Position de deux droites Distance d un point à une droite. Quadrilatères :

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Position de deux droites Distance d un point à une droite. Quadrilatères :"

Transcription

1 Position de deux droites Distance d un point à une droite. Quadrilatères :

2 Position de deux droites Distance d un point à une droite. Quadrilatères : Compétences: Tracer la parallèle à une droite donnée et passant par un point Tracer la perpendiculaire à une droite donnée et passant par un point Déterminer le plus court chemin entre deux points, entre un point et une droite Construire la médiatrice d un segment. Tracer des carrés et utiliser les propriétés caractéristiques du carré Tracer des rectangles et utiliser les propriétés caractéristiques du rectangle Tracer des losanges et utiliser les propriétés caractéristiques du losange Compléter et rédiger un programme de construction simple Suivre un programme de construction simple Reproduire des figures simples avec les instruments de géométrie Réaliser des figures simples avec un logiciel de géométrie dynamique Geogebra

3 Position de deux droites Distance d un point à une droite. Quadrilatères : 1) Position relatives de deux droites: a. Droites sécantes : Les droites (d) et (d ) se coupent en I: on dit qu elles sont sécantes en I. I est leur point d'intersection. (d) I (d ) b. Droites perpendiculaires :

4 b. Droites perpendiculaires : Les droites (d) et (d ) se coupent en formant un angle droit. On dit qu elles sont perpendiculaires. On note : (d) (d ). (d) (d ) Exemple: Construis la droite perpendiculaire à (d) passant par le point M.

5 Exemple: Construis la droite perpendiculaire à (d) passant par le point M. On place l'un des côtés de l'angle droit de l'équerre sur la droite (d) et l'autre côté sur le point M. On trace la droite le long du côté de l'équerre. On prolonge la droite à l'aide de la règle. On nomme la droite (d') et on code l'angle droit. Vidéo (Youtube) Constructions de parallèles et de perpendiculaires

6 Exercice : a) Placer trois points A,B et C non alignés. b) Tracer la droite (AB). c) Construire la droite perpendiculaire à (AB) passant par le point C. c. Droites parallèles :

7 c. Droites parallèles : Les droites (d) et (d ) n ont pas de point d intersection, même en les prolongeant indéfiniment. On dit qu elles sont parallèles. On note: (d) // (d ) (d) (d ) Exemple: Construis la droite parallèles à (d) passant par le point N.

8 Exemple: Construis la droite parallèles à (d) passant par le point N. On place un côté de l'angle droit de l'équerre sur la droite (d) et la règle sur l'autre côté de l'angle droit. On fait coulisser l'équerre le long de la règle, jusqu'au point N, sans bouger la règle. On trace la droite le long du côté de l'équerre. On nomme la droite (d''). Vidéo (Youtube) Constructions de parallèles et de perpendiculaires

9 Exemple: a) Placer trois points A, B et C non alignés. b) Tracer la droite (AB) c) Construire la droite perpendiculaire à la droite (AB) passant par le point C. d) Construire la droite parallèle à la droite (AB) passant par le point C. e) Construire la droite parallèle à la droite (AC) passant par le point B.

10 2) Droites parallèles et propriété: Activité 1: (voir fiche)

11 Propriété : Si deux droites sont perpendiculaires à une même troisième droite, alors elles sont parallèles. Activité 2: a) Placer trois points A,B et C. b) Construire la droite (d) parallèle à (AB) passant par le point C. c) Construire la droite perpendiculaire à la droite (AB) passant par le point A. On notera (d') cette droite. d) Que remarquez-vous?.

12 Propriété : Si deux droites sont parallèles, alors toute droite perpendiculaire à l une est perpendiculaire à l autre.

13 Propriété : Si deux droites sont parallèles, alors toute droite perpendiculaire à l une est perpendiculaire à l autre. Exemple: 1 ) Construis deux droites d1 et d2 perpendiculaires au point I et un point O hors de ces deux droites. 2 ) Trace la droite d, perpendiculaire à la droite d1 qui passe par le point O. 3 ) Trace la droite d', perpendiculaire à la droite d2 qui passe par le point O. 4 ) Comment sont les droites d1 et d'? 5 ) Comment sont les droites d et d'?

14 3) Distance d'un point à une droite : Définition : La distance d un point à une droite est la longueur du plus petit segment reliant ce point à l un des points de la droite Exemple: Activité :

15 Activité : a)tracer une droite (AB). b) Placer un point C n'appartenant pas à la droite(ab) c) Tracer la distance d'un point C à la droite (AB). On la notera CD. d) Que peut-on dire des droites (AB) et (CD)? Propriété :

16 Propriété : La distance d un point A à une droite (d) est la longueur du segment reliant le point A au pied de la perpendiculaire à (d) passant par ce même point A. Exemple:

17 Propriété : La distance d un point A à une droite (d) est la longueur du segment reliant le point A au pied de la perpendiculaire à (d) passant par ce même point A. Exemple: Dans la figure, le point H est le pied de la perpendiculaire. AH est la distance du point A à la droite (d).

18 4) Médiatrices d'un triangle a) Médiatrice d un segment Exemple: Tracer un segment [AB] quelconque puis sa médiatrice. Définition :

19 Définition : La médiatrice d un segment est la droite qui coupe perpendiculairement ce segment en son milieu

20 Définition: La médiatrice d un segment est la droite qui coupe perpendiculairement ce segment en son milieu Exercice : 1) Construire un triangle quelconque ULM puis construire les trois médiatrices de ce triangle. (C'est à dire des segments [UL], [LM] et [UM]) 2) Que remarquez-vous?

