FRLT Page 1 15/08/2014

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "FRLT Page 1 15/08/2014"

Transcription

1 Algorithmes à aalyser O cosidère l algorithme : - u est du type ombre - q est du type ombre - p est du type ombre - S est du type ombre - Lire u - Lire q - Lire p - S pred la valeur de u - Tat que (u > p) Faire - Début Tat que - u pred la valeur u*q - S pred la valeur S + u - Fi Tat que - Afficher S Aalyser les algorithmes suivats : - u est du type ombre - i est du type ombre - u pred la valeur - Afficher u - Pour i allat de à 9 - Début pour - u pred la valeur u Afficher u - Fi pour ) Exécuter cet algorithme avec u =, q = etp = 0.. ) Quel rôle jouet les variables p et q? ) Que représetet les valeurs de u? ) Tester le programme pour q = puis q = -. Que costate-t-o? Pourquoi? - S est du type ombre - i est du type ombre - S pred la valeur 0 - i pred la valeur 0 - Tat que i 00 S S + i - i i + - Fi tat que - Afficher S Soit ( u ) la suite défiie par u u 0 + = 7 = u + - est du type ombre - u est du type ombre - M est du type ombre tel que - pred la valeur de 0 - u pred la valeur 7 - Tat que (u < M) Faire - Début Tat que - pred la valeur + - u pred la valeur u + - Fi Tat que - Afficher 0 < M< ) O cosidère l algorithme : Quel est l itérêt de cet algorithme? ) Programmer cet algorithme sur u logiciel ou ue calculatrice. ) Tester le programme avec différetes valeurs de M de plus e plus proches de. Que remarque-t-o? ) Motrer que pour tout etier aturel u = 8x 5) Démotrer alors la cojecture émise e 5) FRLT Page 5/08/0

2 O cosidère la suite ( u ) défiie par u 0 = et pour tout etier aturel, u+ = u + O cosidère l algorithme suivat : - est du type ombre - u et M est du type ombre - Saisir M - pred la valeur 0 - u pred la valeur - Tat que i < M - pred la valeur + - u pred la valeur u + - Fi tat que - Afficher 5 Soit (u) la suite défiie par u = ² Programmer cet algorithme, puis l exécuter pour des valeurs de M telles que 5, 0 ou 00. E déduire ue cojecture sur le comportemet à l ifii la suite ( u ) à l ifii. ) O cosidère l algorithme : - est du type ombre - p est du type ombre - M est du type ombre - pred la valeur de 0 - p pred la valeur 0 - Tat que (p < M) Faire - Début Tat que - pred la valeur + - p pred la valeur ² Fi Tat que - Afficher Quel est l itérêt de cet algorithme? ) Programmer cet algorithme sur u logiciel ou ue calculatrice. ) Tester le programme avec différetes valeurs de M de plus e plus grades ) Que remarque-t-o? 6 O cosidère l algorithme suivat : VARIABLE : etier aturel u etier aturel INITIALISATION : u pred la valeur S pred la valeur i pred la valeur 0 TRAITEMENT : Lire Tat que i < Affecter à u la valeur u + i Affecter à S la valeur S + u Affecter à i la valeur i + Fi Tat que SORTIE : Afficher u Afficher S ompléter le tableau suivat : Valeur de 0 5 Valeur de u Valeur de S ( u ) et ( S ) sot les suites défiies par u 0= ; u + = u + et S = u0 + u u. Pour u etier aturel doé, que représetet les valeurs doées par l algorithme de la questio? FRLT Page 5/08/0

3 7 ) O cosidère l algorithme suivat : Etrée : N etier aturel INITIALISATION : Doer à P la valeur 0 Doer à U la valeur Doer à S la valeur. TRAITEMENT : Tat que P < N Doer à P la valeur P + Doer à U la valeur + P Doer à S la valeur S + U Fi Tat que SORTIE : Afficher S Faire foctioer l algorithme pour N = 5. O fera apparaitre les différetes étapes du déroulemet de l algorithme das u tableau comme ci-dessous : Valeur de P Valeur de U Valeur de S Iitialisatio 0 Etape 6 0 Etape Affichage : O cosidère la suite ( U ) défiie sur N par U + = U + et U0 = a) alculer U, U etu. b) Soit p u ombre etier aturel. Doer e foctio de p la valeur de U p. alculer U. ) O fait foctioer l algorithme pour N = 0, la valeur affichée par S est alors 50. Quelle est la valeur affichée par S si o fait foctio l algorithme pour N =? ) O fait foctio l algorithme pour u etier aturel N quelcoque. Exprimer la valeur affichée S à l aide des termes de la suite ( U ). Algorithmes à rédiger ou à modifier : u0 = Soit (u ) la suite défiie par u + = u ) Ecrire u programme qui demade ue valeur de et doe e sortie la valeur du terme de rage de la suite ( u ) ) Détermier le terme de rag 5 de la suite. u0 Soit (u ) la suite défiie par u + u+ = u + ) Ecrire u programme qui demade ue valeur de et de u 0 et doe e sortie la valeur du terme de rage de la suite ( u ) ) Détermier les termes de rag 0, et de la suite pour différetes valeurs de u 0. ) Expliquer ce que doe l algorithme suivat : Iitialisatio : k pred la valeur 0 ; u pred la valeur. Traitemet : Tat que u > 0. Faire Affecter k + à k Affecter u*0.6 à u Fi Tat que Sortie : Afficher u et k ) Repredre l algorithme précédet et le modifier pour qu il doe le plus petit etier k tel que 0.85 < FRLT Page 5/08/0

