o doit prouver que ( a ) coverge absolumet pour tout, <R et diverge pour tout, > R. b)soit R tel que <R. Il eisteρ I tel que <ρ<r. Comme la série ( a ρ ) coverge, ( a ) coverge e vertu du théorème de comparaiso. ( a ) est alors absolumet covergete. c) Soit R, >R. Ceci implique que Iet doc la série ( a ) diverge. Motros que ( a ) diverge. Pour cela, o raisoe par l absurde. Si ( a ) coverge, d après 2 M r AMROUN NOUR-EDDINE

4 SÉRIES ENTIÈRES le lemme d Abel, (2..) la série ( a ) est absolumet covergete pour tout R, vérifiat R< < et doc I. O a alors écessairemet R=sup I et ceci est e r I cotradictio avec l hypothèse R< <. Défiitio 2.2. Le ombre R=sup { r R + : ( a r ) coverge } R + {+ } est appelé rayo de covergece de la série ( a ). Remarque 2.2. Le rayo de covergece d ue série ( a ) est caractérisé par :. <R= ( a ) est absolumet covergete. 2. >R= ( a ) diverge.. =R est le cas douteu où o e peut rie dire sur la ature de la série. 4. Pour tout r R + tel que r<r, la série ( a ) est ormalemet (doc absolumet) covergete pour r Détermiatio du rayo de covergece Lemme 2.2. (Lemme d Hadamard) Soit ( a ) ue série etière. Le rayo de covergece R est doé par la relatio : R = lim a + a = lim a Preuve. a a) Pososl= lim + a E utilisat le critère de d Alembert o a : a lim + + a = lim a + a =l. Ceci implique : ( α) l < < ) = la série est absolumet covergete ( l β) l > > ) = la série est divergete l D après la remarque (2.2.), R= l. b) Pososl= lim a. E utilisat le critère de Cauchy : a =l puis o adopte le même raisoemet que précédemmet, o aboutit à lim la même coclusio ; R= l. Eemple 2.2. M r AMROUN NOUR-EDDINE 24

5 2. Propriétés.!. O a a =, utilisos le critère de D Alembert :! a lim + a = lim! (+)! = lim + =, doc le rayo de covergece est R=. La série est absolumet covergete pour tout R a O a lim + a = lim 2 =. Le rayo de covergece est R=. La série est + absolumet covergete pour tout < et divergete si >.. 2. Le critère de Cauchy doe : lim 2 = <, le rayo de covergece est R = 2. La série est absolumet 2 covergete pour tout <2 et divergete si >2. Remarque Soitφue applicatio dendasn, la série de suivate ( a ϕ()) est ue série etière. O commece par calculer directemet la limite suivate ; l= lim a + ϕ(+) a ϕ() = lim a + a lim ϕ(+) ϕ() puis chercher le domaie de oùl< ; R est doc sup { l R + =R + { } } où otre série coverge. Eemple : Trouver le rayo de covergece de la série : ( 2+5). Das otre casϕ()= 2+5. l= lim = 2 la série coverge si 2 < < d où le rayo de covergece est : R=. La série est absolumet covergete pour tout < et divergete si >. 2. Propriétés Ce paragraphe étudie les propriétés de cotiuité, de dérivabilité et d itégrabilité de la foctio somme des séries etières. 25 M r AMROUN NOUR-EDDINE

6 SÉRIES ENTIÈRES 2.. Cotiuité d ue série etière Propositio 2.. Soit ( a ) ue série etière de rayo de covergece R et soit f :] R, R[ R la foctio défiie par f ()= a, f est alors cotiue. Preuve. Soit <r<r. Pour tout N, les foctios f ()=a sot cotiues das [ R, R] et puisque la covergece est ormale doc uiforme das [ r, r], f est alors cotiue das [ r, r] pour tout r, <r<r doc cotiue das ] R, R[ Dérivée d ue série etière f () f ( ) Défiitio 2.. Ue foctio f :R R est dite dérivable e Rsi lim eiste. O la ote f ( ). Défiitio 2..2 Ue foctio f est dite de classe C sur u itervalle I der, si sa dérivée d ordre est ue foctio cotiue sur I. O otera alors que f C (I). Si elle est idéfiimet (ou ifiimet) dérivable, o dira alors qu elle est de classe C-ifiie et o écrira que f C (I). Par cotre f C (I), sigifie que f est seulemet cotiue sur I. Propositio 2..2 Preuve. Soit ( a ) ue série etière de rayo de covergece R, et soit f :] R, R[ R la foctio défiie par f ()= a. Alors f est dérivable et o a f ()= a. Soiet les foctios S :] R, R[ R défiies par S ()= a k k. Ces foctios possèdet les propriétés suivates : i) lim S ()= f () pour tout ] R, R[ et la covergece est absolue doc simple. ii) N, S est dérivable et o a S ()= ka k k. k= iii) Le rayo de covergece de ( a ) (+)a est R car lim + a = lim a + a = R. La suite (S ) est uiformémet covergete das [ r, r]. f est dérivable et o a f ()= lim S ()= a [ r, r] et r ], R[. Doc f ()= lim S ()= a ] R, R[. M r AMROUN NOUR-EDDINE 26 k=

7 2. Propriétés Corollaire 2.. Soit la série f ()= a de rayo de covergece R ; f est idéfiimet dérivable ( f C (] R, R[)) ; et l o a : ] R, R[, f ()= f ()!. Preuve. E effet, si f () = a, par applicatio de la propositio précédete o a f () = a, et par récurrece, la dérivée d ordre k est doée par la relatio : f (k) ()= ( )( 2)... ( k+)a k. =k De cette epressio, il résulte que f (k) ()=a k k! ; c est-à-dire que a k = f (k) (). k! 2.. Primitive d ue série etière Défiitio 2.. Ue foctio f : D R admet ue primitive s il eiste ue foctio F : D R vérifiat F = f ; (D état le domaie de défiitio de f ). Propositio 2.. Soit ( a ) ue série etière de rayo de covergece R et soit f :] R, R[ R la foctio défiie par f ()= a. O cosidère la foctio F :] R, R[ R défiie par F()= a + +. Alors F ()= f () ] R, R[. Preuve. a a Le rayo de covergece de la série etière + + est R car lim + +2 a lim + a = R. D après le théorème précédet o coclut que F = f. + a = Remarque 2.. Das le cas réel, si f ()= a, avec a R et ] R, R[, a t dt= a t a a dt= + + = pour tout ] R, R[. f (t)dt= 27 M r AMROUN NOUR-EDDINE