21 b) Activité : 1) Construire un segment [AB] avec sa médiatrice. 2) Place un point M sur la médiatrice. 3) Que peut-on dire des segments [MA],[MB] et du point M? 4) Trouvez une propriété sur la médiatrice?

22 c) Propriété : Propriété : La médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment. Exercice : a) Construire un segment [AB] de 7cm b) Construire deux cercles de rayon 5cm et de centre A et B. c) Que peut-on dire des points d'intersection de ces cercles.

23 Exercice : a) Construire un segment [AB] de 7cm b) Construire deux cercles de rayon 5cm et de centre A et B. c) Que peut-on dire des points d'intersection de ces cercles (On les notera C et D). CA = CB = 5 cm Le point C appartient à la médiatrice de [AB] DA = DB = 5 cm Le point D appartient à la médiatrice de [AB] La droite (CD) est la médiatrice de [AB]

24 5 ) Le rectangle: a) Définition Définition : Un rectangle est un quadrilatère qui a 4 angles droits.

25 b) Construction : Exemple : Construire un rectangle RECT tel que RE = 4 cm et EC = 7cm. T et le 4 ème angle? C R (d3) (d 1 ) (d 2 ) E

26 c) Construction d un rectangle connaissant un côté et une diagonale Construisons le rectangle LACS tel que LS = 6cm et LC = 10cm Je dessine, à main L levée, un petit schéma 6 sur lequel je place S 10 A toutes les indications données dans l énoncé C

27 Construisons le rectangle LACS tel S 6 10 L que LS = 6cm et LC = 10cm A C Je trace : le segment [LS] de 6 cm la perpendiculaire en L à [LS] la perpendiculaire en S à [LS] l arc de cercle de centre L et de rayon 10 cm la perpendiculaire en C à [CS]

28 6 ) Le losange: a) Définition Définition : Un losange est un quadrilatère qui a 4 côtés de même longueur.

29 b) Construction Exemple : Construis un losange LOSA tel que LO = 4cm. O S L A

30 Les côtés opposés sont parallèles et de même longueur. c) Propriétés

31 c) Propriétés : Les côtés opposés sont parallèles et de même longueur. O Les diagonales L se coupent en leur milieu et sont perpendiculaires. S A

32 d) Construction d un losange connaissant la mesure de ses diagonales Construisons le losange STAR tel que SA = 6cm et TR = 10cm Je dessine, à main levée, un petit schéma sur lequel je place toutes les indications données dans l énoncé S T 10cm A 6cm R

33 Construisons le losange STAR tel que SA = 6cm et TR = 10cm T S 10cm A 6cm R Je trace le segment [SA] et son milieu I la perpendiculaire à [SA] en I le cercle de centre I et de rayon 10:2=5cm les points T et R puis le losange STAR

34 7 ) Le carré : Définition : Un carré est un quadrilatère qui a quatre côtés de même longueur et quatre angles droits. Exemple : Construire un carré GFRT tel que GR= 3cm.

35 Exemple : Construire un carré GFRT tel que GR= 3cm.

Droites perpendiculaires et droites parallèles

Droites perpendiculaires et droites parallèles hapitre 6 ème Droites perpendiculaires et droites parallèles Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée. édiatrice. auteur d'un triangle. Triangle rectangle. Rectangle

Plus en détail

Les droites (d) et (d ) n ont pas de point d intersection, même en les prolongeant indéfiniment. On dit qu elles sont parallèles.

Les droites (d) et (d ) n ont pas de point d intersection, même en les prolongeant indéfiniment. On dit qu elles sont parallèles. DROITES PRLLÈLES- DROITES PERPENDICULIRES (C. MOUSSELRD I. POSITION RELTIVE DE DEUX DROITES. 1.Droites sécantes: Les droites (d et (d se coupent (se croisent en I : On dit qu elles sont sécantes. I est

Plus en détail

Droites, cercles et quadrilatères

Droites, cercles et quadrilatères Droites, cercles et quadrilatères «Des outils pour les démonstrations» I Droites et segments 1) Droites Propriété 1 : Par deux points distincts A et B, il passe une seule droite ; on peut la noter (AB).

Plus en détail

Chap2 Perpendiculaires et parallèles. p 118

Chap2 Perpendiculaires et parallèles. p 118 Chap2 Perpendiculaires et parallèles p 118 Chap2- Perpendiculaires et parallèles I- Vocabulaire Ex 1p119 Ex 2p119 Ex 3p119 Chap2- Perpendiculaires et parallèles I- Vocabulaire a) Le point Toujours noté

Plus en détail

Bilan de géométrie n 5. Dans le plan

Bilan de géométrie n 5. Dans le plan Groupe 1 Bilan de géométrie n 5 Dans le plan Nom : Prénom : Date : / / Reconnaître, décrire, nommer et reproduire, tracer des figures planes en utilisant la règle graduée, l'équerre, le compas. S.C A B

Plus en détail

Les droites parallèles et perpendiculaires

Les droites parallèles et perpendiculaires Les droites parallèles et perpendiculaires 1. Rappels du vocabulaire Je lis Point Droite Segment Demi- droite J écris Je dessine M [AB] est (AB) est AB est Le point A appartient à la droite (d). On note