4 ) Ecrire u algorithme qui calcule la somme des carrés des 50 premiers etiers o uls. ) Le programmer et doer la somme affichée. O cosidère ue suite géométrique de premier terme u 0 = - 6 et de raiso q = 0.. Ecrire u algorithme qui doe e sortie le terme de rag 0. Soit u = 0. etd = u u+ pour tout etier aturel ) Doer le ses de variatios de d ) Ecrire u algorithme qui détermie le plus petit rag 0 tel que pour tout 0, d < ) Le programmer sur ue calculatrice ou u logiciel. ) Quel résultat obtiet-o? 5) Iterpréter ce résultat pour la suite ( u ). ) Quelle est la limite de la suite? ) E déduire que pour tout etier aturel k, il existe u etier k tel que pour tout K, k > 0 k. ) Ecrire u algorithme qui demade ue valeur de k et affiche la plus petite valeur possible de k ) Le programmer sur ue calculatrice ou u logiciel. 0 5) Doer u rag à partir duquel ) Détermier la limite de la suite u défiie sur N par u = ) Ecrire u algorithme qui permet de coaitre à partir de quel rag, o a u 00. ) Justifier qu il s arrête et qu il produit bie le résultat attedu. alculatrices : O doe ci-dessous u programme réalisé sur des calculatrices ASIO et TI : =====SOMME N=? N 0S For k TO N S + kx^(k )S Next S PROGRAM : SOMME :Iput N=,N : 0S : For (k,,) : S + kx^(k )S : Ed : Disp S ) Quel sera l affichage de ces programmes pour N = et N = 5? ) O ote S le résultat affiché pour N = ( > 0) a) Ecrire S avec le symbole Σ. b) Quelle formule de récurrece la suite S vérifie-t-elle? ) Ecrire l algorithme correspodat à ce programme. ) Modifier cet algorithme pour qu il affiche aussi le terme R = ( ).. 5) Emettre grâce à ce programme ue cojecture sur ue expressio explicite de S 6) Démotrer cette cojecture. FRLT Page 5/08/0

5 ORRIGE : Algorithmes à aalyser Aalyser les algorithmes suivats : et algorithme affiche les 0 premiers termes de la suite arithmétique u de raiso 6 et de premier terme. et algorithme calcule et affiche la somme des 00 premiers etiers. 6 O cosidère l algorithme suivat : ompléter le tableau suivat : Valeur de 0 5 Valeur de u Valeur de S 0 78 ( u ) et ( S ) sot les suites défiies par u 0= ; u + = u + et S = u0 + u u. Pour u etier aturel doé, que représetet les valeurs doées par l algorithme de la questio? Algorithmes à rédiger ou à modifier : u0 Soit (u ) la suite défiie par u + u = + u + ) Ecrire u programme qui demade ue valeur de et de u 0 et doe e sortie la valeur du terme de rag de la suite (u) ) Détermier les termes de rag 0, et de la suite pour différetes valeurs de u 0. u 0 u u avec u 0 = avec u 0 = avec u 0 = FRLT Page 5 5/08/0

6 5 O cosidère ue suite géométrique de premier terme u 0 = - 6 et de raiso q = 0.. Ecrire u algorithme qui doe e sortie le terme de rag 0. 6 Soit u = 0. etd = u u+ pour tout etier aturel ) Doer le ses de variatios de d d d = u u (u u ) = u u u = x = 0. x0.6 < = 0. x(x0. 0.² ) La suite (d ) est doc décroissate. ) Ecrire u algorithme qui détermie le plus petit rag 0 tel que pour tout 0, d < ) Le programmer sur ue calculatrice ou u logiciel. ) Quel résultat obtiet-o? 5) Iterpréter ce résultat pour la suite (u ). A partir du rag 0, l écart etre deux termes de la suite (u ) deviet très faible. La suite coverge. FRLT Page 6 5/08/0

Exercices sur les suites v 0 = 1 On considère la suite numérique ( v n ) définie pour tout entier naturel n par 9.

Exercices sur les suites v 0 = 1 On considère la suite numérique ( v n ) définie pour tout entier naturel n par 9. Liba 13 v 0 = 1 O cosidère la suite umérique ( v ) défiie pour tout etier aturel par 9 v +1 = 6 v Partie A 1 O souhaite écrire u algorithme affichat, pour u etier aturel doé, tous les termes de la suite,

Plus en détail

( ) ( ) ( ) ( 4) Terminale S Exercices sur le chapitre «Suites numériques» Page 1. deux nombres réels. Initialisation Récupérer la valeur de M

( ) ( ) ( ) ( 4) Terminale S Exercices sur le chapitre «Suites numériques» Page 1. deux nombres réels. Initialisation Récupérer la valeur de M Termiale S Exercices sur le chapitre «Suites umériques» Page Exercice : O cosidère la suite ( p ) défiie sur N par ) O cosidère l algorithme suivat : Variables u etier aturel et deux ombres réels Iitialisatio

Plus en détail

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand?

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand? Exercice : Détermier la limite de chaque suite (u ). a) u = si π b) u = () c) u = + d) 0,5 + cos(π) Exercice 2 : la costate d Apéry Pour tout etier, u = 3 + + 2 3 +. + 3 ) Doer u miorat de cette suite.

Plus en détail

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme.