8 SÉRIES ENTIÈRES 2..4 Opératios sur les séries etières Propositio 2..4 Soit ( a ), ( b ) deu séries etières ayat respectivemet R et R pour rayo de covergece.. Si R R, le rayo de covergece R de la série ( (a + b )) est R = mi{r, R }. 2. Si R=R le rayo de covergece de la série ( (a + b )) est R R. Preuve. ) Supposos que R < R. i) <R = <R. Les deu séries ( a ) et ( b ) sot absolumet covergetes. Comme (a + b ) a + b, il e découle que ((a + b ) ) coverge absolumet pour <R = mi{r, R }. ii) Si >R, deu cas de figure se présetet : a) Si R < <R, la série ( b ) coverge absolumet et ( a ) diverge. Doc ( (a + b )) diverge. b) Si R < R<, les deu séries diverget. Motros ( (a + b )) diverge. Raisoos par l absurde. Si ( (a + b )) coverge alors d après le lemme d Abel (2..), la série ( (a + b )) coverge absolumet pour tout R, tel que < et e particulier pour vérifiat R < <R<. D où la cotradictio. 2) Si R=R. Il est clair que la série coverge absolumet si <R=R. Le rayo de covergece R R=R. Eemple 2.. Soiet les deu séries f () = 2 et g()=. Les deu séries ot pour 2 rayo de covergece R=. Par cotre la série somme ( f+ g)()= 2, a pour rayo de covergece R = Séries de Taylor Problème Soit f ue foctio réelle à variable réelle. Peut-o trouver ue suite réelle (a ) et r> tels que l o ait f ()= a pour ] r, r[? Si ce problème admet ue solutio, o dit que f est développable e série etière au voisiage de. O peut gééraliser cette situatio e se posat la même questio pour ue foctio défiie au voisiage d u poit : M r AMROUN NOUR-EDDINE 28

9 2.4 Séries de Taylor Eiste-il ue suite (a ) et r> tels que l o ait f ()= a ( ) pour ] r, + r[? Das l affirmatif, o dira que f est développable e série etière au voisiage de. Propositio 2.4. Pour qu ue foctio f soit développable e série etière au voisiage d u poit R, il est écessaire qu elle soit de classec das u voisiage ] ε, +ε[ de f () ( ) et das ce cas o a f ()= ( ).! Preuve. Il suffit de remarquer que si f ()= a = f () ( ).! a ( ), alors et d après le corollaire (2..) o a Propositio Soit f :] r, r[ R ue applicatio de classec das u voisiage de. O suppose qu il eiste M > tel que pour tout N, et pour tout ] r, r[, f () () M. Alors la série a f ()= f () () ] r, r[! f () () est simplemet covergete das ] r, r[ et o! Preuve. Par hypothèse, il eiste M> tel que pour tout k N et pour tout ] r, r[ o a f (k) () M. Le développemet de Taylor de f au voisiage de à l ordre doe : f (k) () f ()= k + f (+) (θ) k! (+)! +, avec <θ<. k= f (+) (θ) Pour démotrer le théorème, il suffit de prouver que lim (+)! + =. E effet, ] r, r[= <r= θ <r= f (+) (θ) M; et doc f (+) (θ) (+)! + Mr+ (+)!. Or la série de terme gééral u = Mr+ est covergete car ; (+)! u lim + u = lim r f (+) (θ) = et par suite lim + (+)! + =, f (k) () ce qui doe f ()= k. k! k= Remarque 2.4. Il suffit de vérifier que le reste de Taylor, souvet appelé reste de Mac-Lauri, ted vers. f (+) (θ) C est à dire que lim (+)! + =, 29 M r AMROUN NOUR-EDDINE

10 SÉRIES ENTIÈRES Eemple 2.4. ) La foctio epoetielle : f ()=e. Cette foctio est idéfiimet dérivable dasr, et o a N, f () ()=e. Le reste de Mac-Lauri est : e θ (+)! +. O vérifie comme précédemmet, que cette limite ted vers zéro quad ted vers ; et ceci quelque soit dasr. Fialemet : R, e = +! + 2 2! +! + = 2) Les foctios hyperboliques : Les foctios cosiushyperboliques et siushyperboliques ot même rayo de covergece que la foctio epoetielle, c est à dire R=. ch = e + e 2 sh = e e 2 ) Les foctios circulaires : a) La foctio sius :! = + 2 2! + 4 4! + 6 6! + = 2 (2)! = +! + 5 5! + 7 7! + = 2+ (2+)! f ()=si = f ()=, et p N f (4p) ()=si = f (4p) ()= f ()=cos = f ()=, et p N f (4p+) ()=cos = f (4p+) ()= f ()= si = f ()=, et p N f (4p+2) ()= si = f (4p+2) ()= f ()= cos = f ()=, et p N f (4p+) ()= cos = f (4p+) ()= Les dérivées d ordre quelcoques sot majorées par, et ceci quelque soit dasr. O a alors : ( ) si = (2+)! 2+ et R=. b) La foctio cosius : f ()=cos =(si ) = ( ) (2)! 2, et R=. 4) La série du biôme Cosidéros la foctio f ()= y=(+) α,α R. So domaie de défiitio est ], [. O a ue relatio simple etre la foctio f et sa dérivée. y=(+) α, o a y =α(+) α d où l équatio différetielle : y (+)=αy (2.) Toutes les solutios de cette équatio sot de la forme y=c(+) α, où C est ue costate arbitraire. Cherchos maiteat s il eiste ue foctio f développable e série etière au voisiage de, f ()= a qui est solutio de (2.). Pour qu ue telle foctio eiste, il M r AMROUN NOUR-EDDINE

