Le classeur peut comporter cinq parties, puis au choix de chacun de modifier ce choix. Voici les parties du classeur au lycée :

Dimension: px
Commencer à balayer dès la page:

Download "Le classeur peut comporter cinq parties, puis au choix de chacun de modifier ce choix. Voici les parties du classeur au lycée :"

Transcription

1 Le classeur Comment faire pour consignes Les élèves peuvent se créer un outil mathématiques qui les aide du début du collège jusqu au baccalauréat. Un classeur dans lequel toutes les méthodes de chaque compétence est regroupée. C est un référent pour l élève, que chaque élève a construit soi même et a illustré à l aide d exemples choisis. Les compétences vues au programme de 6 ème, 5 ème et 4 ème sont détaillées dans le dispositif niveau collège sur la page du site internet Il ne s agit pas de s obliger à faire une fiche pour chaque compétence. Il s agit de faire une fiche pour les compétences qui nous sont les plus difficiles. En géométrie, par exemple, le classeur aidera à la réflexion et au choix des propriétés : si j ai trois fiches qui permettent de démontrer l alignement de trois points, je peux, en fonction des données du problème, identifier quelle est la propriété adaptée. Lorsqu un élève a réalisé une fiche, il peut venir me la présenter, que je dise si elle est complète. Dans l idée, il faut un seul objectif par fiche, décrit par l élève ; il faut énoncer la règle générale ou la propriété, et donner un exemple d utilisation bien détaillé. Si jamais la règle en question comporte des cas particuliers, il faut mettre un panneau attention et préciser ces cas particuliers. Le choix du classeur est conseillé : il permet d ajouter des fiches dans n importe quelle partie sans limite d espace. Un élève qui aura de grands besoin en géométrie aura plus de fiches en géométrie qu en algèbre par exemple. Un élève qui a des difficultés en algèbre (calcul) aura des fiches qui détaillent les règles de calcul (calcul entre les décimaux, les fractions, les relatifs, les puissances, etc.). Le classeur peut comporter cinq parties, puis au choix de chacun de modifier ce choix. Voici les parties du classeur au lycée : - Algèbre et analyse - Géométrie - Probabilités et statistiques - Algorithmique - Logique Il est possible de fractionner chaque partie en différentes sous-parties, en fonction de vos besoins. Les quatre premières parties suggérées ci-dessus sont le regroupement du programme officiel des mathématiques au collège. J ai ajouté la logique qui est la manipulation des propriétés, réciproques, contraposées, etc. Il sera important de choisir une convention de présentation, et de garder toujours la même convention de présentation, pour toutes les fiches du classeur. Il est préférable de prendre une nouvelle feuille pour chaque nouvelle fiche. En cas de besoin, on peut poursuivre la fiche au verso de la feuille. Voici une suggestion : 1

2 Dans quelle partie du classeur la fiche est rangée Choisi par l élève. Plusieurs fiches peuvent avoir le même titre. Par exemple ici : Parallélisme et perpendicularité. Jour de réalisation de la fiche Géométrie TITRE date But : comment faire pour montrer qu on a deux droites parallèles. Propriété utilisée : quand deux droites sont perpendiculaires à une même troisième, alors elles sont parallèles entre elles (6 ème ). Un exemple : dans la figure ci dessous, démontrer que les droites et sont parallèles. Permet de savoir dans quels livres je pourrai trouver des références à ce sujet On sait que : les droites et sont perpendiculaires à la droite (d après le codage de la figure). Propriété : Si deux droites sont perpendiculaires à une même troisième, alors elles sont parallèles entre elles. Conclusion : les droites et sont parallèles. Bon courage pour le travail! Mme Forconi Compétences de la 2 nde : page 3 Compétences de la 1 ère ES L : page 9 Compétences de la 1 ère S : page Compétences de la 1 ère STG : page Compétences de la Terminale ES : page Compétences nécessaires à l entrée en 1 ère : page 8 Compétences nécessaires à l entrée en Terminale : normalement, l orientation a déjà été faite et tout le programme de 1 ère est utile en Terminale. 2

3 COMPETENCES VUES EN 2 nde Notion de fonction, fonction linéaire et fonction affine : Savoir factoriser Savoir calculer une image Savoir calculer un antécédant Savoir lire une image graphiquement Savoir lire un antécédant graphiquement Savoir donner un ensemble de définition graphiquement Savoir donner un tableau de variations d après un graphique savoir donner les coordonnées du point d intersection de la courbe représentative de l axe des abscisses graphiquement et par calcul savoir donner les coordonnées du point d intersection de la courbe représentative de l axe des ordonnées graphiquement et par calcul savoir représenter une courbe représentative d une fonction en utilisant le tableau des variations avec avec Repérage dans le plan, équation de droite : Savoir donner les coordonnées du milieu d un segment connaissant les coordonnées des extrémités du segment Savoir calculer une distance dans un repère orthogonal Connaître une relation permettant de démontrer un parallélisme connaissant deux équations de droites Savoir tracer une droite connaissant l équation Savoir calculer le coefficient directeur connaissant les coordonnées de deux points de la droite Savoir calculer l ordonnée à l origine connaissant le coefficient directeur et les coordonnées d un point de la droite Savoir démontrer un alignement de points en comparant les coefficients directeurs Savoir calculer les coordonnées de points d intersection de droites Comprendre le lien entre la fonction affine et l équation de la droite qui la représente Interprétation de la résolution d un système de deux équations à deux inconnues 3