4. Calculer en utilisant une suite géométrique dont on précisera la raison et le premier terme. 1S DS o 1 Durée : h Exercice 1 ( 7 poits ) 1. La suite (u ) est défiie pour tout etier aturel par u = 3 + est-elle arithmétique? Pour tout etier aturel, o a : u +1 = ( + 1) 3( + 1) + = + + 1 3 3 + = La

Plus en détail

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1 Correctio Exercice 1 O cosidère la suite (v ) défiie par v 0 = 3 et pour tout 1, v +1 = v 2 3v +4. 1. Démotrer que la suite est croissate. v +1 v = v 2 4v +4 = (v 2) 2 0 quelque soit etier. Doc (v ) est

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 )

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 ) Exercice Suites umériques u O cosidère la suite ( u ) défiie pour tout par u = et u = + u + O admettra que pour tout etier aturel, u >. a) Calculer u et u b) Cette suite est-elle arithmétique? Est-elle

Plus en détail

SUITES. I. Suites géométriques. 1) Définition

SUITES. I. Suites géométriques. 1) Définition SUITES I Suites géométriues ) Défiitio Exemple : Cosidéros ue suite umériue (u ) où le rapport etre u terme et so précédet reste costat et égale à 2 Si le premier terme est égal à 5, les premiers termes

Plus en détail

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées Termiale S Ch1 SUITES PARTIE 1 récurrece et suites borées Das tout le chapitre, les etiers cosidérés sot aturels, c'est-à-dire positifs ouls I Raisoemet par récurrece 1 / Itroductio Exercice 1 : soit u

Plus en détail

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x EXERCICE (6 poits) Commu à tous les cadidats Soit f la foctio défiie sur l itervalle ] ; + [ par f () = l Pour tout réel a strictemet positif, o défiit sur ] ; + [ la foctio g a par g a () = a O ote C

Plus en détail

Chapitre 1 METHODES SUR LES SUITES

Chapitre 1 METHODES SUR LES SUITES Chapitre 1 METHODES SUR LES SUITES Nous allos voir commet : 1) Cojecturer le comportemet d ue suite ) Raisoer par récurrece 3) Utiliser les suites arithmétiques et géométriques 4) Étudier le comportemet

Plus en détail

Suites arithmétiques et géométriques

Suites arithmétiques et géométriques «I» : Suites arithmétiques 1/ Défiitio Suites arithmétiques et géométriques La suite (u ) est arithmétique de raiso r sigifie que : Pour tout etier aturel : u +1 = u + r Exemple : La suite ( ; 5 ; 8 ;

Plus en détail

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés Suites umériques. 1. Mode de géératio des suites... p2 4. Le raisoemet par récurrece... p4 2. Relatio de récurrece... p3 5. Ses de variatio des suites... p6 3. Suites arithmétiques, suites géométriques...

Plus en détail

Contrôle du vendredi (30 minutes) 1 ère S Prénom et nom :.. Note :.. / I. (2 points)

Contrôle du vendredi (30 minutes) 1 ère S Prénom et nom :.. Note :.. / I. (2 points) ère S Cotrôle du vedredi 4-4-04 (30 miutes) Préom et om : Note : / 0 I ( poits) O cosidère la figure ci-cotre où ABC est u triagle isocèle e A O ote H le projeté orthogoal du poit C sur la droite (AB)

Plus en détail

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal)

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal) Lycée Stedhal (Greoble) Niveau : Termiale S Titre Cours : Chapitre 0 : Les suites Aée : 204-205 «J'aimais et j'aime ecore les mathématiques pour elles-mêmes comme 'admettat pas l'hypocrisie et le vague,

Plus en détail

Algorithmes type BAC sur les suites

Algorithmes type BAC sur les suites Algorithmes type BAC sr les sites 1. Algorithme permettat de détermier rag à partir dqel e site croissate de limite ifiie est spériere à ombre réel A O cosidère la site ( ) défiie par 0 = et por tot etier,

Plus en détail

France métropolitaine Enseignement spécifique

France métropolitaine Enseignement spécifique Frace métropolitaie 202 Eseigemet spécifique EXERCICE 3 (6 poits (commu à tous les cadidats Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie

Plus en détail

Suites. =3v n pour = 5.

Suites. =3v n pour = 5. Suites 1 Gééralités 11 Défiitio Défiitio : O appelle suite ue foctio sur N ou sur ue partie de N das R Exemples: Les foctios: u : +1 ; v : sot des suites Notatio : Soit u ue suite défiie sur D partie de

Plus en détail

P U n est une suite géométrique.

P U n est une suite géométrique. Notre Dame de La Merci Exercices sur les suites arithmético-géométriques CORRIGES e deuxième partie Exercice : Das u pays, u orgaisme étudie l évolutio de la populatio Compte teu des aissaces et des décès,

Plus en détail

Chapitre 13 Comportement d une suite. Table des matières. Chapitre 13 Comportement d une suite TABLE DES MATIÈRES page -1

Chapitre 13 Comportement d une suite. Table des matières. Chapitre 13 Comportement d une suite TABLE DES MATIÈRES page -1 Chapitre 13 Comportemet d ue suite TABLE DES MATIÈRES page -1 Chapitre 13 Comportemet d ue suite Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

Corrigé du DS n 1. Exercice 1 (6 points)

Corrigé du DS n 1. Exercice 1 (6 points) Exercice 1 (6 poits) Corrigé du DS 1 Das cet exercice, les probabilités demadées serot doées sous forme décimale, évetuellemet arrodies à 10 - près. Lors d ue equête réalisée par l ifirmière auprès d élèves

Plus en détail

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN LIMITES DE SUITES I Limites fiies ou ifiies Exercice 1 Pour chacue des suites, e calculat différets termes, cojecturer la valeur limite de u quad deviet ifiimet grad (c'est-à-dire quad ted vers + ). 1

Plus en détail

Lycée Marie Reynoard Accompagnement personnalisé TS. Raisonnement par récurrence - Généralités sur les suites.