11 2.4 Séries de Taylor est écessaire d avoir les relatios : =(+) f () α f ()=(+) a α a = [(+)a + (α )a ]. O déduit alors que (+)a + (α )a = pour tout N et doc (+)a + = (α )a car ue série etière est ulle si et seulemet tous ses cœfficiet sot uls. Ceci permet d avoir :. Ceci doe efi a = αa a 2 = (α )a 2... = (α +2)a 2 a a = (α +)a a = α(α )...(α +) a! α(α )(α 2)...(α +) Soit la série a. Le rayo de covergece R est doé! par la relatio : R = lim α(α )... (α )! (+)! α(α )... (α +) = lim α =. + α(α )(α 2)... (α +) Par costructio, la série f ()= a est solutio de l équatio différetielle (2.), elle est doc de la forme f ()=C(+) α. Puisque f ()=a = C=,! o déduit que pour ], [, (+) α = + α(α )(α 2)... (α +) ;! Cette série est coue sous le om de série du biôme. R=. Remarque Siα= N, alors les dérivées d ordre + et plus de (+) sot toutes ulles. La série du biôme se réduit à u polyôme de degré, et o retrouve la formule du biôme de Newto. Eercices d applicatios. E utilisat le résultat ci-dessus, motrer qu o a les développemets suivats. Doer le domaie de covergece de ces séries. a)...(2 ) +=+ ( ) = b) + = + ( )...(2 ) = M r AMROUN NOUR-EDDINE

12 SÉRIES ENTIÈRES Remarque 2.4. U développemet e série etière au voisiage de d ue foctio f peut s obteir grâce au développemet de sa dérivée f. Par eemple, le développemet e série etière des foctios arcsi s obtiet facilemet e remarquat que : (arcsi ) = = (2 ) 2 = Sachat que arcsi =,..5...(2 ) 2+ arcsi =+ = Par ce procédé, il est facile par eemple de développer les foctios arccos, Argsh, Arctg et Argth. Attetio : la foctio Argch est pas défiie das u voisiage de zéro, so domaie de défiitio est [, [. 5) La foctio. O remarque d ue part que pour <, lim = et d autre part =. D où : =, avec R= et + = ( ), (R=). 6) La foctio Log( + ). Certais développemets e série s obtieet au moye des théorèmes sur l itégratio et la dérivatio des séries etières. Du développemet o déduit par itégratio : + ( ) Log(+)= + +, (R=). La costate d itégratio est ulle car Log =. O a de même Log( )= + +, (R=). O remarque que ces foctios sot défiies aussi pour des valeurs apparteat pas à l itervalle ouvert ], [ mais leurs développemets e série de Taylor au voisiage de e sot covergets que pour <. Formule très utile, doc à reteir : [, [: = Log( ), R= Développemet e série etière au voisiage d u poit Soit f () ue foctio défiie au voisiage d u poit et posos X=. Défiitio 2.4. O dit que f est développable e série etière au voisiage de si la foctio X f (X+ ) est développable e série etière au voisiage de. O aura alors : M r AMROUN NOUR-EDDINE 2

13 2.4 Séries de Taylor Doc f ()= f (X+ )= f (X+ )= a X pour X <R. a ( ) pour tout vérifiat <R Eemple O cherche le développemet e série etière de la foctio f ()= au voisiage de =. O pose X= et o obtiet : ( = X+= + X ) = ( + X ) /2 = ( ) +...(2 ) X ( ) Fialemet : = + ( )...(2 ) ( ) Domaie de covergece de cette série. Puisque la série etière e X a pour rayo de covergece R=, ce qui veut dire que pour X < <X< < < <<6, la série est absolumet covergete. Pour =, o a : + ( )...(2 ) ( ) =...(2 ) (2 ) Le le critère de Duhamel motre que la série est covergete Pour = 6, c est la même série mais alterée, doc covergete, car absolumet covergete. E coclusio, la série trouvée a pour domaie de covergece : =[, 6]. Remarque O tire deu coclusios itéressates. Le cas =doe :...(2 ) = Le cas =6doe :...(2 ) ( ) = Sommatio de quelques séries etières Peut das certais cas recoaître, das ue série etière, le développemet d ue ON foctio coue ; trouver cette foctio, c est faire la sommatio de la série etière. Ce problème est l iverse de celui qui a été étudié précédemmet. er eemple Soit la série etière ( a ), le terme a est de la forme : a = P() où P() état u polyôme! e de degré m. o met P() sous la forme : M r AMROUN NOUR-EDDINE

14 P()=α +α +α 2 ( )+α ( )( 2)+ =α + SÉRIES ENTIÈRES m α k ( ) ( k+). O a : P(k)=α +α k+α 2 k(k )+α k(k )(k 2)+ +α k k!, cette relatio de récurrece permet de calculer toutes les valeurs deα k. O calculeα, puisα, puisα 2 jusqu àα m. eemple : Sommer la série suivate. k= f ()= ( )! so rayo de covergece état l ifii, posos : P()= =α +α +α 2 ( )+α ( )( 2)+α 4 ( )( 2)( ). Pour o a P()=α = 2 Pour o a P()=α +α = 5=2+α α = Pour =2o a P(2)=α + 2α + 2α 2 = 4 α 2 = 2 Pour =o a P()=α + α + 6α 2 + 6α = 5 α = Pour =4o a P(4)=α + 4α + 2α α + 24α 4 = 82 α = =2+ 2( )+( )( 2) 4( )( 2)( ). La somme est alors : ( 2 f ()=! +! 2( )! = 2! + = 2 ( )! 2 + ( )( 2)! =2! + ( )! 22 = ( ) e 2 ème eemple ( 2)! + =2 4( )( 2)( ) )! = 2 ( 2)! + ( )! 4 = =4 ( 4)! ( )! 44 =4 4 ( 4)! Soit la série etière ( a ), le terme a est de la forme : a = P() où P() état u polyôme e de degré m. o met P() sous la forme : P()=α +α (+)+α 2 (+)(+2)+α (+)(+2)(+)+ m α + α k (+)(+2) (+k). k= (k+m)! O a : P(k)=α +α (k+)+α 2 (k+)(k+2)+α (k+)(k+2)(k+)+ +α k, cette k! relatio de récurrece permet de calculer toutes les valeurs deα k. O calculeα, puisα, puis α 2 jusqu àα m. eemple : Sommer la série suivate. f ()= ( ) so rayo de covergece état égal à. Posos : P()= =α +α (+)+α 2 (+)(+2)+α (+)(+2)(+) Pour = o a P( )=α = M r AMROUN NOUR-EDDINE 4