4 Expressions algébriques, équations et inéquations : Connaître et savoir appliquer les identités remarquables vues au collège Savoir factoriser Savoir réduire Savoir développer Savoir résoudre une équation du premier degré Savoir résoudre une équation du second degré par factorisation Savoir résoudre une équation comportant des fractions avec l inconnue au dénominateur Savoir résoudre une inéquation simple Savoir étudier le signe d un produit Savoir résoudre une inéquation du second degré par factorisation Savoir résoudre graphiquement une équation Savoir résoudre graphiquement une inéquation Statistiques descriptives et notion de probabilités : Connaître et maîtriser tout le vocabulaire lié aux statistiques ou aux probabilités et les notions vues au collège : o Ranger des nombres dans un tableau o Lire et interpréter un graphique o Donner l étendue d une série statistique o Calculer le centre des classes si la répartition est donnée par classes o Calculer une moyenne o Calculer une moyenne pondérée o Savoir retrouver une valeur manquante lorsque l on connaît la moyenne et les autres valeurs o Calculer les fréquences o Calculer les fréquences en pourcentage o Calculer la médiane o Calculer le premier quartile et le troisième quartile o Calculer l intervalle interquartile o Calculer le premier décile o Calculer le neuvième décile o Construire un diagramme en boîte (ou boîte à moustaches) o Produire une représentation graphique illustrant une situation (diagramme circulaire ou semi circulaire, diagramme bâtons, histogramme à classes de même amplitude, histogramme à classes d amplitudes variables) Connaître et savoir utiliser les nouveaux symboles et nouvelles notations : Calculer, représenter et utiliser les fréquences cumulées croissantes ou décroissantes Comprendre le lien entre statistiques et probabilités Savoir utiliser un tableur pour illustrer le lien entre statistiques et probabilités Savoir calculer une probabilité dans un exemple simple Savoir utiliser un arbre pour calculer une probabilité 4

5 Savoir utiliser un tableau à double entrée pour calculer une probabilité Savoir Vecteurs : Savoir donner les coordonnées d un vecteur graphiquement Savoir donner les coordonnées d un vecteur en appliquant la formule Savoir représenter une somme de vecteurs Savoir calculer les coordonnées d un vecteur somme Démontrer algébriquement que deux vecteurs sont colinéaires Utiliser les vecteurs pour démontrer un parallélisme Utiliser les vecteurs pour démontrer un alignement de points Lien entre parallélogramme et l égalité de vecteurs Lien entre milieu du segment et l égalité de vecteurs Connaître et savoir utiliser la relation de Chasles Utiliser des égalités de vecteurs pour déterminer les coordonnées d un point Fonctions de référence et fonctions usuelles : Connaître l ensemble de définition de la fonction carré Connaître l ensemble de définition de la fonction inverse Savoir représenter la fonction carré Savoir représenter la fonction inverse Connaître les variations de la fonction carré Connaître les variations de la fonction inverse Connaître le lien entre l ordre des réels et les variations d une fonction Savoir représenter la fonction polynôme du second degré par calcul du sommet Savoir transformer l écriture d une fonction polynôme du second degré Savoir donner les variations d une fonction polynôme du second degré Résoudre des équations avec des trinômes Etudier le signe d un produit de facteurs Savoir donner l ensemble de définition d une fonction homographique Reconnaître une parabole et une hyperbole Résoudre une équation ou une inéquation qui comporte une expression homographique Etudier le signe d une fonction homographique 5

6 Configuration du plan et de l espace : Connaître et maîtriser toute la géométrie étudiée au collège : o Les triangles et leurs droites particulières o Le triangle rectangle et ses propriétés (cercle inscrit, médiane, trigonométrie, théorème de Pythagore) o Les valeurs exactes de la trigonométrie o Les triangles isocèles et équilatéraux o Le théorème des milieux o Les quadrilatères : les parallélogrammes particuliers o Les symétries o Le théorème de Thalès o Les polygones réguliers o Les solides usuels Savoir étendre les propriétés vues dans le plan à l espace (ex : quand deux plans sont parallèles à un même troisième, alors ils sont parallèles entre eux, etc ) Savoir construire le patron d un solide (cube, parallélépipède rectangle, prisme droit, cylindre de révolution, pyramide, cône de révolution) Déterminer les positions relatives de droites et de plan à partir d un solide usuel de l espace Savoir calculer l aire d une surface ou le volume d un solide (formules du collège) Démontrer un parallélisme Démontrer un alignement Savoir justifier quand deux droites sont coplanaires Etudier l intersection de deux plans à partir d un solide de l espace Trigonométrie Connaître et savoir appliquer les relations trigonométrique du triangle rectangle Connaître les valeurs exactes de la trigonométrie Connaître le cercle trigonométrique Savoir placer un réel sur le cercle trigonométrique Savoir calculer un arc de cercle connaissant l angle au centre, ou vice versa Savoir lire le cosinus et le sinus d un nombre sur le cercle trigonométrique Connaître et savoir utiliser la notion de radians Utiliser le cercle trigonométrique pour calculer les valeurs exactes du cosinus ou du sinus d un nombre Trouver un réel connaissant son cosinus ou son sinus 6

7 Calcul de probabilités et échantillonnage : Connaître et maîtriser tout le vocabulaire lié aux probabilités et les notions vues au collège Savoir calculer la probabilité d un événement dans une situation équiprobable Savoir calculer la probabilité d un événement dans une situation non équiprobable, en utilisant un arbre pondéré Comprendre et savoir utiliser la réunion et l intersection d événements Connaître et savoir utiliser la formule Connaître et savoir utiliser des événements disjoints Comprendre la notion d événement complémentaire Connaître et savoir utiliser la formule Echantillonnage : Connaître et savoir utiliser l intervalle de fluctuation (l intervalle contient des valeurs, c est l intervalle de fluctuation au seuil de 95%) Savoir utiliser un intervalle de fluctuation pour avoir un regard plus critique sur les résultats d une étude statistique réalisée sur un échantillon d individus Savoir estimer la proportion inconnue par l intervalle de confiance (la proportion du caractère étudié est dans l intervalle de confiance avec une probabilité de ) 7

8 Quelles compétences me sont indispensables en fonction de mon orientation? chapitres S ES L STG Notion de fonctions, fonctions linéaires et fonctions affines x x x Repérage dans le plan et équations de droites x x repris Expressions algébriques, équations et inéquations x x x Statistiques descriptives, notions de probabilités x x x Vecteurs x Fonctions de référence et fonctions usuelles x x repris Configuration du plan et de l espace x Trigonométrie x Calculs de probabilités x x repris Echantillonnage x x A savoir : la géométrie n est plus approfondie en filière ES ou L. Mais ce n est pas une recommandation à l oubli de ces notions! 8

9 9

Le classeur peut comporter cinq parties, puis au choix de chacun de modifier ce choix. Voici les cinq parties :

Le classeur peut comporter cinq parties, puis au choix de chacun de modifier ce choix. Voici les cinq parties : Le classeur Comment faire pour consignes Les élèves peuvent se créer un outil mathématiques qui les aide du début du collège jusqu au baccalauréat. Un classeur dans lequel toutes les méthodes de chaque