Lycée Marie Reynoard Accompagnement personnalisé TS. Raisonnement par récurrence - Généralités sur les suites. Lycée Marie Reyoard Accompagemet persoalisé TS Exercice. Raisoemet par récurrece - Gééralités sur les suites.. Démotrer par récurrece que pour tout etier aturel, 4 + 5 est u multiple de 3. iitialisatio

Plus en détail

Que de déchets!!!! Les trois parties de cet exercice sont indépendantes.

Que de déchets!!!! Les trois parties de cet exercice sont indépendantes. TES/L - Cotrôle 3 de mathématiques Que de déchets!!!! Les trois parties de cet exercice sot idépedates. Partie A Chaque aée, ous jetos des appareils électroiques: vieux téléphoes, mobiles, télévisios,

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n.

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math. ; 9) U n = 2! ! U n. Lycée secodaire Série D exercices Prof : Selmi.Ali Mareth Thème : Suites réelles 4 ième Math Exercice Das chacu des cas suivats, calculer la limite de la suite ( U ) lorsque + ) U = 3 + ; ) U = si π =

Plus en détail

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES.

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES. Vedredi 0 octobre 07. CONTRÔLE DE MATHEMATIQUES N Classe de TERM 07. E salle 06, deux heures de 8 h à 0 h : LES SUITES et PROBABILITES. La première feuille de ce devoir doit être ue feuille double. Lisez

Plus en détail

Auteur : Simplice TANKOUA Activités de mise en place de la leçon.

Auteur : Simplice TANKOUA Activités de mise en place de la leçon. Auteur : Simplice TANKOUA (stakoua@yahoofr) Cours SUITES NUMÉRIQUES Leço : GÉNÉRALITÉS SUR LES SUITES Activités de mise e place de la leço Activité : (formule explicite) Exercice O cosidère la liste ordoée

Plus en détail

Ch.1. ( ) c est donc un multiple de 5. ( ) = 1 1. Suites numériques : corrigé FICHE 2 ( ) ( n + 2) ( ) ( )( n + 2) ( n +1) n + 2.

Ch.1. ( ) c est donc un multiple de 5. ( ) = 1 1. Suites numériques : corrigé FICHE 2 ( ) ( n + 2) ( ) ( )( n + 2) ( n +1) n + 2. LFA / Termiale S exercices mathématiques Mme MAINGUY Termiale S Ch. Suites umériques : corrigé FICHE Exercice Ê Raisoemets par récurrece : a / Démotros par récurrece que, pour tout etier aturel, + + +

Plus en détail

c. Démontrer par récurrence la conjecture du a)...

c. Démontrer par récurrence la conjecture du a)... Eercice O cosidère l algorithme suivat : Etrée : u etier aturel. Iitialisatio : Doer à u la valeur iitiale. Traitemet : Tat que u > 0 Affecter à u la valeur u 0. Sortie : Afficher u. Quelle est la valeur

Plus en détail

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p

Exercice 1-5 points - Pour tous les élèves Une nouvelle attraction est ouverte dans un grand parc. Pour tout entier non nul n, on note p ermiale S - Bac blac de mathématiques Mars 6 Les calculatrices sot autorisées mais celles-ci e doivet être i échagées i prêtées durat l épreuve. Les quatre exercices serot rédigés sur ue feuille double

Plus en détail

SUITES. ) définie pour tout entier naturel n par : =. Calculer les trois premiers termes de la suite. ) définie par : MATHOVORE.FR

SUITES. ) définie pour tout entier naturel n par : =. Calculer les trois premiers termes de la suite. ) définie par : MATHOVORE.FR SUITES I Calcls de termes Exercice : O cosidère la site ( ) défiie por tot etier atrel par : a) Calcler,, b) Calcler,, c) Calcler les trois premiers termes de la site 5 Exercice : O cosidère la site (

Plus en détail

CH5 Algèbre : Suites numériques

CH5 Algèbre : Suites numériques ème Scieces CH5 Algèbre : Suites umériques Décembre 9 A LAATAOUI I Présetatio des suites umériques : Défiitio d ue suite : Ue suite (u ) est ue foctio défiie sur l'esemble N qui à tout etier aturel associe

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

s'exprime en fonction de u 10. Calculer u n ). u et on étudie son signe. = 2. Déterminer le sens de variation de cette suite.

s'exprime en fonction de u 10. Calculer u n ). u et on étudie son signe. = 2. Déterminer le sens de variation de cette suite. Première S / mathématiques Préparatio Termiale S Mme MAINGUY Défiir ue suite umérique Sythèse Ê SUITES NUMÉRIQUES u s'exprime e foctio de Cette suite est défiie par u = f ( ) Ê par ue formule explicite

Plus en détail

Compléments sur les suites Suites adjacentes

Compléments sur les suites Suites adjacentes DERNIÈRE IMPRESSION LE 7 février 07 à 6:3 Complémets sur les suites Suites adjacetes I Ecadremet d ue suite EXERCICE ) Motrer que pour tout k N et pour tout x [k ; k+], o a : k+ k+ k x dx k ) O pose u

Plus en détail

ENSEIGNEMENT DE SPÉCIALITÉ

ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT GÉNÉRAL SESSION 2017 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficiet : 9 ENSEIGNEMENT DE SPÉCIALITÉ Les calculatrices électroiques de poche sot autorisées, coformémet à la réglemetatio

Plus en détail

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie.