Plus en détail

PROJET d'ateliers de GEOMETRIE

PROJET d'ateliers de GEOMETRIE PROJET d'ateliers de GEOMETRIE Compétences travaillées lors des ateliers : - Percevoir et reconnaître parallèles et perpendiculaires - Utiliser la règle, l'équerre et le compas pour vérifier la nature

Plus en détail

#2 Triangles, médiatrices et cercle circonscrit

#2 Triangles, médiatrices et cercle circonscrit #2 Triangles, médiatrices et cercle circonscrit I Construction d un triangle connaissant ses 3 longueurs Activité 1 : Construis un triangle dont les côtés mesurent 3, 5 et 9 cm. Que remarque-t-on? Réponse

Plus en détail

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle.

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle. 1 / 6 I. Polygones : Un polygone est une figure fermée dont les côtés sont des segments. II. Triangles : 1) Un triangle est un polygone à trois côtés. Les segments [AC], [AB] et [BC] sont les trois côtés

Plus en détail

Parallélogrammes Particuliers

Parallélogrammes Particuliers Parallélogrammes Particuliers I) Définitions et propriétés Les parallélogrammes particuliers étudiés sont les rectangles, les carrés et les losanges. 1) Le rectangle a) Définition : Un rectangle est un

Plus en détail

Figures usuelles. Copyright meilleurenmaths.com. Tous droits réservés

Figures usuelles. Copyright meilleurenmaths.com. Tous droits réservés 1. Le triangle rectangle... p2 4. Le losange... p10 2. Le parallélogramme... p4 5. Le carré... p11 3. Le rectangle... p7 6. Le trapèze... p13 Copyright meilleurenmaths.com. Tous droits réservés 1. Le triangle

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui compose ce polygone

Plus en détail

PARALLELES ET PERPENDICULAIRES

PARALLELES ET PERPENDICULAIRES PARALLELES ET PERPENDICULAIRES Je sais définir et construire deux droites perpendiculaires Je sais définir et construire deux droites parallèles Je comprends les propriétés permettant de démontrer que

Plus en détail

Exercice des 24 h du Mans

Exercice des 24 h du Mans Exercice des 24 h du Mans Une voiture part de la ligne de départ. Elle se déplace en ligne droite jusqu à un bord du circuit et elle repart alors, à angle droit, toujours en ligne droite, etc. Fais avancer

Plus en détail

Chapitre Bissectrice Cercle inscrit Distance d un point à une droite Tangente

Chapitre Bissectrice Cercle inscrit Distance d un point à une droite Tangente Chapitre issectrice Cercle inscrit Distance d un point à une droite Tangente Connaître et utiliser la définition de la bissectrice. Utiliser différentes méthodes pour tracer : La médiatrice d un segment.

Plus en détail

Les droites (d 1 ) et (d 2 ) sont parallèles. On note (d 1 ) // (d 2 )

Les droites (d 1 ) et (d 2 ) sont parallèles. On note (d 1 ) // (d 2 ) CONSTRUCTIONS DE FIGURES PLNES I. DROITES PRLLELES ET PERPENDICULIRES Deux droites sont parallèles quand elles n ont aucun point commun. Les droites (d 1 ) et (d 2 ) sont parallèles. On note (d 1 ) //

Plus en détail

Droites parallèles et perpendiculaires Groupe 3

Droites parallèles et perpendiculaires Groupe 3 Droites parallèles et perpendiculaires Groupe 3 Objectif: reconnaître et tracer des droites parallèles et perpendiculaires. 1. Trace la droite (d4) passant par A et parallèle à (d2). Trace la droite (d5)

Plus en détail

Tracer un cercle. 1 Trace le cercle C de centre A et de rayon 5 cm. Le cercle C coupe la

Tracer un cercle. 1 Trace le cercle C de centre A et de rayon 5 cm. Le cercle C coupe la Tracer un cercle 1 Construire un cercle avec un compas. Utiliser le vocabulaire géométrique: centre d un cercle, rayon, diamètre. 1 Trace le cercle C de centre A et de rayon 5 cm. Le cercle C coupe la

Plus en détail

Chap 5 : A la règle, à l équerre, au compas et au rapporteur

Chap 5 : A la règle, à l équerre, au compas et au rapporteur Chap 5 : A la règle, à l équerre, au compas et au rapporteur A la fin du chapitre, tu dois être capable de : 6 G 7 : Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée (usage

Plus en détail

SYMETRIE AXIALE. 1 ) symétrie axiale. a) symétrique d'un point

SYMETRIE AXIALE. 1 ) symétrie axiale. a) symétrique d'un point 1 ) symétrie axiale SYMETRIE AXIALE a) symétrique d'un point Définition : A' est le symétrique du point A par rapport à la droite (d) si (d) est la médiatrice du segment [AA'] (C'est à dire si la droite

Plus en détail

Le point. 2. Axiome d'euclide (III ème IV ème siècle av J.C.) 3. Parties d'une droite. RAPPELS DE GÉOMÉTRIE

Le point. 2. Axiome d'euclide (III ème IV ème siècle av J.C.) 3. Parties d'une droite. RAPPELS DE GÉOMÉTRIE 1. Le point. C'est l élément élémentaire de la géométrie. Une infinité de points constitue une droite. Sur le dessin, la droite (D) passe par une infinité de points : on dit que ces points sont alignés.