Plus en détail

K.Fares Progression mathématiques seconde Lycée Hélène Boucher

K.Fares Progression mathématiques seconde Lycée Hélène Boucher K.Fares Progression mathématiques seconde Lycée Hélène Boucher 2014-2015 Les di érents chapitres de l année rangés suivant les 3 parties du programme : Fonctions, Géométrie, Statistiques et. Chapitre Axe

Plus en détail

Fonctions 1 : généralités

Fonctions 1 : généralités Fonctions 1 : généralités Acquis de troisième : Déterminer l image d un nombre par une fonction déterminée par une courbe, un tableau de données ou une formule. Déterminer un antécédent par lecture directe

Plus en détail

Mathématiques - Progression 3 e

Mathématiques - Progression 3 e Chap 1. Tests de valeur Utiliser la distributivité simple Réduire une expression Calculer une expression littérale en donnant aux variables des valeurs numériques Tester une égalité Utiliser / écrire un

Plus en détail

PROGRESSION «SPECIALE » EN CLASSE DE QUATRIEME

PROGRESSION «SPECIALE » EN CLASSE DE QUATRIEME PROGRESSION «SPECIALE 2014-2015» EN CLASSE DE QUATRIEME THEME 1 : CALCUL NUMERIQUE (1) ECRITURES FRACTIONNAIRES (1) ECRITURES FRACTIONNNAIRES DE NOMBRES POSITIFS Connaissances et capacités Opérations (+,,

Plus en détail

MATHÉMATIQUES SECONDE BAC PRO

MATHÉMATIQUES SECONDE BAC PRO MATHÉMATIQUES SECONDE BAC PRO PROGRESSION SPIRALÉE Définitions Compétence : connaissance(s), capacité(s), attitude(s). Connaissance : définie dans le BO pour chaque thème. Capacité : définie dans le BO

Plus en détail

Troisième - Objectifs de l année en mathématique

Troisième - Objectifs de l année en mathématique Troisième - Objectifs de l année en mathématique Chapitre 0 : Les nombres réels *Document téléchargeable sur http://www.cspu.be/~termollem dans «Documents» 1. Nommer les ensembles de nombres et donner

Plus en détail

SOMMAIRE du Cours de Mathématiques

SOMMAIRE du Cours de Mathématiques SOMMAIRE du Cours de Mathématiques Thème : NOMBRES ET CALCULS Chapitre 01 : NOMBRES DECIMAUX Fiche 1 : Fractions décimales et nombres décimaux Fiche 2 : Demi-droite graduée Fiche 3 : Comparer des nombres

Plus en détail

programme de mathématiques 6ème Temps Espace Vocabulaire Catégorisation

programme de mathématiques 6ème Temps Espace Vocabulaire Catégorisation programme de mathématiques 6ème Temps Espace Vocabulaire Catégorisation 1. Organisation et gestion de données. Fonctions 1.1. Proportionnalité 1.2. Organisation et représentation de données - Lire, utiliser

Plus en détail

Progressivité en Mathématiques (Collège Anne Frank à Sauzé-Vaussais) CYCLE 4 Thème 5ème 4ème 3ème

Progressivité en Mathématiques (Collège Anne Frank à Sauzé-Vaussais) CYCLE 4 Thème 5ème 4ème 3ème CYCLE 4 Thème 5ème 4ème 3ème Calcul numérique Calculer avec des parenthèses Calculer sans parenthèses Thème A NOMBRES et CALCULS Nombres relatifs Fractions Calcul littéral Puissance Racines carrées Equation

Plus en détail

CERTIFICAT, GEOMETRIE. Liste des sujets

CERTIFICAT, GEOMETRIE. Liste des sujets 9VSB CERTIFICAT, GEOMETRIE Liste des sujets 1. Notions préliminaires 2. Cercle, Cylindre et Cône 3. Angles 4. Polygones et Polyèdres 5. Transformations géométriques 6. Triangles isométriques 7. Théorème

Plus en détail

Mise à jour : programmes du collège :

Mise à jour : programmes du collège : Ce document, qui est un document de travail, est une possibilité de lecture des programmes de mathématiques de la sixième à la terminale des filières générales et technologiques. Ce document est en format

Plus en détail

Progression en cycle 4

Progression en cycle 4 Progression en cycle 4 Nombres et calculs Sens des nombres Conforter la maitrise des procédures de calcul. Nombres rationnels de signe quelconque. Un même nombre peut avoir plusieurs écritures (notamment

Plus en détail

Première - Objectifs de l année en mathématique

Première - Objectifs de l année en mathématique Première - Objectifs de l année en mathématique *Document téléchargeable sur http://www.cspu.be/~termollem dans «Documents» Chapitres 1&2 : Calcul mental, diviseurs et multiples 1. Définir et distinguer

Plus en détail

PROGRAMME DE MATHEMATIQUES POUR LES CLASSES DE 9 e DE L ENSEIGNEMENT SECONDAIRE TECHNIQUE ECOLE PRIVEE NOTRE-DAME SAINTE SOPHIE

PROGRAMME DE MATHEMATIQUES POUR LES CLASSES DE 9 e DE L ENSEIGNEMENT SECONDAIRE TECHNIQUE ECOLE PRIVEE NOTRE-DAME SAINTE SOPHIE PROGRAMME DE MATHEMATIQUES POUR LES CLASSES DE 9 e DE L ENSEIGNEMENT SECONDAIRE TECHNIQUE ECOLE PRIVEE NOTRE-DAME SAINTE SOPHIE Remarques générales: Les compétences minimales exigibles sont indiquées en

Plus en détail

Progression 4e - MATHEMATIQUES

Progression 4e - MATHEMATIQUES PREMIER TRIMESTRE ADDITION ET SOUSTRACTION DES NOMBRES RELATIFS (Chap1) I) Addition de deux nombres relatifs II) Soustraction de deux nombres relatifs III) Notation simplifiée Activités : CALCUL MENTAL,

Plus en détail

Progressivité cycle 3 cycle 4 programmes En rouge ce qui doit démarrer à un instant précis du cycle et clairement indiqué dans le programme