15 2.4 Séries de Taylor Pour = 2 o a P( 2)=α α = = α α = Pour = o a P( )=α 2α + 2α 2 = 5 α 2 = Pour = 4 o a P( 4)=α α + 6α 2 6α = α = D où : P()= +(+)+(+)(+2)(+), et doc f ()= ( +(+)(+2)+(+)(+2)(+)) = + (+)(+2) + (+)(+2)(+) Les trois sommes se déduiset de la série géométrique. ( ) (+)(+2) = +2 = ( ) = ( ) 2 6 = ( ) ( (+)(+2)(+) = + = ( ) ( = +2+ = 2+ 2 ) 6 = ( ) 2 ( ) ( ) 4 O a : ) = f ()= ( ) + ( ) 4= ( ) 4 pour réel la série e coverge pas au bores de l itervalle de covergece. Le domaie de covergece est alors ], [. ème eemple Soit la série etière ( a ), le terme a est de la forme : a = où P() état u polyôme P() e de degré m avec des racies simples et etières. O décompose a élémets simples et o utilisera la formule = Log( ). Eemple : Sommer la série suivate. f ()= = so rayo de covergece est égal à. Posos : La décompositio e élémets simples doe : 2 = 2 = = ( 2)(+)(+) ( 2)(+)(+) = 5( 2) 6(+) + (+) 2 2 = 2 = 2( Log( ) ) = 2 Log( ) 5 M r AMROUN NOUR-EDDINE

16 + = + + = = = =4 + = + + = = = =6 O obtiet fialemet f ()= = ( ) Log( ) 2 2 = ( Log( ) SÉRIES ENTIÈRES [( ) Log( ) ] 8 Remarques :. La limite de f () quad ted vers est bie fiie, car = 6( )( ) 2 et elle vaut 679/8. 2. U développemet limité au voisiage de de ( ) Log( ) motre Aussi que la limite de f () quad ted vers est bie fiie et vaut f ()=. Puisque la série doée est covergete pour =, le domaie de covergece de la série est doc [, ]. 4. O déduit de ces calculs et ces remarques que : f ()= ( 2)(+)(+) = 9 8 = ( ) 9 24 Log 2 f ( )= = ( 2)(+)(+) 8 = E utilisat toujours la formule = Log( ), o peut sommer des séries de type =m a+b avec a N, b Z et b a Z. 4 ème eemple Sommer la série suivate, f ()= 2+ so rayo de covergece est égal à. O a f ()= er cas > : ( ) 2+ ( ) 2+ f ()= 2+ = = ( ) 2+ Posos < =t ], [ o a alors : 2+ = t 2+ par dérivatio puis itégratio 2+ o obtiet : t = +t Log et doc : 2 t f ()= 2+ = si = 2 + Log si ], [ M r AMROUN NOUR-EDDINE 6 ).

17 2.4 Séries de Taylor 2 ème cas < : Posos = X o a f ( X)= g(x)= ( ) X 2+ = X Posos ( ) ( ) 2+ X X=t ], [> o a alors : = 2+ itégratio o obtiet : ( ) t 2+ = Arctg t et e coclusio fiale o a doc : 2+ ( ) ( X ) ( ) t si =. par dérivatio puis f ()= 2+ = 2 + Log si ], [ Arctg si ], [ Remarque : Les foctios trouvées sot cotiues e et valet. Pour le domaie de covergece de la série étudiée est D f = [, [ et o trouve pour = : ( ) 2+ = Arctg =π 4 5 ème eemple De la même maière o peut sommer des séries de type : f ()= (2)! so rayo de covergece est égal à l ifii. O a f ()=. ( ) 2 > f ()= = ch. (2)! ( ) ( ) 2 < f ()= = cos. (2)! Beaucoup de séries e peuvet être sommer à l aide de foctios élémetaires, et ceci malgré leur simple écriture. 6 ème eemple La foctio de La : σ()= La série état ormalemet covergete pour tout [, ]. Facilemet o trouve : 2 σ ()= Log( ) =, 7 M r AMROUN NOUR-EDDINE

18 SÉRIES ENTIÈRES foctio dot la primitive est pas «ue foctio élémetaire.» Il eiste ue relatio foctioelle itéressate pourσ(). O a : σ()= Log( t) dt t C est ue itégrale impropre e et e. La limite e de Log( ) vaut, au voisiage Log( t) de, o a : Log( t) dot l itégrale eiste. ue simple itégratio par partie t doe : σ()= [ Log( t) Log t ] + Log t t dt o a lim t (Log( t) Log t)=, u chagemet de variables X= t das la derière itégrale doe : Log t t dt= Log( X) X dx= O verra au chapitre sur les séries de Fourier que E coclusio o a : Log( X) dx= X ], [ Log( X) dx X Log( X) dx=σ()= X σ()+σ( )+Log Log( )= π2 6 Log( X) dx X 6 2=π2 Remarques : La formule ( ) reste valable pour [, ], car lim Log Log( )= lim Log = et lim Log Log( )= lim Log( t) Log t= lim t Log t= t t [; /2] == [/2; ], coaissat les images de tous les ombres de l itervalle [, /2] o peut déduire celles des ombres de l itervalle [/2, ]; et gééralemet si a et b sot deuombres réels de [; ] tels que a+b= alors o a : b 2=π2 6 Log a Log( a) a 2 E posat =/2 o obtiet 2σ(/2)+Log 2 (/2)=π 2 /6 d où σ(/2) = 2 2=π2 2 2 Log ème eemple Doer le rayo de covergece de la série suivate puis calculer sa somme : f ()= ( ) M r AMROUN NOUR-EDDINE 8 ( )

19 2.4 Séries de Taylor O a immédiatemet /R= lim ( ) = lim lim D où R=. O peut écrire cette somme sous la forme : 2 2 = si est paire 2+ /2+ = si est impaire f () = = ( ( ) ) = La première série est divergete pour =±, doc le domaie de covergece de la série doée est ], [, (La 2 ème série est aussi covergete pour =±). O peut écrire : pour obteir fialemet ( f ()= 2 + Arctg = ) 2 + Arctg. ( f ()= 2 ) + Arctg = 2 2 ( 2 ) 2+ Arctg ], [. Comme applicatio o a pour = ( ) =π+9 6 2, 26. Eercice Résoudre l équatio différetielle suivate ; e utilisat les séries etières : Solutio : y y= y()= y ()= Posos y=a + a +a a + a a a + = a. O a : y = 2..a 2 +.2a +4..a a 5 + +(+2)(+)a +2 + = (+2)(+)a +2. E substituat das otre équatio différetielle, o trouve : 2..a 2 + (.2a a )+(4..a 4 a ) 2 + (5.4.a 5 a 2 ) + +((+2)(+)a +2 a ) + =. 9 M r AMROUN NOUR-EDDINE