Plus en détail

Chapitre 8 Symétrie axiale

Chapitre 8 Symétrie axiale I. s symétriques Chapitre 8 Symétrie axiale Définition 1 : Deux points, A et B, sont symétriques par rapport à une droite (d), si la droite (AB) est perpendiculaire à (d) et le point d intersection des

Plus en détail

Chapitre 4 : Droites perpendiculaires et droites parallèles

Chapitre 4 : Droites perpendiculaires et droites parallèles Chapitre 4 : Droites perpendiculaires et droites parallèles Dans ce chapitre, on utilisera la règle et l équerre. 1) Droites perpendiculaires : Rappel : Si deux droites se coupent en un point, on dit qu

Plus en détail

Parallélogramme. Définition: Un parallélogramme est un quadrilatère..

Parallélogramme. Définition: Un parallélogramme est un quadrilatère.. Parallélogramme I) Définition Définition: Un parallélogramme est un quadrilatère.. Activité 3 p 129 Une figure à main levée... à l'oeil ouvert Un professeur demande à ses élèves de tracer une figure à

Plus en détail

Éléments de base de géométrie

Éléments de base de géométrie Chapitre 1 Éléments de base de géométrie Points et droites Pour représenter un point, on dessine une petite croix avec des traits ns. (Il ne faut pas faire quelque chose comme ça : parce que ce n'est pas

Plus en détail

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés.

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. Th Trois longueurs étant données, Si la plus grande est

Plus en détail

Perpendiculaires et parallèles

Perpendiculaires et parallèles Perpendiculaires et parallèles I. Droites perpendiculaires 1/ ctivité Tracer à main levée des angles droits. On s'efforcera de ne pas faire de verticale ou d'horizontale. Vérifier à l'aide de l'équerre

Plus en détail

6 ème COURS : droites perpendiculaires et droites parallèles.

6 ème COURS : droites perpendiculaires et droites parallèles. 1 Droites sécantes Définition : deux droites sécantes sont deux droites qui ont un seul point commun. Ce point commun est appelé point d intersection des deux droites. Les deux droites (d1) et (d2) se

Plus en détail

GÉOMÉTRIE. Ecole santa cruz M.Cohen

GÉOMÉTRIE. Ecole santa cruz M.Cohen GÉOMÉTRIE GM.01 Objets et notations GM.02 Les instruments de dessin GM.03 Tracer 2 droites perpendiculaires GM.04 Tracer 2 droites parallèles GM.05 Les polygones GM.06 Les quadrilatères GM.07 Les carrés

Plus en détail

Chap 5 : A la règle, à l équerre, au compas et au rapporteur

Chap 5 : A la règle, à l équerre, au compas et au rapporteur Chap 5 : A la règle, à l équerre, au compas et au rapporteur A la fin du chapitre, tu dois être capable de : 6 G 7 : Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée (usage

Plus en détail

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe :

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe : GÉOMÉTRIE GM.01 Objets et notations GM.02 Les instruments de dessin GM.03 Tracer 2 droites perpendiculaires GM.04 Tracer 2 droites parallèles GM.05 Les polygones GM.06 Les quadrilatères GM.07 Les carrés

Plus en détail

Géométrie CM1/CM2 - FH

Géométrie CM1/CM2 - FH Gm1 : Connaître le vocabulaire et les instruments de géométrie. En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. Gm2 : Identifier et

Plus en détail

Un point est toujours représenté par deux lignes qui se croisent. Il y a trois cas : Le point se situe ici

Un point est toujours représenté par deux lignes qui se croisent. Il y a trois cas : Le point se situe ici PREIERES NOTIONS DE GEOETRIE 1 POINT, DROITE, DEI-DROITE, SEGENT : a. Point : Un point est toujours représenté par deux lignes qui se croisent. Il y a trois cas : Le point se situe ici Un point n a pas

Plus en détail

Construction géométrique : les outils dont on dispose

Construction géométrique : les outils dont on dispose Construction géométrique : les outils dont on dispose I. La règle La règle a deux utilisations principales : Mesurer une distance Tracer des droites II. L équerre L équerre à deux utilisations principales

Plus en détail

SYMETRIE CENTRALE EXERCICES

SYMETRIE CENTRALE EXERCICES SYMETRIE CENTRALE EXERCICES DÉMONTRER EN UTILISANT LES PROPRIÉTÉS DE LA SYMÉTRIE Exercice 1. Etant donnés trois points non alignés A, B et O, on appelle A' et B' les symétriques respectifs de A et B par

Plus en détail

Le vocabulaire de géométrie

Le vocabulaire de géométrie Géom1 Le vocabulaire de géométrie En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire : Un point A A X Un segment [AB] (d) Une droite (d)

Plus en détail

COURS. Demi-droite d origine Segment d extrémités Droite A et B (AB) ou (d) [AB) [AB]

COURS. Demi-droite d origine Segment d extrémités Droite A et B (AB) ou (d) [AB) [AB] EC 4A : ELEMENTS DE MATHEMATIQUES PARALLELISME, PERPENDICULARITE, FIGURES PLANES ELEMENTAIRES COURS Objectifs du chapitre : Reconnaître et construire les figures de base de la géométrie Caractériser, reconnaître