Progressivité cycle 3 cycle 4 programmes En rouge ce qui doit démarrer à un instant précis du cycle et clairement indiqué dans le programme Progressivité cycle 3 cycle 4 programmes 2016 En rouge ce qui doit démarrer à un instant précis du cycle et clairement indiqué dans le programme En vert, ce qui n apparait plus explicitement dans le programme

Plus en détail

Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net :

Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net : Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net : http://titaile.free.fr (sans le www) I. Calcul. Revoir impérativement «développer, factoriser, résoudre

Plus en détail

Mathématiques pour les vacances à l attention des élèves entrant en Terminale S

Mathématiques pour les vacances à l attention des élèves entrant en Terminale S Mathématiques pour les vacances à l attention des élèves entrant en Terminale S Afin de débuter l année 2016-2017 de terminale S dans les meilleures conditions en mathématiques, les élèves trouveront en

Plus en détail

Fiche de programmation

Fiche de programmation Collège des Sœurs des Saints-Cœurs -Tripoli Email : tripoli@sscc.edu.lb Site : www.tripoli.sscc.edu.lb Année scolaire: (2013-2014) Fiche de programmation Classe : EB8 Professeurs : Manal Hajjeh et Fadi

Plus en détail

Cliquez sur le titre du cours ou de l'exercice pour plus de détails.

Cliquez sur le titre du cours ou de l'exercice pour plus de détails. Niveau 3 ème Cliquez sur le titre du cours ou de l'exercice pour plus de détails. Liste des cours et exercices Calcul Littéral...3 Cours...3 Leçon 1: Identités remarquables....4 Leçon 2: Factoriser une

Plus en détail

Progression année scolaire classe de seconde Total de 32,5 semaines

Progression année scolaire classe de seconde Total de 32,5 semaines Progression année scolaire 2016 2017 - classe de seconde Total de 32,5 semaines Du 5 septembre au 19 octobre (6,5 semaines) Chap 0 - Algorithmique (1s) Boites noires à la Voir fiche d exercices n 1 calculatrice

Plus en détail

Progression 5e - MATHEMATIQUES

Progression 5e - MATHEMATIQUES PREMIER TRIMESTRE PRIORITE DES OPERATIONS (Chap1) I) Calculs sans parenthèses II) Calculs avec parenthèses Activités : Révision de l ODG, CALCUL MENTAL - Effectuer une succession d opérations donnée sous

Plus en détail

Mathématiques. préparation à la Terminale S

Mathématiques. préparation à la Terminale S Mathématiques préparation à la Terminale S Le programme de Terminale S est chargé et est la continuité de celui de 1 ère ère S. Les nouvelles notions sont nombreuses et le rythme de progression est rapide.

Plus en détail

Compétences (en référence au programme)

Compétences (en référence au programme) Séance N Lycée HONNORAT BARCELONNETTE Durée effectif 0 1h 29 Classes :5 e Planification prévisionnelle des enseignements de mathématiques Mise en œuvre des programmes de 5 ème à la rentrée 2011 Cette planification

Plus en détail

PROGRESSION 3ème PGCD. vocabulaire. Détermination du PGCD. Rappel sur le calcul numérique: calcul de base

PROGRESSION 3ème PGCD. vocabulaire. Détermination du PGCD. Rappel sur le calcul numérique: calcul de base PROGRESSION 3ème Algèbre PGCD Je sais Ne sais pas vocabulaire + Connaître la définition et donner un multiple, un diviseur d'un nombre, + divisibilité savoir si un nombre est divisible par 2 3 5 9 10 (rappel

Plus en détail

Mathématiques 4 ème Chapitre 1 Multiplications, divisions de nombres relatifs

Mathématiques 4 ème Chapitre 1 Multiplications, divisions de nombres relatifs Mathématiques 4 ème Chapitre 1 Multiplications, divisions de nombres relatifs R.1. Additionner et soustraire des nombres relatifs R.2. Effectuer une somme algébrique. 4.1 Donner la règle des signes dans

Plus en détail

Cahier de texte de Mathématiques (M.Bueno) SEMAINE 01 : du 6/9/10 au 12/9/10

Cahier de texte de Mathématiques (M.Bueno) SEMAINE 01 : du 6/9/10 au 12/9/10 SEMAINE 01 : du 6/9/10 au 12/9/10 CHAPITRE 1 : REPERAGE DANS LE PLAN I ] Repère 1 ) Définition d un repère Application dans un rectangle 2 ) Coordonnées d un point du plan Reprise du rectangle Cours :

Plus en détail

Enseigner les mathématiques aux élèves de SEGPA

Enseigner les mathématiques aux élèves de SEGPA Enseigner les mathématiques aux élèves de SEGPA E. HERNANDEZ IEN ASH G. DERMIGNY CPC ASH L enseignement des mathématiques en SEGPA a une triple visée : - consolider, enrichir et structurer les acquis de

Plus en détail

Chapitre 1 - L algèbre de base

Chapitre 1 - L algèbre de base Mathématique d appoint 4 e édition Table des matières Chapitre 1 - L algèbre de base 1.1 Les ensembles de nombres 1.2 Les intervalles 1.3 Les relations entre deux ensembles 1.4 Les opérations sur les ensembles

Plus en détail

Lycée Beaupré d Haubourdin Cahier de vacances de 2 nde été 2016

Lycée Beaupré d Haubourdin Cahier de vacances de 2 nde été 2016 Lycée Beaupré d Haubourdin Cahier de vacances de nde été 06 L objectif de ce cahier de vacances est de vous aider à revoir des notions de base indispensables pour bien démarrer votre année de seconde en

Plus en détail

Correction du devoir commun de Seconde : Mathématiques

Correction du devoir commun de Seconde : Mathématiques Correction du devoir commun de Seconde : Mathématiques Exercice 1 5 points On se place dans un repère orthonormé, on donne les points suivants : Enfin, I est le milieu du segment 1 ) Faire une figure soignée

Plus en détail

Progression pour la classe de 3 ème

Progression pour la classe de 3 ème Progression pour la classe de 3 ème N Axe Chapitre Descriptif Remarques ; durée 1 Nombres et 2 Nombres et Chap 5 I- équation du 1er degré à 1 inconnue Chap 4 I- racine carrée d'un nombre positif Mettre

Plus en détail

Introduction 1. I Géométrie plane 11

Introduction 1. I Géométrie plane 11 Table des matières Introduction 1 I Géométrie plane 11 1 Géométrie pure 13 1.1 Parallélisme......................... 13 1.1.1 Axiomes d incidence................ 13 1.1.2 Positions relatives de deux droites.........