20 SÉRIES ENTIÈRES O obtiet les équatios algébriques suivates : 2..a 2 =.2a a = 4..a 4 a = 5.4.a 5 a 2 =... (+2)(+)a +2 a =... O costate que y()== a = et y ()== a =, comme la première équatio algébrique doe aussi a 2 =, o a alors a =, a = a 2 =, a = 2. = a 4 = a 5 =, a 6 =! = 4 6!, a 7= a 8 =, a 9 == = 4.7 9!. O remarque que seulemet les cœfficiets a, N sot o uls. O obtiet fialemet : La solutio aisi costruite sera : a + = a +2 = et a = y ()= ( 2). ()! ( 2). ()! So domaie de covergece est doé par la règle de d Alembert, o trouve que R=. La série est covergete pour tout dasr. Remarque α : Le même problème avec d autres coditios, par eemple : y y= y()= y ()= O a ue autre solutio, et o trouve a = et a = et : y 2 ()= ( ) +. (+)! β : L équatio y y=apour solutio géérale y()=a.y ()+b.y 2 (), où a et b sot deu réels quelcoques. y et y 2 sot deu foctios spéciales, qu o e peut pas eprimer à l aide de foctios élémetaires. M r AMROUN NOUR-EDDINE 4

Correction CCP maths 1 MP

Correction CCP maths 1 MP mai 4 Avertissemet : Il subsiste certaiemet quelques coquilles... Exercice : ue itégrale double Correctio CCP maths MP Pour calculer cette itégrale, o effectue le chagemet de variable e coordoées polaires

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2015

BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2015 CONCOURS COMMUNS POLYTECHNIQUES FILIÈRE MP BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 5 avec corrigés V. Bellecave, J.-L. Artigue, P. Berger, J.-P. Bourgade, S. Calmet, A. Calvez, D. Cleet, J. Esteba,

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Logique, esembles et applicatios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I :

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

Développement d une fonction en série entière. Exemples et applications

Développement d une fonction en série entière. Exemples et applications Développemet d ue foctio e série etière Exemples et applicatios Das ce chapitre, K désigera R ou C B(; R) désigera la boule ouverte de cetre et de rayo R > 1 Gééralités Défiitio 1 Soit f ue applicatio

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Sciences Po Option Mathématiques

Sciences Po Option Mathématiques Scieces Po Optio Mathématiques Epreue 3 Vrai-Fau Questio FAUX La suite ( u ) état géométrique de raiso différete de, o a classiquemet, pour tout etier aturel : où q est la raiso de la suite ( u ) Ici,

Plus en détail

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

09 G 18bis AR Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 9 OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fa-Séégal Serveur Vocal: 68 05 59 Téléfax (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 09 G 18bis AR Durée:

Plus en détail

Détermination des champs électriques et magnétiques. statiques par la méthode de séparation de variables

Détermination des champs électriques et magnétiques. statiques par la méthode de séparation de variables Détermiatio es champs électriques et magétiques statiques par la méthoe e séparatio e variables Chapitre III Détermiatio es champs électriques et magétiques statiques par la méthoe e séparatio e variables

Plus en détail

AVANT PROPOS. Cet ouvrage pourra intéresser également les enseignants de ce niveau.

AVANT PROPOS. Cet ouvrage pourra intéresser également les enseignants de ce niveau. AVANT PROPOS Cet ouvrage propose aux élèves de classes termiales (fraçais) S (spécialité math) des rappels et des complémets de cours assez complet, aisi que des problèmes et des exercices corrigés. Les

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que [http://mp.cpgedupuydelome.fr] édité le 6 octobre 05 Eocés Suites umériques Covergece de suites Exercice [ 047 ] [Correctio] Soiet u ) et v ) deux suites réelles covergeat vers l et l avec l < l. Motrer

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE I. RAPPELS : METHODE D EULER Si f est ue foctio dérivable e x 0, o sait que f(x 0 + h) a pour approximatio affie f(x 0 ) + f '(x 0 )h O peut doc sur de "petits" itervalles, approcher

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels.

Université de Provence 2011 2012. Planche 6. Nombres réels. Suites réelles. Nombres réels. Uiversité de Provece 011 01 Mathématiques Géérales I Plache 6 Nombres réels Suites réelles Nombres réels Exercice 1 Mettre sous forme irréductible p/q les ratioels suivats (les chiffres souligés se répètet

Plus en détail

Feuille d exercices 5

Feuille d exercices 5 Mathématiques Physique S3, 205/206 Uiversité Blaise Pascal Feuille d exercices 5 Ex.. Tracer le graphe des foctios périodiques suivates, doer leur développemet e série de Fourier et discuter la covergece

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario

Mathématiques. Terminale S Corrigés des exercices. Rédaction : Laurent Beroul Isabelle Tenaud Sébastien Cario. Coordination : Sébastien Cario Mathématiques Termiale S Corrigés des eercices Rédactio : Lauret Beroul Isabelle Teaud Sébastie Cario Coordiatio : Sébastie Cario Ce cours est la propriété du Ced Les images et tetes itégrés à ce cours

Plus en détail

On obtient la formule de Pascal en prenant le cardinal :

On obtient la formule de Pascal en prenant le cardinal : Colles du 3 ovembre 014 Solutio de la questio de cours 1. (i) Soit E u esemble de cardial. L esemble (E) peut alors être partitioé comme suit : (E) (E), où (E) est l esemble des parties de E de cardial.

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Soit E un ensemble. On appelle classe de parties de E un sous-ensemble non vide de P(E).