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie. D.S. º4 : Suites, Probabilités, Complexes, expoetielle TS1 Samedi 15 décembre 01, h, Calculatrices autorisées. Ce sujet est à redre avec la copie. Nom :.................... Préom :................. Commuicatio

Plus en détail

M : Zribi 4 ème Sc Exercices. Série 34

M : Zribi 4 ème Sc Exercices. Série 34 Série ème Sc Exercices Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l'ure : - si la boule tirée est blache, o la remet das

Plus en détail

EXTRAITS SUJETS DE BAC 1 C. Liban Mai PARTIE A : On considère la suite u n définie par u 0 = 10 et pour tout entier n par u = 0.9u 1.

EXTRAITS SUJETS DE BAC 1 C. Liban Mai PARTIE A : On considère la suite u n définie par u 0 = 10 et pour tout entier n par u = 0.9u 1. Liba Mai 203 PARTIE A : O cosidère la suite u défiie par u 0 = 0 et pour tout etier par u = 0.9u. 2 + + ) O cosidère la suite u défiie par pour tout etier, o pose v = u 2 a) Démotrer que (v ) est ue suite

Plus en détail

Suites numériques 1 / 12 A Chevalley

Suites numériques 1 / 12 A Chevalley MT8 A 03 Suites umériques Aleth Chevalley. Rappels.. Défiitio O appelle suite umérique réelle, toute applicatio f : ϒ qui à tout etier aturel, fait correspodre le ombre réel f() et o désige la suite par

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propositio P() dépedat de l etier () la propositio est

Plus en détail

Amérique du Nord. Terminale S mai 2014

Amérique du Nord. Terminale S mai 2014 Termiale S mai 2014 Amérique du Nord 1 Exercice 1 (5 poits) Das cet exercice, tous les résultats demadés serot arrodis à 10 3 près Ue grade eseige de cosmétiques lace ue ouvelle crème hydratate Partie

Plus en détail

ENSEIGNEMENT OBLIGATOIRE

ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2017 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficiet : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroiques de poche sot autorisées, coformémet à la réglemetatio

Plus en détail

SUITES (Partie 2) = 3u n. et u 0. q n na (inégalité de Bernoulli), a pour limite car lim 4 n = +.

SUITES (Partie 2) = 3u n. et u 0. q n na (inégalité de Bernoulli), a pour limite car lim 4 n = +. SUITES (Partie ) I Comportemet à l'ifii d'ue suite géométrique ) Rappel Défiitio : Ue suite (u ) est ue suite géométrique s'il existe u ombre q tel que pour tout etier, o a : u + = q u Le ombre q est appelé

Plus en détail

Chap2 Les suites : Raisonnement par récurrence limites de suites

Chap2 Les suites : Raisonnement par récurrence limites de suites I Rappels de première Chap2 Les suites : Raisoemet par récurrece limites de suites II Suites majorées, miorées, borées Défiitios : O dit qu ue suite ( u ) est majorée lorsqu il existe u réel M tel que

Plus en détail

EXERCICES SUR LES SUITES NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique

EXERCICES SUR LES SUITES NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique EXERCICE : EXERCICES SR LES SITES NMÉRIQES Site MathsTICE de Adama Traoré Lycée Techique I) r désigat respectivemet le premier terme, le ième terme, la raiso et la somme des premier termes d ue suite arithmétique,

Plus en détail

TS Exercices sur les limites de suites (1)

TS Exercices sur les limites de suites (1) TS Exercices sur les limites de suites () Soit u ue suite géométrique de premier terme u 0 et de raiso q. Das chacu des cas suivats, doer la limite de la suite u. ) u0 ; q ) u 0 ; q ) 0 4 ) u0 6 ; q )

Plus en détail

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série.

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série. Les calculatrices sot autorisées **** NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio Si u cadidat est ameé à repérer ce qui peut lui sembler

Plus en détail

» car lim 3n 2 8=+ et lim 2 n 2 +5=+

» car lim 3n 2 8=+ et lim 2 n 2 +5=+ TS. 2014/2015. Lycée Prévert. Corrigé du devoir commu du premier trimestre. Durée : heures. Vedredi 14/11/2014 Exercice 1 : ( 7 pts). A ) Étudier les limites suivates : a) lim 2 8 2 2 +5. Il s'agit d'ue

Plus en détail

TS Exercices sur les limites de suites (3) 4 Pour tout entier naturel n 1, on pose :

TS Exercices sur les limites de suites (3) 4 Pour tout entier naturel n 1, on pose : T Exercices sr les limites de sites () Por tot etier atrel, o pose : O cosidère la site ( ) défiie sr N par so premier terme récrrece ( ) = + por tot etier atrel ) Démotrer par récrrece qe, por tot etier

Plus en détail

question-type-bac.fr

question-type-bac.fr BAC S 4 Mathématiques - Frace métropole Eseigemet spécifique et de spécialité Ce documet est bie plus qu u simple corrigé de sujet de baccalauréat. Grâce aux solutios claires et détaillées, aux démarches

Plus en détail

Suites géométriques ; limites des suites géométriques ; variations d une fonction numérique.

Suites géométriques ; limites des suites géométriques ; variations d une fonction numérique. Suites 6 AU CŒUR DE LA TOILE Objectif Notios utilisées Traduire, à l aide d ue suite, u processus géométrique itératif et redre compte de so évolutio. Mettre e place les premiers pricipes d étude d ue

Plus en détail

TS DEVOIR n 3 lundi 13 novembre lim x. 1. Lire dans le tableau les limites de f en et en +. En déduire une asymptote à la courbe de f.