Plus en détail

PROGRESSION 3ème

PROGRESSION 3ème PROGRESSION 3ème 2010-2011 S1 S2 S3 S4 S5 Connaissances Socle Capacités Commentaires 3.2 Configurations dans l espace Problèmes de sections planes de solides. 2.1. Nombres entiers et rationnels Diviseurs

Plus en détail

MATHÉMATIQUES CINQUIÈME

MATHÉMATIQUES CINQUIÈME Collège STANISLAS de QUÉBEC ( 2011-2012 ) MATHÉMATIQUES CINQUIÈME 1. OBJECTIFS. Acquérir des connaissances pratiques et utiles dans des situations de la vie pratique.. Acquérir des notions fondamentales

Plus en détail

Mathématiques en SEGPA : pour aller vers le CAP

Mathématiques en SEGPA : pour aller vers le CAP Mathématiques en SEGPA : pour aller vers le CAP E. HERNANDEZ IEN ASH G. DERMIGNY CPC ASH Si l une des finalités des enseignements adaptés du second degré est d obtenir le CFG, l autre est de parvenir à

Plus en détail

Seconde ; année scolaire 2008 / 2009 Mathématiques

Seconde ; année scolaire 2008 / 2009 Mathématiques 04 / 09 08 / 09 09 / 09 11 / 09 15 / 09 16 / 09 18 / 09 22 / 09 23 / 09 25 / 09 Chapitre 1 : Ensembles de nombres Cours : Historique I. Classification des nombres II. Nombres premiers III. Calculs avec

Plus en détail

L essentiel des notions

L essentiel des notions L essentiel des notions Sésamath Quatrième L essentiel des notions http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Adaptation réalisée par Marie-Laure Besson Table des matières

Plus en détail

Livret mathématique de la 4 ème

Livret mathématique de la 4 ème Collège Marmontel MATHS 4 ème 100 rue des écoles, 19110 BORT-LES-ORGUES Année 2008 09 Tél : 05 55 96 73 61 Fax : 05 55 96 88 26 M Mouton Livret mathématique de la 4 ème Nom : Prénom Classe : Ce document

Plus en détail

Ville de Bruxelles Programme de 3 ème année

Ville de Bruxelles Programme de 3 ème année Ville de Bruxelles Programme de 3 ème année 1. Algèbre Les compétences algébriques reposent sur la connaissance de propriétés articulées entre elles et sur la capacité à traduire une situation en langage

Plus en détail

Socle Commun des Connaissances - Compétences Mathématiques - Classement adapté à Sésamath / MathenPoche

Socle Commun des Connaissances - Compétences Mathématiques - Classement adapté à Sésamath / MathenPoche Compétence exigible au socle dès à présent. v Compétence exigible au socle ultérieurement. v Compétence non exigible au socle. v Compétence sans objet. v 6 Sixième V V V V 6N Nombres entiers et décimaux

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE MOYEN

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE MOYEN LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE MOYEN Introduction. page 2 Classe de cinquième page 3 Classe de quatrième page 7-1 - INTRODUCTION D une manière générale on mettra

Plus en détail

( ) et de vecteur directeur u 3 5

( ) et de vecteur directeur u 3 5 Révisions conseillées pour un passage en terminale S rentrée 2014 Pour que le passage de la classe de première S à la terminale se fasse de façon fluide, nous vous conseillons de prévoir dix jours de révision

Plus en détail

Programme de mathématiques de la classe de cinquième

Programme de mathématiques de la classe de cinquième Programme de mathématiques de la classe de cinquième L enseignement des mathématiques en classe de cinquième doit consolider et approfondir les acquis de la scolarité élémentaire et de la sixième et doter

Plus en détail

Examen d admission aux études de l enseignement supérieur de 1 er cycle

Examen d admission aux études de l enseignement supérieur de 1 er cycle Examen d admission aux études de l enseignement supérieur de 1 er cycle Programme de Mathématiques COMPÉTENCES GÉNÉRALES Le ou la candidat e doit être capable d'utiliser les notions de base énumérées ci-après

Plus en détail

Proposition d aménagement du programme de la classe de seconde Mathématiques 15 décembre 2016

Proposition d aménagement du programme de la classe de seconde Mathématiques 15 décembre 2016 Proposition d aménagement du programme de la classe de seconde Mathématiques 15 décembre 2016 - Proposition d aménagement du programme de mathématiques de la classe de seconde - Page 1 sur 14 Le programme

Plus en détail

Programme de mathématiques

Programme de mathématiques Enseignement Secondaire et Secondaire Technique 32 avenue de la Gare, L-9233 Diekirch boîte postale 39, L-9201 Diekirch www.lcd.lu Lycée classique de Diekirch t (+352) 26 807 210 f (+352) 80 95 84 Programme

Plus en détail

MISE EN PARALLELE PROGRAMMES DE MATHS C3 et 6ème ORGANISATION ET GESTION DES DONNEES

MISE EN PARALLELE PROGRAMMES DE MATHS C3 et 6ème ORGANISATION ET GESTION DES DONNEES MISE EN PARALLELE PROGRAMMES DE MATHS C3 et 6ème Proportionnalité CM1 - Utiliser un tableau ou la règle de trois dans des situations très simples de proportionnalité. Proportionnalité CM2 - Résoudre des

Plus en détail

Socle Commun des Connaissances Mathématiques - MathenPoche/Sésamath

Socle Commun des Connaissances Mathématiques - MathenPoche/Sésamath Indexation Compétence exigible au socle dès à présent. 95 Compétence exigible au socle ultérieurement. Compétence non exigible au socle. 5 Compétence sous-entendue. 2 6 Sixième V V V V 6N Nombres entiers

Plus en détail

PROGRAMME DE MATHEMATIQUES ANNEE 5 DU SECONDAIRE

PROGRAMME DE MATHEMATIQUES ANNEE 5 DU SECONDAIRE Ecoles européennes Bureau du Secrétaire Général du Conseil Supérieur Unité de développement pédagogique Ref. : 011-01-D-7-fr- Orig. : EN PROGRAMME DE MATHEMATIQUES ANNEE 5 DU SECONDAIRE Cours à 4 périodes/semaine