Soit E un ensemble. On appelle classe de parties de E un sous-ensemble non vide de P(E). Chapitre 1 Tribus 1.1 Défiitios Soit E u esemble. O appelle classe de parties de E u sous-esemble o vide de P(E). Défiitio 1.1.1. Ue tribu A sur E est u sous-esemble o vide de P(E) tel que : (i) la partie

Plus en détail

Chapitre 16 : Espaces vectoriels

Chapitre 16 : Espaces vectoriels PCSI Préparatio des Khôlles -4 Chapitre 6 : Espaces vectoriels Exercice type Soit E=R[X] et F ={P E, P(X)=XP (X)+P()}, motrer que F est u sous-espace vectoriel de E. : O a bie F E. Si P =est le polyôme

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice - Loi d u dé truqué - L2/ECS -. X pred ses valeurs das {,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque P X est

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Table des matières. Aller à la page suivante

Table des matières. Aller à la page suivante CHAPITRE 3. SÉRIES NUMÉRIQUES Chapitre 3 Séries umériques 3. Préparatio Défiitio 3..2 O appelle série de terme gééral u et o ote u (qui se lit «série de terme gééral u»), où (u ) N R N, la suite de terme

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Féelo aite-marie Préparatio ciece-po/prépa HEC Foctios Versio du juillet 05 Eercice d degré : racies et coefficiets O rappelle que si l équatio a + b + c = 0 ( a 0 ) adet deu racies α et β (évetuelleet

Plus en détail

SUITES ET FONCTIONS. 1. Espaces vectoriels normés réels ou complexes

SUITES ET FONCTIONS. 1. Espaces vectoriels normés réels ou complexes SUITES ET FONCTIONS. Espaces vectoriels ormés réels ou complexes.. Normes et distaces. Exercice... F Soit E l espace vectoriel des foctios de classe C sur [a, b], o pose Nf = fc + f où c [a, b], f désigat

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse

Séquence 1. Les suites numériques. Sommaire. 1. Pré-requis 2. Le raisonnement par récurrence 3. Notions de limites 4. Synthèse Séquece Les suites umériques Sommaire Pré-requis Le raisoemet par récurrece 3 Notios de limites 4 Sythèse Das cette séquece, il s agit d ue part d approfodir la otio de suites umériques permettat la modélisatio

Plus en détail

Suites et séries numériques

Suites et séries numériques Maths MP Cours Table des matières Suites et séries umériques Quelques prélimiaires. Les yeux fermés........................................... De quoi parle-t-o?........................................3

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

MATHEMATIQUES Terminale Scientifique

MATHEMATIQUES Terminale Scientifique MATHEMATIQUES Termiale Scietifique Fiches PROGRAMME 22 (v24) Sylvie LAMY Agrégée de Mathématiques Dilômée de l École Polytechique Cours Pi e-mail : lescoursi@cours-icom site : htt://wwwcours-icom siège

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h Etrée à Scieces Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2014 MATHÉMATIQUES durée de l épreuve : 3 h A P M E P Les calculatrices sot autorisées Exercice Vrai-Faux 8 poits Pour chacue des affirmatios suivates,

Plus en détail

PROJET DE MONTE CARLO SUJET 1: LE PRICING

PROJET DE MONTE CARLO SUJET 1: LE PRICING LE Age KHOURI Nadie M MMD PROJE DE MONE ARLO SUJE : LE PRIING Selim ZOUGHLAMI QUESION : Supposos d abord que X est u mouvemet browie W t G([ 0, ]) Alors W0 G( 0 ) suit ue loi N(0,0) et doc W 0ps 0 Esuite,

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH

Centre Régional des Métiers de l Éducation et de la Formation MARRAKECH R O Y A U M E D U M A R O C Miistère de l Educatio Natioale et de la Formatio Professioelle Cetre Régioal des Métiers de l Éducatio et de la Formatio Académie Régioale de l Éducatio et de la Formatio Marrakech-Tesift

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédoie 7 mars 2014 A. P. M. E. P. EXERCICE 1 Commu à tous les cadidats 4 poits Cet exercice est u QCM questioaire à choix multiple. Pour chaque questio, ue seule

Plus en détail

Équations différentielles - Cours no 6 Approximation numérique

Équations différentielles - Cours no 6 Approximation numérique Équatios différetielles - Cours o 6 Approximatio umérique 1 Itroductio De très ombreux problèmes scietifiques sot mis e équatio à l aide d u système d équatios différetielles ẋt) = ft, xt)) voir par exemple

Plus en détail

Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Avenue Ibn Batouta, B.P.

Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Avenue Ibn Batouta, B.P. Uiversité Mohammed V - Agdal Faculté des Scieces Départemet de Mathématiques et Iformatique Aveue Ib Batouta, B.P. 04 Rabat, Maroc Filière DEUG : Scieces Mathématiques et Iformatique (SMI) et Scieces Mathématiques

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

Approximation de la solution d une équation différentielle ordinaire avec impulsions qui dépendent de l état

Approximation de la solution d une équation différentielle ordinaire avec impulsions qui dépendent de l état Approximatio de la solutio d ue équatio différetielle ordiaire avec impulsios qui dépedet de l état F. Dubeau A. Ouasafi A. Sakat CRM-276 Jauary 21 Départemet de mathématiques et d iformatique, Uiversité

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Calcul et raisoemet Remise à Niveau Mathématiques Première partie : Calcul et raisoemet Exercices Page sur 9 RAN Calcul et raisoemet Ex - Rev 04 Mathématiques RAN - Calcul et raisoemet

Plus en détail

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2015 Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) Bac Blac Termiale L - Février 015 Épreuve de Spécialité Mathématiques (durée 3 heures) Questio 1 : La populatio d'ue ville baisse de 1 % tous les as pedat 10 as. Elle est doc multipliée

Plus en détail

Correction du devoir surveillé de mathématiques n o 5

Correction du devoir surveillé de mathématiques n o 5 Correctio du devoir surveillé de mathématiques o 5 Exercice 1 1. Soit g la foctio défiie sur R par g(x) = (x 1)e x. (a) Détermier les ites de g e et +. Limite e. O a ue forme idétermiée. E développat,

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x /RJLTXHERROpHQQH I. Défiitios I.. Variable biaire O appelle variable biaire (ou logique), ue variable preat ses valeurs das l esemble {0, }. Eemple : état d u iterrupteur, d u bouto poussoir, la présece

Plus en détail

Analyse de structures de données et d algorithmes

Analyse de structures de données et d algorithmes Uiversité Paris 3 Istitut Galilée Master Math-Ifo Aalyse de structures de doées et d algorithmes Polycopié 2006-2007 Christia Lavault Table des matières Combiatoire et déombremet. Permutatios, arragemets