TS DEVOIR n 3 lundi 13 novembre lim x. 1. Lire dans le tableau les limites de f en et en +. En déduire une asymptote à la courbe de f. TS DEVOIR 3 ludi 3 ovembre 207 sur 4,5 poits Calculer les trois ites suivates : a) 3x 4 x x 2 x b) 2si( x) x x c) 8x 5 x 2 x 3 2 sur 3,5 poits Soit f ue foctio défiie sur dot o doe ci-dessous le tableau

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propriété P() dépedat de l idice Si les propositios ()

Plus en détail

CHAINES DE MARKOV. de variables aléatoires définies sur le même espace probabilisé, TPà, valeurs dans un ensemble fini E telles que, pour tout n tout

CHAINES DE MARKOV. de variables aléatoires définies sur le même espace probabilisé, TPà, valeurs dans un ensemble fini E telles que, pour tout n tout COURS CHAIES DE MARKOV Défiitio O appelle chaîe de Marov toute suite de variables aléatoires défiies sur le même espace probabilisé, TPà, valeurs das u esemble fii E telles que, pour tout tout i, i,, i

Plus en détail

Conception : EDHEC OPTION ÉCONOMIQUE MATHÉMATIQUES. 2 mai 2017, de 8 h. à 12 h.

Conception : EDHEC OPTION ÉCONOMIQUE MATHÉMATIQUES. 2 mai 2017, de 8 h. à 12 h. Coceptio : EDHEC OPTION ÉCONOMIQUE MATHÉMATIQUES mai 07, de 8 h à h La présetatio, la lisibilité, l orthographe, la qualité de la rédactio, la clarté et la précisio des raisoemets etrerot pour ue part

Plus en détail

Soit n un entier supérieur ou égal à 0. On note b n la proportion des adhérents ayant un abonnement de type. l année n.

Soit n un entier supérieur ou égal à 0. On note b n la proportion des adhérents ayant un abonnement de type. l année n. Amérique du Nord Mai 1 Série ES Exercice U club de sport propose à ses adhérets deux types d aboemets : l aboemet de type A qui doe accès à toutes les istallatios sportives et l aboemet de type B qui,

Plus en détail

Exercices sur le raisonnement par récurrence - Corrigé

Exercices sur le raisonnement par récurrence - Corrigé Exercices sur le raisoemet par récurrece - Corrigé Arithmétique 1) Motrer, pour tout etier aturel, que 1 est divisible par 3. O cosidère la propriété : Quelque soit l etier, il existe u etier k tel que

Plus en détail

1. Limite d'une suite... p2. Suites convergentes

1. Limite d'une suite... p2. Suites convergentes Suites covergetes 1.... p2 4. Cas particuliers... p9 2. Limites et comparaiso... p6 5. Suites mootoes... p11. Opératios sur les limites... p7 1. Limite d'ue suite 1.1. Limite ifiie a) Défiitios O dit que

Plus en détail

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures) Bac Blac Termiale L - Février 2017 Correctio de l Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) 1. Depuis le 28 jui 2007, la ville de Bordeaux a été classée au patrimoie modial

Plus en détail

Chapitre 4: Croissance, divergence et convergence des suites

Chapitre 4: Croissance, divergence et convergence des suites CHAPITRE 4 CROISSANCE ET CONVERGENCE 43 Chapitre 4: Croissace, divergece et covergece des suites 4.1 Quelques défiitios Défiitios : Ue suite est croissate si chaque terme est supérieur ou égal à so précédet

Plus en détail

Centres étrangers Enseignement spécifique. Corrigé

Centres étrangers Enseignement spécifique. Corrigé EXERCICE 1 Partie A Cetres étragers 13. Eseigemet spécifique. Corrigé 1) La durée de vie moyee d ue vae est l espérace de la variable aléatoire T. O sait que l espérace de la loi expoetielle de paramètre

Plus en détail

Exercices. Exercice 1 (Suites adjacentes) On considère les suites (u n ) n N et (v n ) n N définies par: 1 k u n = n 3, v n = u n + 1 n 1 2n 2

Exercices. Exercice 1 (Suites adjacentes) On considère les suites (u n ) n N et (v n ) n N définies par: 1 k u n = n 3, v n = u n + 1 n 1 2n 2 Exercices Exercice (Suites adjacetes) O cosidère les suites (u ) N et (v ) N défiies par: u 3, k3 k 2 + v u + 2 2 Motrer que (u ) N et (v ) N sot adjacetes. Exercice 2 Soiet les deux suites (u ) et (v

Plus en détail

D E V O I R S U R V E I L L E

D E V O I R S U R V E I L L E D E V O I R S U R V E I L L E MATIERE : MATHEMATIQUES CLASSE de : SALLE : PROFESSEUR : DATE : HEURE Début : HEURE fi : MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON Rappel : Tous les prêts, échages

Plus en détail

LOGARITHME NÉPÉRIEN. Définition. Propriétés. Exercice 01. Remarque ( voir animation ) Remarques. (voir réponses et correction)

LOGARITHME NÉPÉRIEN. Définition. Propriétés. Exercice 01. Remarque ( voir animation ) Remarques. (voir réponses et correction) LOGARITHME NÉPÉRIEN Exercice 0 ) E utilisat la courbe de la foctio expoetielle dessiée ci-cotre, détermier u ecadremet au dixième du réel a tel que e a = 7 ) E faisat avec la calculatrice u tableau de