Plus en détail

RÉFÉRENTIEL MATHÉMATIQUES CYCLE 4 Joan MAGNIER, collège Anne Frank (Sauzé-Vaussais) 44 compétences

RÉFÉRENTIEL MATHÉMATIQUES CYCLE 4 Joan MAGNIER, collège Anne Frank (Sauzé-Vaussais) 44 compétences RÉFÉRENTIEL MATHÉMATIQUES CYCLE 4 Joan MAGNIER, collège Anne Frank (Sauzé-Vaussais) 44 compétences NOMBRES et CALCULS N1- Utiliser les nombres pour comparer N2- Utiliser les nombres pour calculer N3- Utiliser

Plus en détail

III - Référentiel de mathématiques

III - Référentiel de mathématiques III - Référentiel de mathématiques Les tableaux qui suivent se présentent sous la forme de quatre colonnes : - la première indique les domaines de connaissances ; - la deuxième indique les capacités ;

Plus en détail

*********************** Un Peuple Un But Une Foi Institut Pédagogique National ***************** OPÉRATION MATHÉMATIQUES SAVOIR FAIRE

*********************** Un Peuple Un But Une Foi Institut Pédagogique National ***************** OPÉRATION MATHÉMATIQUES SAVOIR FAIRE MINISTÈRE DE L ÉDUCATION NATIONALE RÉPUBLIQUE DU MALI *********************** Un Peuple Un But Une Foi Institut Pédagogique National ***************** OPÉRATION MATHÉMATIQUES SAVOIR FAIRE 10 è SCIENCES

Plus en détail

Mathématiques de la 1 re année du secondaire

Mathématiques de la 1 re année du secondaire Mathématiques de la 1 re année du secondaire 563-100 Le programme de mathématiques de la première année du secondaire comporte les trois compétences principales présentées cidessous. Chaque compétence

Plus en détail

Utiliser les propriétés des symétries axiale ou centrale.

Utiliser les propriétés des symétries axiale ou centrale. Chapitre 4 Éléments de Géométrie Ce que dit le programme CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Coordonnées d un point du plan Abscisse et ordonnée d un point dans le plan rapporté à un repère orthonormé.

Plus en détail

- image - asymptote - racine - zéro

- image - asymptote - racine - zéro Mathématiques Pré-calcul 40S La notation fonctionnelle Démontrer une compréhension de la notation fonctionnelle et des opérations sur les fonctions Vocabulaire - - Déterminer la valeur de f(a) - Déterminer

Plus en détail

FORMULAIRE MATHEMATIQUES

FORMULAIRE MATHEMATIQUES Collège Mont Miroir FORMULAIRE MATHEMATIQUES Tout ce que vous devez savoir pour réussir au brevet, et même après. Mr Mougin 2015/2016 Page 2 SOMMAIRE ARITHMÉTIQUE... 5 Définitions... 5 Critères de divisibilité...

Plus en détail

Progression 5ème. Thème Titre du chapitre Connaissances Capacités Commentaires Socle Ressources

Progression 5ème. Thème Titre du chapitre Connaissances Capacités Commentaires Socle Ressources N chapitre 1 5 Durée Thème Titre du chapitre Connaissances Capacités Commentaires Socle Ressources heure s Proportionnalité calcul calculs (1) Valeur approchée Troncature Arrondi Critères de divisibilité

Plus en détail

PROGRAMMATION DE MATHEMATIQUES - CM2

PROGRAMMATION DE MATHEMATIQUES - CM2 Période 1 (7 semaines) PROGRAMMATION DE MATHEMATIQUES - CM2 Connaître par coeur les tables d addition nombres de 0 à 50. Problèmes relevant de l addition, : addition d un nombre de 2 de la soustraction

Plus en détail

Exercices de Mathématiques 1 ère S

Exercices de Mathématiques 1 ère S Exercices de Mathématiques 1 ère S Pour préparer la rentrée en TS Fonctions, équations et inéquations Exercice 1 1. Pour quelle(s) valeur(s ) de m, l'équation x² - (m+1) x +4 = 0 a-t-elle une seule solution

Plus en détail

Table des matières. Avant propos... 3

Table des matières. Avant propos... 3 Table des matières Avant propos... 3 Chapitre 1 NOTIONS DE BASE SUR LES ENSEMBLES 1.1 Inclusion... 7 1.2 Intersection... 8 Propriétés... 9 1.3 Réunion... 9 Propriétés... 9 1.4 Ensemble complémentaire...

Plus en détail

Matière: Maths Fiche de programmation : Année scolaire : 2013/2014

Matière: Maths Fiche de programmation : Année scolaire : 2013/2014 Matière: Maths Fiche de programmation : Année scolaire : 2013/2014 Classe : EB6 Nom du professeur : roula makdessy Compétences transversales : 1- Trier et saisir des informations et les traiter dans la

Plus en détail

PROGRAMMATION DE MATHÉMATIQUES D'APRÈS LE SOCLE COMMUN DE COMPÉTENCES

PROGRAMMATION DE MATHÉMATIQUES D'APRÈS LE SOCLE COMMUN DE COMPÉTENCES PROGRAMMATION DE MATHÉMATIQUES D'APRÈS LE SOCLE COMMUN DE COMPÉTENCES Compétences du socle commun JE SUIS CAPABLE DE... Calculer : addition, soustraction, multiplication Diviser par 2 ou par 5 le cas où

Plus en détail

En cohérence avec l ensemble des programmes de mathématiques, l objectif général vise au développement de compétences.