Plus en détail

Géométrie Année

Géométrie Année Géométrie nnée 2012-2013 Sommaire G1- Le vocabulaire de géométrie G2- Les droites perpendiculaires G3- Les droites parallèles G4- Les polygones G5- Les quadrilatères G6- Les triangles G7- Les cercles G8-

Plus en détail

Droites parallèles et perpendiculaires Groupe 2

Droites parallèles et perpendiculaires Groupe 2 Droites parallèles et perpendiculaires Groupe 2 Objectif: reconnaître et tracer des droites parallèles et perpendiculaires. 1. Réalise le programme de construction suivant sur ta copie. Construis les droites

Plus en détail

Chapitre 23 : Triangles et quadrilatères particuliers

Chapitre 23 : Triangles et quadrilatères particuliers I- Triangles particuliers 1) Ce qu il faut savoir Chapitre 23 : Triangles et quadrilatères particuliers Triangle isocèle Définition : Un triangle isocèle est un triangle qui a deux côtés de même longueur

Plus en détail

Proprié té s dé gé omé trié plané

Proprié té s dé gé omé trié plané Proprié té s dé gé omé trié plané Droites Si deux droites sont parallèles à une même troisième alors elles sont parallèles entre elles (fig.1). Si deux droites sont perpendiculaires à une même troisième

Plus en détail

Chapitre 15 : Axes de symétrie

Chapitre 15 : Axes de symétrie hapitre 15 : es de symétrie 1) e de symétrie d une figure : Une droite est un ae de symétrie d une figure si les deu parties de la figure se superposent par pliage le long de cette droite. D La droite

Plus en détail

1. Point, segment, droite, demi-droite a. Vocabulaire, représentation et notation b. Points alignés c. Droites sécantes. d. De nouvelles notations

1. Point, segment, droite, demi-droite a. Vocabulaire, représentation et notation b. Points alignés c. Droites sécantes. d. De nouvelles notations 2014 2015 6ème Chapitre 2 Premiers pas en 1. Point, segment, droite, demi-droite a. Vocabulaire, représentation et notation b. Points alignés c. Droites sécantes. d. De nouvelles notations géométrie 2.

Plus en détail

I. Parallélogrammes :

I. Parallélogrammes : 1 / 5 I. Parallélogrammes : Un parallélogramme est un quadrilatère dont les côtés opposés sont parallèles. Si un quadrilatère est un parallélogramme, alors : Ses côtés opposés sont parallèles et de même

Plus en détail

Chapitre 5 : Droites perpendiculaires et droites parallèles

Chapitre 5 : Droites perpendiculaires et droites parallèles Chapitre 5 : Droites perpendiculaires et droites parallèles Dans ce chapitre, on utilisera la règle et l équerre. 1) Droites perpendiculaires : Rappel : Si deux droites se coupent en un point, on dit qu

Plus en détail

Chapitre n 6 : «Perpendiculaires et parallèles»

Chapitre n 6 : «Perpendiculaires et parallèles» Chapitre n 6 : «Perpendiculaires et parallèles» I. Droites perpendiculaires 1/ Activité Rappels On note les droites à l'aide de parenthèses... Une lettre minuscule entre parenthèses La droite ci-contre

Plus en détail

Symétrie axiale. La médiatrice d un segment est la droite qui passe par le milieu de ce segment et qui lui est perpendiculaire.

Symétrie axiale. La médiatrice d un segment est la droite qui passe par le milieu de ce segment et qui lui est perpendiculaire. Symétrie axiale I) Médiatrice d un segment : Définition : La médiatrice d un segment est la droite qui passe par le milieu de ce segment et qui lui est perpendiculaire. Exemple : La droite (d) est perpendiculaire

Plus en détail

Chap 5 : A la règle, à l équerre, au compas et au rapporteur

Chap 5 : A la règle, à l équerre, au compas et au rapporteur Chap 5 : A la règle, à l équerre, au compas et au rapporteur A la fin du chapitre, tu dois être capable de : 6 G 7 : Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée (usage

Plus en détail

5. Réponds aux questions suivantes en écrivant des phrases sous la figure que tu viens de coller.

5. Réponds aux questions suivantes en écrivant des phrases sous la figure que tu viens de coller. Déclic Construire-01 1. Trace un carré ABCD de 8 cm de côté. Nomme chacun des sommets de ce carré. 2. Trace les diagonales [AC] et [BD] du carré. 3. Le point O est le point d'intersection de ces deux diagonales.

Plus en détail

I Rappels sur les symétries :

I Rappels sur les symétries : I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ AB ]. On appelle médiatrice du segment [ AB ] la droite perpendiculaire en I à ( AB ). Propriétés : La médiatrice de [ AB ]

Plus en détail

Vocabulaire de la géométrie

Vocabulaire de la géométrie GEOM 1 Vocabulaire de la géométrie 1 Le point Le point est un endroit précis du plan. On le représente par une croix dont il est le centre et on le nomme avec une lettre majuscule. 2 Droite Trois points

Plus en détail

1. Activité. Sur le plan de SMDC ci-dessous

1. Activité. Sur le plan de SMDC ci-dessous DROITES PRLLÈLES ET PERPENDICULIRES 1. ctivité Sur le plan de SMDC ci-dessous Tracer en rouge deux rues sécantes non perpendiculaires Tracer en bleu deux rue perpendiculaires Tracer en vert deux rues parallèles

Plus en détail

Cercles et polygones

Cercles et polygones Cercles et polygones I) Le cercle : a) Soit O un point donné et R un nombre décimal positif. On appelle cercle C de centre O et de rayon R, l ensemble des points M situés à la distance R du point O. On

Plus en détail

I Définition. Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D.