Plus en détail

STATISTIQUE : ESTIMATION

STATISTIQUE : ESTIMATION STATISTIQUE : ESTIMATION Préparatio à l Agrégatio Bordeaux Aée 202-203 Jea-Jacques Ruch Table des Matières Chapitre I. Estimatio poctuelle 5. Défiitios 5 2. Critères de comparaiso d estimateurs 6 3. Exemples

Plus en détail

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES

EXERCICES D OPTIQUE GEOMETRIQUE ENONCES EXERCICES D PTIQUE GEMETRIQUE ENNCES Exercice 1 : Vitre Motrer que la lumière est pas déviée par u passage à travers ue vitre. Pour ue vitre d épaisseur 1 cm, que vaut le décalage latéral maximal? Si la

Plus en détail

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 MÉTHODES NUMÉRIQUES POUR LE PRICING D OPTIONS DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 Table des matières 1 Notatios et équatio de Black-Scholes 2 11 Notatios 2 12 Équatio de Black-Scholes

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Intégration et calcul de primitives

Intégration et calcul de primitives École polytechique Itégrtio et clcul de primitives Tble des mtières Les foctios usuelles. Foctios primitives et foctios réciproques................... Les foctios logrithme et epoetielle......................3

Plus en détail

Promenades aléatoires : vers les chaînes de Markov

Promenades aléatoires : vers les chaînes de Markov AME Dossier : Matrices et suites 545 romeades aléatoires : vers les chaîes de Markov ierre Griho (*) Cet article propose ue mise e perspective de la otio de promeade ou de marche aléatoire itroduite das

Plus en détail

4 Approximation des fonctions

4 Approximation des fonctions 4 Approximatio des foctios Ue foctio f arbitraire défiie sur u itervalle I et à valeur das IR peut être représetée par so graphe, ou de maière équivalete par la doée de l esemble de ses valeurs f(t) pour

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

CLASSE DE TECHNOLOGIE, PHYSIQUE ET CHIMIE (TPC) ALGÈBRE LINÉAIRE ET GÉOMÉTRIE

CLASSE DE TECHNOLOGIE, PHYSIQUE ET CHIMIE (TPC) ALGÈBRE LINÉAIRE ET GÉOMÉTRIE CLASSE DE TECHNOLOGIE, PHYSIQUE ET CHIMIE (TPC) PROGRAMME (A partir de Septembre 2) MATHEMATIQUES Secode aée (Ce ouveau programme présete des modificatios par rapport à l'acie programme) ALGÈBRE LINÉAIRE

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

MATHEMATIQUES Option scientifique Mardi 9 mai 2006 de 8h à 12h

MATHEMATIQUES Option scientifique Mardi 9 mai 2006 de 8h à 12h ECOLE DE HUTES ETUDES COMMERCILES DU NORD Cocors d'admissio sr classes préparatoires MTHEMTIQUES Optio scietifiqe Mardi 9 mai 6 de 8h à h La présetatio, la lisibilité, l'orthographe, la qalité de la rédactio,

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

Terminale S. 1. Divers

Terminale S. 1. Divers Termiale S 1 Divers Bézout 3 Quadratique 4 Divisibilité 5 Equatio diophatiee 6 Equatio diophatiee (, Caracas 01_04) 7 Base de umératio 8 Base de umératio 3 9 Somme des cubes 10 PGCD 11 Somme des diviseurs

Plus en détail

Corrigé de Mathématique éco HEC

Corrigé de Mathématique éco HEC Corrigé de Mathématique éco HEC EXERCICE Hypothèses. M 3 R est l espace vectoriel des matrices carrées d ordre 3 à coefficiets réels. A M 3 R : s A 3 A,j, s A 3 A,j, s 3 A 3 somme des coefficiets des liges

Plus en détail

d après le sujet de math 1, centrale 2010, PC rappels arccos est la fonction réciproque de la restriction de cos à [0; ] : 1. Polynômes de Tchebychev

d après le sujet de math 1, centrale 2010, PC rappels arccos est la fonction réciproque de la restriction de cos à [0; ] : 1. Polynômes de Tchebychev d arès le sujet de math, cetrale, PC raels arccos est la foctio réciroque de la restrictio de cos à [; ] : 8 [; ]; 8y [ ; ], y = cos(), = arccos(y) dager : l équivalece est fausse si o sort du domaie :

Plus en détail

THEORIE ERGODIQUE ET APPLICATIONS

THEORIE ERGODIQUE ET APPLICATIONS THEORIE ERGODIQUE ET APPLICATIONS TER de Master ROUSSEAU Emmauel VOISIN Nathalie 5 jui 2007 Mouvemet Browie (vue d artiste) 2 INTRODUCTION 3 Itroductio E mécaique classique o étudie l évolutio au cours

Plus en détail

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.

Exo7. Applications linéaires continues, normes matricielles. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france. Exo7 Applicatios liéaires cotiues, ormes matricielles Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr Exercice * * très facile ** facile *** difficulté moyee **** difficile

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE

ADMISSION AU COLLEGE UNIVERSITAIRE ADMISSION AU COLLEGE UNIVERSITAIRE Samedi mars 204 MATHEMATIQUES durée de l'épreuve : 3h - coefficiet 2 Le sujet est uméroté de à 5. L'aexe est à redre avec la copie. L'exercice Vrai-Faux est oté sur 8,

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

Concours de l Iscae. Épreuve Commune de Mathématiques (2015)

Concours de l Iscae. Épreuve Commune de Mathématiques (2015) Mohiieddie Beayad Cocours de l Iscae Épreuve Commue de Mathématiques (5) Voici l éocé de l épreuve commue de Mathématiques du cocours d etrée à l ISCAE de l aée 5, aisi que l itégralité du corrigé. Les

Plus en détail

Introduction : Mesures et espaces de probabilités

Introduction : Mesures et espaces de probabilités Itroductio : Mesures et espaces de probabilités Référeces : Poly cédric Berardi et Jea Michel Morel. J.-F. Le Gall, Itégratio, Probabilités et Processus Aléatoire J.-Y. Ouvrard, Probabilités 2, maîtrise-agrégatio,