En cohérence avec l ensemble des programmes de mathématiques, l objectif général vise au développement de compétences. Programme de première STI2D et STL Analyse et comparaison aux anciens programmes de STI Préambule Le programme est commun aux deux séries STI2D et STL. On ne distingue plus les six séries de STI (BO 1994),

Plus en détail

BACCALAURÉATS PROFESSIONNELS EN 3 ANS

BACCALAURÉATS PROFESSIONNELS EN 3 ANS BACCALAURÉATS PROFESSIONNELS EN ANS Carrosserie (réparation) Exemple de progression pédagogique Programmes : BOEN n 11 du 1/06/199 / A 8/07/99 modifié A 19/07/0 Mathématiques I : Activités numériques et

Plus en détail

Les nombres de 0 à lecture, écriture décomposition, comparaison, rangement. Les grands nombres : Lecture, écriture, décomposition

Les nombres de 0 à lecture, écriture décomposition, comparaison, rangement. Les grands nombres : Lecture, écriture, décomposition NOMBRES ET CALCUL CM2 Connaître et utiliser les nombres entiers, et fractionnaires Ecrire, nommer, comparer et utiliser les nombres entiers, les nombres (jusqu au centième) et quelques fractions simples

Plus en détail

Exercices supplémentaires : Produit scalaire dans l espace

Exercices supplémentaires : Produit scalaire dans l espace Exercices supplémentaires : Produit scalaire dans l espace Dans tous les exercices, sauf quand cela est précisé, on considère un repère orthonormal de l espace ; ; ;. Partie A : Repère et vecteurs coplanaires

Plus en détail

- Construire le tableau de variation d une telle fonction en association avec la courbe représentative.

- Construire le tableau de variation d une telle fonction en association avec la courbe représentative. Mathématiques - classe de 1ère des séries STD2A 1. Analyse Le programme d analyse met en évidence l apport des fonctions et de leurs représentations graphiques dans des situations purement mathématiques

Plus en détail

Révisions obligatoires Mathématiques Seconde à première 2013

Révisions obligatoires Mathématiques Seconde à première 2013 Des bases solides sont nécessaires pour réussir l entrée en classe de première. 50 questions à choix multiples. Cocher dans le tableau de la feuille de réponse les propositions vraies et laisser vierge

Plus en détail

Formulaire de mathématiques

Formulaire de mathématiques NOM : Prénom : Classe : Formulaire de mathématiques Ce formulaire contient l essentiel de la matière de 3 ème ainsi que des synthèses de 4 ème. Complète-le, prends-le avec toi au cours et au remédiations

Plus en détail

ORGANISATION ET GESTION DE DONNÉES, FONCTIONS NOMBRES ET CALCULS

ORGANISATION ET GESTION DE DONNÉES, FONCTIONS NOMBRES ET CALCULS P R OGRA M ME E T SOC L E N I V E A U S I X I È M E ORGANISATION ET GESTION DE DONNÉES, FONCTIONS PROPORTIONNALITÉ (SITUATIONS PROBLÈMES) Reconnaître si une situation relève de la proportionnalité. Traiter

Plus en détail

MATHS QUATRIEME CYCLE CENTRAL (progression B.O. Août 2 008)

MATHS QUATRIEME CYCLE CENTRAL (progression B.O. Août 2 008) 1. Organisation et gestion de données. Fonctions Utilisation de la proportionnalité Quatrième proportionnelle Calculs faisant intervenir des pourcentages Proportionnalité * Représentations graphiques.

Plus en détail

Exercices de révision - Niveau seconde

Exercices de révision - Niveau seconde Exercices de révision - Niveau seconde NB: cette fiche d'exercices est à destination des élèves passant en classe de première S et ES. Les exercices portant une étoile * sont exclusivement destinés aux

Plus en détail

1. Généralités sur les fonctions et fonctions polynômes

1. Généralités sur les fonctions et fonctions polynômes Comment faire pour Généralités sur les fonctions et fonctions polnômes86 Repérage 88 Dérivation90 Comportements asmptotiques et étude de fonctions9 5 Calcul vectoriel et barcentre 96 6 Produit scalaire

Plus en détail

Fiche Méthode n 1 : «Démontrer qu un triangle est rectangle»

Fiche Méthode n 1 : «Démontrer qu un triangle est rectangle» Fiche Méthode n 1 : «Démontrer qu un triangle est rectangle» -1- Par le théorème de Pythagore : «Un triangle est rectangle si et seulement si le carré du plus grand côté est égal à la somme des carrés

Plus en détail

Programme de mathématiques

Programme de mathématiques Enseignement Secondaire et Secondaire Technique 32 avenue de la Gare, L-9233 Diekirch boîte postale 39, L-9201 Diekirch www.lcd.lu Lycée classique de Diekirch t (+352) 26 807 210 f (+352) 80 95 84 Programme

Plus en détail

Devoir de mathématiques n 2

Devoir de mathématiques n 2 Page Prénom :. Jeudi 3 décembre 05 Devoir de mathématiques n Calculatrice autorisée. Le sujet contient 3 pages. Rendre le sujet avec la copie. Le détail des calculs doit figurer pour l attribution des

Plus en détail

6 e année. 1. Démontrer une compréhension de valeur de position pour des nombres : supérieurs à un million; inférieurs à un millième.

6 e année. 1. Démontrer une compréhension de valeur de position pour des nombres : supérieurs à un million; inférieurs à un millième. CADRE COMMUN DES PROGRAMMES DE MATHÉMATIQUES PROTOCOLE DE L OUEST ET DU NORD CANADIENS PONC TABLEAU DE CORRÉLATION 5 e et NOMBRE Développer le sens du nombre L ÉLÈVE DOIT POUVOIR 1. Représenter et décrire

Plus en détail

Programme de mathématiques. Classe de troisième

Programme de mathématiques. Classe de troisième Programme de mathématiques Classe de troisième Sommaire Classe de troisième... 3 1. Organisation et gestion de données, fonctions... 3 2. Nombres et calculs... 6 3. Géométrie... 8 4. Grandeurs et mesures...