Plus en détail

Proposés par Hugues SILA, professeur de mathématiques des lycées

Proposés par Hugues SILA, professeur de mathématiques des lycées Téléchargé gratuitemet sur le site http://sila.e-mosite.com tél : 00237 675 277 432 Travaux dirigés de mathématiques Classe : 1 ères C, D, TI aée Scolaire 2014/2015 Proposés par Hugues SILA, professeur

Plus en détail

a quand n tend vers plus l infini. d. Interpréter le résultat précédent en terme de nombre d abonnements de type A.

a quand n tend vers plus l infini. d. Interpréter le résultat précédent en terme de nombre d abonnements de type A. Liba Jui 23 Série ES Exercice U théâtre propose deux types d aboemets pour ue aée : u aboemet A doat droit à six spectacles ou u aboemet B doat droit à trois spectacles. O cosidère u groupe de 2 5 persoes

Plus en détail

Calculer la raison d une suite arithmétique dont la somme des trois premiers termes est 18 et e septiemme terme est 19

Calculer la raison d une suite arithmétique dont la somme des trois premiers termes est 18 et e septiemme terme est 19 Suites EXERCICE N 1 O cosidère la suite ( u ) défiie par : Pour tout etier aturel : u = 2-2 a) Calculer u 1,u 2,u 3 et u 4 b) Calculer pour tout etier aturel u +1, u +1, (u ) 2, u 2, u 2+3,u 2 +3 EXERCICE

Plus en détail

APPLICATIONS LINEAIRES Exercices

APPLICATIONS LINEAIRES Exercices EXERCICE : APPLICATIONS LINEAIRES Exercices ) Motrer que l applicatio f : f : est liéaire x, y, z x z, y z ) Soit ue matrice AM et soit f l applicatio qui à toute matrice X M associe la matrice Y défiie

Plus en détail

Comportement d une suite

Comportement d une suite CHAPITRE 6 Comportemet d ue suite ACTIVITÉS Activité L aire ajoutée (celle d u carré compese exactemet l aire elevée a p 6 ; p 5 ; p 6 6 b La suite (p est géométrique de raiso car la logueur de la lige

Plus en détail

REDUCTION DES ENDOMORPHISMES ET DES MATRICES Exercices

REDUCTION DES ENDOMORPHISMES ET DES MATRICES Exercices REDUCTION DES ENDOMORPHISMES ET DES MATRICES Exercices EXERCICE 1 : Soit E u espace vectoriel et u L(E) tel que u u +u = 0 Motrer que Sp (u) {0, 1, } EXERCICE : 1) Soit A ue matrice carrée telle que A

Plus en détail

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4 Atilles-Guyae septembre 5 EXERCICE 6 POINTS Commu à tous les cadidats 6 poits Soit u etier aturel o ul. O cosidère la foctio f défiie et dérivable sur l esemble des ombres réels par f (x) = x e x O ote

Plus en détail

Contrôle du mardi 5 avril 2016 (50 minutes) 1 ère S1. II. (4 points)

Contrôle du mardi 5 avril 2016 (50 minutes) 1 ère S1. II. (4 points) ère S Cotrôle du mardi 5 avril 06 (50 miutes) Préom : Nom : Note : / 0 II (4 poits) Pour retrer au port e A, u bateau doit passer par C car la profodeur est isuffisate etre B et A Il avace à la vitesse

Plus en détail

Contrôle du vendredi 13 février 2015 (30 min) 1 ère S1. respectivement la médiane, le premier quartile et le troisième quartile de la série.

Contrôle du vendredi 13 février 2015 (30 min) 1 ère S1. respectivement la médiane, le premier quartile et le troisième quartile de la série. 1 ère S1 Cotrôle du vedredi 13 février 015 (30 mi) O ote M, Q 1, Q 3 respectivemet la médiae, le premier quartile et le troisième quartile de la série. M... Q1... Q3... Préom : Nom : Note :. / 0 I. (4

Plus en détail

Suites généralités. u est une fonction qui à tout entier naturel n associe un nombre réel, noté u

Suites généralités. u est une fonction qui à tout entier naturel n associe un nombre réel, noté u Sites gééralités A Sites mériqes Notio de site Défiitio : Ue site ( qe : : a La site se ote o avec des parethèses ( est e foctio qi à tot etier atrel associe ombre réel, oté tel Le terme iitial de la site

Plus en détail

Comportement asymptotique des suites

Comportement asymptotique des suites Comportemet asymptotique des suites Table des matières 1 Itroductio 2 2 Limite d ue suite 2 2.1 Limite fiie d ue suite........................................... 2 2.2 Limite ifiie d ue suite..........................................

Plus en détail

DS 2 Correction. (question de cours 2 points) Énoncer le théorème de Rolle. 1 n n n. lim u n = 1.

DS 2 Correction. (question de cours 2 points) Énoncer le théorème de Rolle. 1 n n n. lim u n = 1. icolas.laillet@imj-prg.fr DS 2 Aalyse Exercice 1 (questio de cours 2 poits Éocer le théorème de Rolle. Soiet a, b deux réels avec a < b, soit f ue foctio à valeurs réelles, cotiue sur [a, b] et dérivable

Plus en détail

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S Lycée Fraçais d Agadir Termiales SA SB 216-217 BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S DUREE DE L EPREUVE : 4 HEURES Utilisatio de la calculatrice autorisée Ce sujet comporte 7 pages umérotées

Plus en détail

DAEUB EXAMEN PREMIERE SESSION 2013/2014

DAEUB EXAMEN PREMIERE SESSION 2013/2014 DAEUB EXAMEN PREMIERE SESSION 2013/2014 LE SUJET EST COMPOSE DE TROIS EXERCICES INDEPENDANTS. LE CANDIDAT DOIT TRAITER TOUS LES EXERCICES. Les calculatrices sot autorisées. Les portables doivet être éteits.