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

chapitre VIII exercices et problèmes de synthèse algorithmique et turbo-pascal

chapitre VIII exercices et problèmes de synthèse algorithmique et turbo-pascal chapitre VIII eercices et problèmes de sythèse algorithmique et turbo-pascal Algèbre liéaire et probabilités : Chaîes de Marov (esco 93) Partie A 4 3 O cosidère la matrice M = 8 6 ) a) Détermier les valeurs

Plus en détail

Memento mathématiques 1 ère S. T.Joffredo

Memento mathématiques 1 ère S. T.Joffredo Memeto mathématiques ère S Vous trouverez ici quelques élémets du cours de mathématiques de première S, qu'il coviet de maîtriser pour aborder sas trop d'agoisse la classe de Termiale. Ce documet e préted

Plus en détail

Cours (Terminale S) Limite d une fonction

Cours (Terminale S) Limite d une fonction Cours (Termile S) Limite d ue octio Limite d ue octio e + ou Foctio déiie u voisige de + (resp ) Soit ue octio d esemble de déiitio D O dir que «l octio est déiie u voisige de + (resp )» s il eiste u réel

Plus en détail

I. (2 points) III. (2 points)

I. (2 points) III. (2 points) ère S Cotrôle du vedredi 7 mars 05 (0 mi) Préom : Nom : Note : / 0 II ( poits) Soit ABC u triagle isocèle e A tel que AB AC 8 cm et BC 5 cm O ote I le milieu de [AC] Calculer BI (valeur exacte) I ( poits)

Plus en détail

Correction des exercices sur la nature ondulatoire de la lumière

Correction des exercices sur la nature ondulatoire de la lumière CORRECTION EXERCICES TS /5 CHAPITRE 3 Correctio des exercices sur la ature odulatoire de la lumière Correctio exercice : idice d u verre et réfractio. La radiatio = 530 m est verte et la radiatio = 680

Plus en détail

Cécile Lardon. Professeur en classe préparatoire au lycée du Parc à Lyon. Jean-Marie Monier

Cécile Lardon. Professeur en classe préparatoire au lycée du Parc à Lyon. Jean-Marie Monier Mathématiques Méthodes et eercices ECS e aée Cécile Lardo Professeur e classe préparatoire au lycée du Parc à Lyo Jea-Marie Moier Professeur e classe préparatoire au lycée La Martiière-Moplaisir à Lyo

Plus en détail

Université Pierre et Marie Curie Licence de Mathématiques (3ème année) Année 2004/2005. Probabilités Pierre Priouret

Université Pierre et Marie Curie Licence de Mathématiques (3ème année) Année 2004/2005. Probabilités Pierre Priouret Uiversité Pierre et Marie Curie Licece de Mathématiques (3ème aée) Aée 2004/2005 Probabilités Pierre Priouret Mode d emploi Ce polycopié est destié aux étudiats de la Licece (3ème aée) de Mathématiques

Plus en détail

PRÉPAS TOUS LES EXERCICES D'ANALYSE MP 100% Pour assimiler le programme, s entraîner et réussir son concours

PRÉPAS TOUS LES EXERCICES D'ANALYSE MP 100% Pour assimiler le programme, s entraîner et réussir son concours % PRÉPAS EL-HAJ LAAMRI PHILIPPE CHATEAUX GÉRARD EGUETHER ALAIN MANSOUX MARC REZZOUK DAVID RUPPRECHT LAURENT SCHWALD TOUS LES EXERCICES D'ANALYSE MP Pour assimiler le programme, s etraîer et réussir so

Plus en détail

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil. Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la

Plus en détail

collection odyssée Livre du professeur Nouveau programme François BRISOUX Professeur de mathématiques au lycée Frédéric Kirschleger de Munster

collection odyssée Livre du professeur Nouveau programme François BRISOUX Professeur de mathématiques au lycée Frédéric Kirschleger de Munster collectio odyssée MATHÉMATIQUES T le S Livre du professeur Eseigemet spécifique Eseigemet de spécialité Sous la directio de éric SIGWARD Nouveau programme IA-IPR de mathématiques de l académie de Strasbourg

Plus en détail

ANNALES BACCALAURÉAT 2013 MATHÉMATIQUES TERMINALE S. 1. Suites

ANNALES BACCALAURÉAT 2013 MATHÉMATIQUES TERMINALE S. 1. Suites ANNALES BACCALAURÉAT 03 MATHÉMATIQUES TERMINALE S ANNALES 03 TERMINALE S Suites Foctios 9 3 Probabilités 4 Géométrie 9 8 5 Spécialité 34 6 Cocours 44 Suites - : Amérique du Nord 03, 5 poits, o spécialistes

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( )

La calculatrice est autorisée. Le sujet comporte un total de 5 exercices. ( ) ( ) ( ) Aée 01-013 Mathématiques Décembre 01 Durée : 3 heures BAC blac N 1 La calculatrice est autorisée. Le sujet comporte u total de 5 exercices. Les élèves e suivat pas l eseigemet de spécialité traiterot les

Plus en détail

Analyse Numérique K.GHENIA. GC201-GM203 Cours et Exercices

Analyse Numérique K.GHENIA. GC201-GM203 Cours et Exercices Aalse Numérique HENIA GC-GM Cours et Eercices Istitut Supérieur de l Educatio et de la Formatio Cotiue TABLE DES MATIERES Résolutio d ue équatio algébrique Méthode d Itératio - Méthode du poit ie 5 Formules

Plus en détail

Fluctuation et estimation

Fluctuation et estimation Fluctuatio et estimatio Table des matières I Idetificatio de la situatio........................................ II Échatilloage, itervalle de fluctuatio asymptotique........................ II. Itervalle

Plus en détail

Probabilités. Poly des exercices. Prépa HEC Saint-Jean de Douai. Springer-Verlag ECS1 2007-2008. 4 septembre 2008

Probabilités. Poly des exercices. Prépa HEC Saint-Jean de Douai. Springer-Verlag ECS1 2007-2008. 4 septembre 2008 Prépa HEC Sait-Jea de Douai Probabilités Poly des exercices ECS1 2007-2008 Christia Skiada 4 septembre 2008 Spriger-Verlag Berli Heidelberg NewYork Lodo Paris Tokyo Hog Kog Barceloa Budapest Préface Voici

Plus en détail

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter

Plus en détail