Plus en détail

Progression mathématique commune ( )

Progression mathématique commune ( ) 6 ème Progression mathématique commune (2016-2017) Ce document est élaboré par le réseau Berry Sud et basé sur le B.O du 26/11/15. Chapitre 1 - Nombres décimaux. Comprendre et utiliser la notion de nombre

Plus en détail

A retenir : Chapitre 1

A retenir : Chapitre 1 A retenir : Chapitre 1 C1 * 1 et * 2 Définition de division euclidienne et vocabulaire Effectuer la DIVISION EUCLIDIENNE de D par d non nul, c est trouver le quotient q et le reste r tel que : D = d. q

Plus en détail

Cf. Exemples de situations, d activités et de ressources pour l élève CM1 CM2 6 ème. Connaissances et compétences associées

Cf. Exemples de situations, d activités et de ressources pour l élève CM1 CM2 6 ème. Connaissances et compétences associées MATHEMATIQUES Cycle 3 - NOMBRES ET CALCULS Attendus de fin de cycle Utiliser et représenter les grands nombres entiers, des fractions simples, les nombres décimaux. Calculer avec des nombres entiers et

Plus en détail

Fait le Texte Pour le

Fait le Texte Pour le 6 septembre 7 septembre 9 septembre 13 septembre 14 septembre 16 septembre 20 septembre 21 septembre 23 septembre 27 septembre Second degré : mise sous forme canonique. Exemples. Exercices 42 et 44 page

Plus en détail

Progression Terminale S MATHS enseignement spécifique

Progression Terminale S MATHS enseignement spécifique Progression 2013-2014 - Terminale S MATHS enseignement spécifique 1 RECURRENCE ET SUITES BORNEES SEMAINES 1, 2 et 3 I. Suites : généralités 2) Exemples de suites 3) Variation et monotonie d une suite 4)

Plus en détail

Progression et compétence 6 ème

Progression et compétence 6 ème Progression et compétence 6 ème 2016-2017 Droites parallèles, perpendiculaires Non Début GF1 : Connaître / utiliser le vocabulaire et les notations : point, droite, demidroite, segment. GF2 : Tracer une

Plus en détail

Progressions Mathématiques cycle 3

Progressions Mathématiques cycle 3 Progressions Mathématiques cycle 3 Nombres et calcul CM1 CM2 6ème Utiliser et représenter les grands nombres entiers Utiliser et représenter les grands nombres entiers Utiliser et représenter les grands

Plus en détail

FONCTIONS. représente une fonction. ne représente pas une fonction

FONCTIONS. représente une fonction. ne représente pas une fonction FONCTIONS Activité de recherche : Stratégie d entreprise Une entreprise fabrique des ballons de rugby. Sa production quotidienne peut varier de à 000 ballons. Le coût total, en centaines d euros, pour

Plus en détail

EXERCICES DE REVISION AVANT LA SECONDE

EXERCICES DE REVISION AVANT LA SECONDE EXERCICES DE REVISION AVANT LA SECONDE Vous pouvez faire tous les exercices sur ces feuilles. Je vous conseille donc de les imprimer. LES PRIORITES DE CALCUL Exercice 1 Rappels de cours : _ Les calculs

Plus en détail

Programmation Mathématiques sur le cycle 4

Programmation Mathématiques sur le cycle 4 LEGENDE DES TABLEAUX Attendus de Savoir-faire 5ème 4ème 3ème Repère de progressivité donnant une progression obligatoire sur les 3 niveaux Savoir-faire issu des programmes 2008 de 6 ème Repère de progressivité

Plus en détail

Bon courage et bonnes vacances.

Bon courage et bonnes vacances. Ce livret reprend les notions importantes du collège. Il doit vous aider à arriver en septembre en ayant conscience de ce qu il faut maitriser pour partir sur de bonnes bases en Seconde. Les exercices

Plus en détail

BACCALAURÉATS PROFESSIONNELS EN 3 ANS

BACCALAURÉATS PROFESSIONNELS EN 3 ANS BACCALAURÉATS PROFESSIONNELS EN ANS Technicien en installation des systèmes énergétiques et climatiques Exemple de progression pédagogique Programmes : Mathématiques : I : Activités numériques et graphiques

Plus en détail

Progression de 2 nde - «type spiralée»

Progression de 2 nde - «type spiralée» Progression de 2 nde - «type spiralée» Le document ci-dessous est constitué de plusieurs parties : A) Les différents chapitres de l année rangés suivant les 3 parties du programme : Fonctions, Géométrie,

Plus en détail

Comparaison des programmes de mathématiques au cycle terminal du lycée

Comparaison des programmes de mathématiques au cycle terminal du lycée Comparaison des programmes de mathématiques au cycle terminal du lycée 10 avril 2013 Plan du document Préambule........................................................... 2 A - Première S.........................................................

Plus en détail

Polynômes du second degré et fonctions homographiques 2nde

Polynômes du second degré et fonctions homographiques 2nde Fonctions de référence Polynômes du second degré et fonctions homographiques 2nde Table des matières I. Fonctions homographiques...1 A. La star de la famille : La fonction inverse (Normalement vous connaissez

Plus en détail

LES MATHEMATIQUES DE LA 5 EME A LA 4 EME AU COLLEGE LA SOURCE (MEUDON 92)

LES MATHEMATIQUES DE LA 5 EME A LA 4 EME AU COLLEGE LA SOURCE (MEUDON 92) Passage Mathématique 5 ème - 4 ème v 1.0 Classe de Cinquième Page 1 sur 7 LES MATHEMATIQUES DE LA 5 EME A LA 4 EME AU COLLEGE LA SOURCE (MEUDON 92) «Le grand livre de la Nature est écrit en langage mathématique.»

Plus en détail

Nombres et calculs Utiliser et représenter les grands nombres entiers, des fractions simples, les nombres décimaux CM2

Nombres et calculs Utiliser et représenter les grands nombres entiers, des fractions simples, les nombres décimaux CM2 Nombres et calculs Utiliser et représenter les grands nombres entiers, des fractions simples, les nombres décimaux Les nombres entiers jusqu au milliard Connaître, savoir écrire et nommer les nombres entiers

Plus en détail

STAGE DE FORMATION CONTINUE GOURDON MATHEMATIQUES CYCLE 3. MC RICOU CPC GOURDON NOMBRES ET CALCUL CM2

STAGE DE FORMATION CONTINUE GOURDON MATHEMATIQUES CYCLE 3. MC RICOU CPC GOURDON NOMBRES ET CALCUL CM2 NOMBRES ET CALCUL CM2 Connaître et utiliser les nombres entiers, et fractionnaires Ecrire, nommer, comparer et utiliser les nombres entiers, les nombres (jusqu au centième) et quelques fractions simples

Plus en détail

DEVOIR COMMUN DE MATHÉMATIQUES Seconde 2 heures

DEVOIR COMMUN DE MATHÉMATIQUES Seconde 2 heures DEVOIR COMMUN DE MATHÉMATIQUES Seconde heures Mars 013 L usage de la calculatrice est autorisé pour cette épreuve. Le candidat est invité à faire figurer toute trace de recherche, même incomplète ou non

Plus en détail