I Définition. Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D. QUADRILATERES I Définition Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D. Quatre côtés : les segments [AB], [BC], [CD] et

Plus en détail

Comment démontrer que deux droites sont parallèles

Comment démontrer que deux droites sont parallèles F1 Comment démontrer que deux droites sont parallèles P : Si deux droites sont parallèles, alors toute parallèle à l une est parallèle à l autre. P : Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

6.G5 Symétrie axiale

6.G5 Symétrie axiale Symétrie Axiale Géométrie 6.G5 Symétrie axiale 6.G50[S] Connaître la symétrie axiale (constructions sur quadrillage, trouver des axes de symétrie éventuels). 6.G51[S] Construire l'image d'un point, d'un

Plus en détail

Distances et Tangentes

Distances et Tangentes Distances et Tangentes I) Distances 1) Définition Définition : La distance d'un point à une droite (d) est la plus courte de toutes les distances possibles entre et un point de (d). Elle est égale à H

Plus en détail

GEOMETRIE. A. Les familles de polygones GEO 8. LES QUADRILATERES

GEOMETRIE. A. Les familles de polygones GEO 8. LES QUADRILATERES GEOMETRIE GEO 1. LES INSTRUMENTS DU DESSIN A. La règle B. L équerre C. Le compas D. Le calque E. Le quadrillage F. Le gabarit GEO 2. POINTS, LIGNES, DROITES ET SEGMENTS A. Le point B. La droite C. LE SEGMENT

Plus en détail

Connaître et représenter des figures géométriques et des objets de l'espace. Utiliser leurs propriétés.

Connaître et représenter des figures géométriques et des objets de l'espace. Utiliser leurs propriétés. Connaître et représenter des figures géométriques et des objets de l'espace. Utiliser leurs propriétés. Fin de cycle 3 Connaître les figures planes : carré, rectangle, losange, triangle, triangle rectangle,

Plus en détail

I. Les figures élémentaires :

I. Les figures élémentaires : I. Les figures élémentaires : A. Les triangles : Triangle isocèle Un triangle isocèle est un triangle qui a deux de ses côtés de. un triangle est isocèle les deux côtés issus du sommet principal ont. un

Plus en détail

D après des exemples tirés des manuels Cap Maths, sauf mention contraire

D après des exemples tirés des manuels Cap Maths, sauf mention contraire 1 / 6 Exemples d'activités géométriques D après des exemples tirés des manuels Cap Maths, sauf mention contraire Reproduction de figures Activité 1 : Avec la règle, sans mesurer... On a commencé à reproduire

Plus en détail

LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST...

LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST... THEME : LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST... SOMMAIRE : PARALLELOGRAMME? RECTANGLE? LOSANGE? CARRE? PARALLELOGRAMME? Vous disposez principalement de deux méthodes, une concernant

Plus en détail

Géométrie. Bissectrices, médiatrices, parallèles et perpendiculaires au compas

Géométrie. Bissectrices, médiatrices, parallèles et perpendiculaires au compas Géométrie Bissectrices, médiatrices, parallèles et perpendiculaires au compas 1. Bissectrices d angles La bissectrice d un angle est la droite qui le partage en deux angles isométriques: La bissectrice

Plus en détail

Symétrie centrale: AB = A'B' Figures symétriques

Symétrie centrale: AB = A'B' Figures symétriques Symétrie centrale: Figures symétriques ide mémoire Géométrie 5 ème Le symétrique d'un segment par rapport à un point est un segment de même longueur. La symétrie centrale conserve les longueurs. ' = ''

Plus en détail

Ex 1 : Vrai ou faux. Géom 1

Ex 1 : Vrai ou faux. Géom 1 CONNAITRE LE VOCABULAIRE ET LES INSTRUMENTS GEOMETRIQUES Géom 1 En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. Ex 1 : Vrai ou faux

Plus en détail

Géom 1 Connaître le vocabulaire et le codage géométrique

Géom 1 Connaître le vocabulaire et le codage géométrique Géom 1 Connaître le vocabulaire et le codage géométrique La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points alignés : on ne peut donc

Plus en détail

Liaison CM2 / 6ème. A la découvert de GeoGebra T.P.1 : A LA DECOUVERTE DE GEOGEBRA

Liaison CM2 / 6ème. A la découvert de GeoGebra T.P.1 : A LA DECOUVERTE DE GEOGEBRA 1 T.P.1 : A LA DECOUVERTE DE GEOGEBRA 1) INTRODUCTION : GeoGebra est un logiciel de géométrie dynamique gratuit que tu peux télécharger gratuitement sur www.geogebra.org. Le mot «dynamique» signifie que

Plus en détail

Calcul mental-minitest: triangles et quadrilatères

Calcul mental-minitest: triangles et quadrilatères Calcul mental-minitest: triangles et quadrilatères triangles et quadrilatères Lycée Français de Barcelone sixième (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 1 / 21 Question

Plus en détail

GEOMETRIE CM1. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté.