Plus en détail

Cours de Mathématiques : Polynômes et Suites

Cours de Mathématiques : Polynômes et Suites Uiversité de Cergy-Potoise Départemet de Mathématiques L MIPI - S2 205/206 Cours de Mathématiques : Polyômes et Suites - Polycopié d Exercices Chapitre : Nombres complexes Exercice a) Détermier la partie

Plus en détail

Suites numériques. Généralités. 5 novembre Introduction. Dénitions. Représentation graphique

Suites numériques. Généralités. 5 novembre Introduction. Dénitions. Représentation graphique Suites umériques 5 ovembre 009 I Gééralités Itroductio Exemple 1. [Si vous travaillez chaque mois, vous recevez u salaire : u ombre.] Juillet oût Septembre Octobre Novembre Décembre Javier Février Mars

Plus en détail

S Métropole septembre 2016

S Métropole septembre 2016 S Métropole septembre 206 Exercice 3 Cadidats ayat suivi l'eseigemet de spécialité 5 poits O dispose d'u dé équilibbré à 6 faces umérotées de à 6 et de trois pièces A, B et C ayat chacue u côté pile et

Plus en détail

TD 2 : Suites numériques réelles

TD 2 : Suites numériques réelles Uiversité Paris-Est Mare-la-Vallée Licece L Maths/Ifo d semestre 0/0 Aalyse TD : Suites umériques réelles Exercice Cours) Motrer que si ue suite réelle u ) N coverge, alors toute sous-suite de u ) coverge

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

Exercices sur les fonctions trigonométriques réciproques

Exercices sur les fonctions trigonométriques réciproques Eercices sur les foctios trigoométriques réciproques O cosidère la foctio f défiie par f Arcta ) Détermier l esemble de défiitio D de f ) Simplifier l epressio de f pour D Idicatio : Poser y Arccos Soit

Plus en détail

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques Chapitre Rappels sur les suites arithmétiques et les suites géométriques Nous allos ici rappeler les différets résultats sur les suites de ombres réels qui sot des suites arithmétiques ou des suites géométriques

Plus en détail

SUITES ARITHMÉTIQUES ET GÉOMÉTRIQUES

SUITES ARITHMÉTIQUES ET GÉOMÉTRIQUES SUITES ARITHMÉTIQUES ET GÉOMÉTRIQUES Cours Première S Suites arithmétiues ) Défiitio par récurrece Défiitio : O dit u ue suite ( u ) est ue suite arithmétiue, s il existe u réel r tel ue pour tout etier

Plus en détail

Suites et limites. Chapitre Exercices. 1. Calcul des limites I. (r) Calculer. sin 1 2 n. (l) Calculer lim n( n 4 + 4n + 5 n 2 ).

Suites et limites. Chapitre Exercices. 1. Calcul des limites I. (r) Calculer. sin 1 2 n. (l) Calculer lim n( n 4 + 4n + 5 n 2 ). Chapitre Suites et ites Exercices Calcul des ites I (a) Calculer (b) Calculer (c) Calculer (d) Calculer (e) Calculer (f) Calculer (g) Calculer (h) Calculer (i) Calculer (j) Calculer (k) Calculer + + 4

Plus en détail

Ensembles et nombres réels

Ensembles et nombres réels Pierre-Louis CAYREL 008-009 Licece Itroductio aux Mathématiques Géérales Uiversité de Paris 8 Esembles et ombres réels Esembles Exercice O pose A = {(x, y) R ; y > x } et B = {(x, y) R ; y < x } Représeter

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

1. Lire les textes ci-dessus. 2. Pourriez-vous corriger les répliques 1 et 7 du logicien? 3. Que veut dire le logicien dans la réplique 5?

1. Lire les textes ci-dessus. 2. Pourriez-vous corriger les répliques 1 et 7 du logicien? 3. Que veut dire le logicien dans la réplique 5? EXERCICE N 1 : U peu de logique pour se détedre : Extrait de Rhiocéros de Ioesco. 1. Le Logicie, au vieux Mosieur : Voici doc u syllogisme (*) exemplaire. Le chat a quatre pattes. Isidore et Fricot ot

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

1 Propriétés - Suites monotones

1 Propriétés - Suites monotones Uiversité d Aix-Marseille Licece de Mathématiques Semestre 06-07 Aalyse Plache - Suites umériques Propriétés - Suites mootoes Exercice Soiet les suites défiies, pour tout, par u = et v = Vérifier qu elles

Plus en détail

Calcul d'intégrales 2

Calcul d'intégrales 2 de même largeur égale à 5 de même largeur égale à 5 Mr ABIDI Farid Termiales Calcul d'itégrales Activité : méthode des rectagles I Résultats prélimiaires Démotrer par récurrece que, pour tout etier aturel,

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

Partie commune (3 heures)

Partie commune (3 heures) TS Cotrôle du ludi 5 février 06 (4 heures) Partie commue ( heures) Le barème est doé sur 40 I (7 poits : ) poits ; ) poits ; ) poits + poit) Ue chaîe de magasis souhaite fidéliser ses cliets e offrat des

Plus en détail

CHAPITRE IV. Rappels et compléments sur les suites

CHAPITRE IV. Rappels et compléments sur les suites CHPITRE IV Rappels et complémets sur les suites SUITES NUMÉRIQUES 1 Sommaire I Notio de suite...................................... 30 Exemples.......................................... 30 B Défiitio..........................................

Plus en détail