GEOMETRIE CM1. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. x I x K x F Une droite est un alignement infini de points. On la désigne par

Plus en détail

Connaître le vocabulaire et le codage en géométrie. Connaître le vocabulaire et le codage en géométrie. res

Connaître le vocabulaire et le codage en géométrie. Connaître le vocabulaire et le codage en géométrie. res Ge1 Connaître le vocabulaire et le codage en géométrie. Ge2 Connaître le vocabulaire et le codage en géométrie. La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée

Plus en détail

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE. Points, lignes, droites et segments Tableaux et quadrillages

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE. Points, lignes, droites et segments Tableaux et quadrillages SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... GÉOMÉTRIE GÉOM 0 GÉOM 1 GÉOM 2 GÉOM 3 GÉOM 4 GÉOM 5 GÉOM 6 GÉOM 7 GÉOM 8 GÉOM 9 GÉOM 10 GÉOM 11 GÉOM 12 GÉOM 13 Points, lignes, droites

Plus en détail

Géométrie. Quadrilatères, constructions et mesures

Géométrie. Quadrilatères, constructions et mesures Géométrie Quadrilatères, constructions et mesures 1. Quadrilatères et caractéristiques Un quadrilatère est une figure plane qui a quatre côtés, quatre angles et quatre sommets: Il existe différentes sortes

Plus en détail

Utiliser les propriétés des parallélogrammes et des parallélogrammes particuliers. Objectif 20 Livre e

Utiliser les propriétés des parallélogrammes et des parallélogrammes particuliers. Objectif 20 Livre e 5 e Utiliser les propriétés des parallélogrammes et des parallélogrammes particuliers Objectif 20 Livre 23.4 Mots clefs. Parallélogramme Rectangle Losange Carré Côté Diagonale Axe de symétrie Centre de

Plus en détail

Figures usuelles et axes de symétrie

Figures usuelles et axes de symétrie Chapitre 4 Figures usuelles et axes de symétrie I. Figures usuelles 1) Triangles un triangle est un polygone ayant 3 côtés. Vocabulaire : ABC est un triangle. A A, B et C sont ses 3 sommets. [AB], [AC]

Plus en détail

Figure 1 Figure 2 Figure 3 Figure 4

Figure 1 Figure 2 Figure 3 Figure 4 ctivité 1 : Miroir, mon beau miroir Figure 1 Figure 2 Figure 3 1. Observe les trois figures ci-dessus. a. Quel est leur point commun? Comment peux-tu le mettre en évidence? b. Trouve dans des publicités

Plus en détail

Espace et géométrie. COURS Cinquième

Espace et géométrie. COURS Cinquième COURS Cinquième Espace et géométrie 1Symétrie centrale et parallélogramme...2 1Définir la symétrie centrale et le centre de symétrie...3 2Utiliser les propriétés de la symétrie centrale...4 3Utiliser les

Plus en détail

THEOREMES DE GEOMETRIE

THEOREMES DE GEOMETRIE THEOREMES DE GEOMETRIE DROITES REMARQUABLES D'UN TRIANGLE Hauteurs : On appelle hauteur d'un triangle une droite qui passe par un sommet du triangle et qui est perpendiculaire au coté opposé à ce sommet.

Plus en détail

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle.

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle. 6 e Décrire des figures usuelles Objectif 04 Livre 12 Mots clefs. Cercle Rayon, diamètre, corde et arc d un cercle Équidistance Triangle, triangle isocèle, triangle rectangle, triangle équilatéral Base

Plus en détail

Symétries. Objectifs du chapitre. Énigme du chapitre.

Symétries. Objectifs du chapitre. Énigme du chapitre. Symétries C H P I T R E 4 Énigme du chapitre. Objectifs du chapitre. Construire une figure géométrique qui a deux centres de symétrie. Construire le symétrique (axiale) d une droite. Construire le symétrique

Plus en détail

Géométrie. Lieux géométriques

Géométrie. Lieux géométriques Géométrie Lieux géométriques 1. Lieux géométriques Un lieu géométrique est un ensemble de points vérifiant une même propriété. En voici quelques exemples, certains déjà connus, d autres à découvrir. 2.

Plus en détail

Petit dictionnaire de géométrie plane

Petit dictionnaire de géométrie plane Petit dictionnaire de géométrie plane Le point 'est l'élément de base de la géométrie. eux droites qui se coupent définissent un point à leur intersection. xemple : Les droites (a) et (b) définissent le

Plus en détail

FICHES OUTILS GEOMETRIE CM2

FICHES OUTILS GEOMETRIE CM2 FICHES OUTILS GEOMETRIE Constructions pour le plaisir avec des cercles: page 25: la cible page 26: la rosace page 27: la rosace double page 28: la rose page 29: le mandala Pages 2 à 9: 1 Les instruments

Plus en détail

GEOMETRIE. Point, droite, segment

GEOMETRIE. Point, droite, segment GEOMETRIE Gé 1 Point, droite, segment Le point : - Il désigne un endroit bien précis. - Il est représenté par une croix. - On le nomme avec une lettre majuscule. La droite : A X Le point B est situé exactement

Plus en détail

Les points A, B, C et D sont. du quadrilatère ABCD. Le segment [AB] est... du quadrilatère ABCD. Les segments [AB] et [DC] sont du quadrilatère ABCD.

Les points A, B, C et D sont. du quadrilatère ABCD. Le segment [AB] est... du quadrilatère ABCD. Les segments [AB] et [DC] sont du quadrilatère ABCD. Activité 1 B C A Observe la figure ci-dessus, puis complète les phrases suivantes : Cette figure est... D Les points A, B, C et D sont. du quadrilatère ABCD. Le segment [AB] est... du quadrilatère ABCD.

Plus en détail

Chap 5 : A la règle, à l équerre, au compas et au rapporteur

Chap 5 : A la règle, à l équerre, au compas et au rapporteur Chap 5 : A la règle, à l équerre, au compas et au rapporteur A la fin du chapitre, tu dois être capable de : 6 G 7 : Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée (usage

Plus en détail

(d après La géométrie pour le plaisir - J. et L. DENIERE - Editions Kim)

(d après La géométrie pour le plaisir - J. et L. DENIERE - Editions Kim) Trace deux cercles (C) et (C') de centre et de rayons respectifs 8 cm et 9 cm. Sur le cercle (C), place un point et reporte 6 fois la longueur du rayon (8 cm). n obtient les points, B, C, D, E, F. Trace

Plus en détail

Vocabulaire géométrique (Cm1) Vocabulaire géométrique (Cm2)

Vocabulaire géométrique (Cm1) Vocabulaire géométrique (Cm2) Vocabulaire géométrique (Cm1) La droite : c est un trait qui passe par un nombre infini de points alignés. On ne peut donc pas mesurer une droite. Le point : on le représente par une croix et on le nomme

Plus en détail

Des points, des droites, des angles

Des points, des droites, des angles Tracer une droite perpendiculaire ou parallèle à une droite donnée Reproduire une figure donnée en utilisant du matériel adapté Reproduire un angle donné en utilisant un gabarit Utiliser en situation le

Plus en détail

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer...

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer... 3 Pr démontrer... Fiches de géométrie Niveau 3ème...que deux droites sont parallèles... Fiche...que deux droites sont perpendiculaires... Fiche 2...que deux longueurs sont égales... Fiche 3...que deux

Plus en détail

PROPRIETES, THEOREME DE GEOMETRIE

PROPRIETES, THEOREME DE GEOMETRIE PROPRIETES, THEOREME DE GEOMETRIE Droites Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles. (6ème) Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

CHAPITRE 2 : TRIANGLE RECTANGLE ET CERCLE CONSOLIDATION DU RAISONNEMENT DEDUCTIF

CHAPITRE 2 : TRIANGLE RECTANGLE ET CERCLE CONSOLIDATION DU RAISONNEMENT DEDUCTIF CHAPITRE 2 : TRIANGLE RECTANGLE ET CERCLE CONSOLIDATION DU RAISONNEMENT DEDUCTIF I) LE RAISONNEMENT DEDUCTIF EN GEOMETRIE. On ne peut pas prouver qu un énoncé de géométrie est vrai en faisant uniquement

Plus en détail

De la symétrie centrale au parallélogramme

De la symétrie centrale au parallélogramme La géométrie en 5 doit nous permettre de passer de l identification perceptive (la reconnaissance par la vue) de figures et de configurations à leur caractérisation par des propriétés (passage du dessin

Plus en détail

Géom 1 Connaître le vocabulaire et le codage géométrique

Géom 1 Connaître le vocabulaire et le codage géométrique Géom 1 Connaître le vocabulaire et le codage géométrique En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. La règle sert à mesurer, tracer

Plus en détail

Mathématiques niveau CFG

Mathématiques niveau CFG Mathématiques niveau CFG Chapitre 4 : Géométrie COURS 1 : LES DROITES En géométrie, pour tracer des figures, on utilise des points, des droites, des demi-droites et des segments. 1. Lignes courbes une

Plus en détail

Droites et triangles

Droites et triangles Droites et triangles I - Médiatrice d un segment : A. Définition : On appelle médiatrice d un segment la droite perpendiculaire à ce segment en son milieu. La droite (d) est perpendiculaire au segment

Plus en détail

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... GÉOMÉTRIE GEOM 0 Points, lignes, droites et segments GEOM 1 Tableaux et quadrillages GEOM 2 Reproduire une figure GEOM 3 ercle et compas

Plus en détail

LA DEMONSTRATION EN GEOMETRIE PLANE

LA DEMONSTRATION EN GEOMETRIE PLANE LA DEMONSTRATION EN GEOMETRIE PLANE I. Le débat Pour discuter de la validité d'énoncés mathématiques, les mathématiciens ont mis en place des règles de débat. En mathématiques, ces principales règles sont

Plus en détail

2 Pour identifier que 2 droites sont perpendiculaires, j utilise le signe sur le dessin.

2 Pour identifier que 2 droites sont perpendiculaires, j utilise le signe sur le dessin. Les droites perpendiculaires éfinition (e) eux droites sont perpendiculaires si elles se coupent en formant un angle droit. (f) Pour identifier que droites sont perpendiculaires, j utilise le signe sur

Plus en détail

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. Géom 1 CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. Géom 1 CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE La géométrie exige rigueur et précision dans le vocabulaire utilisé. Géom 1 Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix

Plus en détail

Chapitre 11 : Symétrie axiale.

Chapitre 11 : Symétrie axiale. Chapitre 11 : Symétrie axiale. I Approche expérimentale. Définition : Deux figures sont symétriques par rapport à une droite si, en pliant suivant cette droite, les deux figures se superposent. Cette droite

Plus en détail