Quelques applications de la diagonalisation

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Quelques applications de la diagonalisation"

Transcription

1 FACULTE DES SCIENCES ET TECHNIQUES. UHA MULHOUSE L2 Mathématiques. Mathématiques: ALGEBRE LINEAIRE II Cours Elisabeth REMM Chapitre 2 Quelques applications de la diagonalisation. Puissances d une matrice diagonalisable.. Puissance d une matrice semblable. Soit M M n (K) une matrice carrée à coefficients dans K, K = R ou C. Une matrice M4 est semblable à M s il existe une matrice inversible P d ordre n telle que M = P MP. Proposition. Soit M M n (K) une matrice carrée à coefficients dans K, K = R ou C et M = P MP une matrice semblable. On a alors pour tout entier p N. M p = M = P M p P Démonstration. En effet, démontrons par récurrence cette identité. M 2 = M = P MP P MP = M = P M 2 P car P P = I n. Supposons que pour un entier donné p on ait M p = M = P M p P. Alors M p+ = M M p = P MP P M p P = P MM p P = P M p+ P. L identité est encore vraie à l ordre p +. Elle est donc vraie pour tout p.

2 2 L2PC Chapitre. Diagonalisation.2. Puissance d une matrice diagonale. Soit D = λ λ λ n une matrice diagonale. On a alors, pour tout entier p D p = Ceci se démontre aussi par récurrence sur p. λ p λ p λ p n.3. Puissance d une matrice diagonalisable. Soit M M n (K) une matrice diagonalisable. Il existe donc une matrice diagonale D semblable à M: D = P MP. On en déduit M = P DP et donc M p = P D p P pour tout entier p N. Ainsi le calcul de toute puissance de M est assez aisé dès que cette matrice est diagonalisable et que la diagonalisation ne soit pas trop compliquée. 2. Suites récurrentes linéaires 2.. Définition. Une suite (u n ) n 0 de nombres réels est une suite récurrente linéraire si elle vérifie une relation de récurrence du type suivant () u n+2 = αu n+ + βu n pour tout n 0, où α et β sont des nombres réels donnés. Le problème qui nous int dresse est celui de déterminer toutes les suites récurrentes linéires vérifiant, lorsque α et β sont donnés, la relation () ci-dessus. Proposition 2. L ensemble des solutions de () est un espace vectoriel sur R de dimension 2. Démonstration. Il est clair que la suite nulle u n = 0 pour tout n est une suite vérifiant (). Soient (u n ) et (v n ) deux suites réelles vérifiant (). On a donc { un+2 = αu n+ + βu n v n+2 = αv n+ + βv n et soient a, b R. Considérons la suite de terme génóral au n + bv n. Elle vérifie au n+2 + bv n+2 = a(alphau n+ + βu n ) + b(αv n+ + βv n ) = α(au n+ + bv n+ ) + β(au n ) + bv n ).

3 Elisabeth Remm 3 Ainsi la suite (au n + bv n ) n 0 ) vérifie aussi (). On en déduit que l ensemble des solutions est bien un espace vectoriel sur R. Cherchons sa dimension. Remarquons, dans un premier temps, que toute suite u n ) vérifiant () est entièrements déterminée dès que u 0 et u sont données. En effet, ceci permet de calculer u 2, puis avec u et u 2 on calculer u 3 etc. Considérons alors l application ϕ : R 2 E où E désbigne l espace vectoriel des solutions de (), définie par ϕ(a, b) est la suite réelle de E définie par u 0 = a et u = b. Cette application est linŕaire surjective. Elle est injective car son noyau correspond aux couples (a, b) donnant la solution nulle. Or si (u n ) est la suite nulle, alors u 0 = u = 0 et donc a = b = 0. Ainsi ϕ est un isomorphisme linéaire. On en déduit que E est de dimension Etude matricielle. Dans le paragraphe précédent, nous avons vu que pour trouver les solutions d une suite récurrente, il suffisait de trouver deux solutions particulières indépendantes. Nous allons proposer ici une étude matricielle. La suite récurrente vérifie u n+ = αu n + βu n. Considérons la suite (v n ) définie, pour n par On obtient le système v n = u n. { un+ = αu n + βv n v n+ = u n. que nous pouvons écrire matriciellement sous la forme où M est la matrice et On en déduit et U n+ = MU n M = U n = U = ( α β 0 ( un ) v n ). ( u u 0 ) U n+ = M n U. On est donc conduit à calculer M n ce que nous savons faire, d après le paragraphe précédent, si M est diagonalisable.

4 4 L2PC Chapitre. Diagonalisation 3. Exponentielle d une matrice diagonalisable 3.. Définition de l exponentielle d une matrice carrée. Définition. Soit M une matrice de M n (K). On appelle Exponentielle de la matrice M la somme de la série de puissances de M: (2) exp M = I n + M + 2! M 2 + 3! M p! M p + Cette définition a bien un sens car la série (2) est convergente, autrement dit si α (p) ij les éléments de la matrice somme partielle: désigne S p = I n + M + 2! M 2 + 3! M p! M p, les suites (α (p ij ) p 0 (i et j étant fixes et p tend vers l infini) sont convergentes. En effet soit β tels que β α ij, i, j. Alors α (p) ij + nβ + 2! n2β2 + + p! np β p e nβ. On en déduit que exp M existe quelle que soit la matrice carrée M. Exemples () Soit 0 n la matrice nulle de M n (K). Alors exp 0 n = I n. (2) Soit I n la matrice identité de M n (K). Alors exp I n = e e e Théorème. () Soient M 2, M 2 M n (K) deux matrices qui commutent, c est-àdire qui vérifient M M 2 = M 2 M. Alors exp(m + M 2 ) = exp M exp M 2. (2) Soit P GL(n, K) une matrice inversible d ordre n. Alors exp(p MP ) = P (exp M)P. Démonstration.. Le terme général de la série exp(m + M 2 ) est p! (M + M 2 ) p. Avant de développer (M + M 2 ) p, notons qu en général la formule du binôme ne s applique pas au calcul

5 matriciel. En effet, considérons le cas p = 2. On a Elisabeth Remm 5 (M + M 2 ) 2 = (M + M 2 )(M + M 2 ) = M 2 + M M 2 + M 2 M + M 2 2 et cette expression n est simplifiable que si M M 2 = M 2 M et l on comprend ici l importance de l hypothèse: les matrices M et M 2 commutent. Sous cette hypothèse, on a alors: (M + M 2 ) 2 = M 2 + M M 2 + M 2 M + M 2 2 = M 2 + 2M M 2 + M 2 2 et la formule du binôme est donc valable dans ce cas. On montre donc, par récurrence sur p que, sous l hypothèse M M 2 = M 2 M on a: (M + M 2 ) p = M p + pm p p! M k!(p k)! M p k M2 k + + M p 2. Considérons à présent le produit exp M exp M 2. Calculons la partie homogène de degré p. Elle est égale à: p! M p + (p )! M p M (p k)! M p k k! M 2 k + + p! M p 2. Or cette expression s écrit aussi: soit p! (M p + On en déduit donc que p! (p )! M p M p! (M + M 2 ) p. exp M exp M 2 = exp(m + M 2 ). 2. Si M 2 = P MP, alors, pour tout entier p on a M p 2 = P M p P. p! (p k)!k! M p k M k M p 2 ) Considérons la somme partielle S p = I n + M 2 + p! M p 2 de la série exp M 2. On a alors S p = I n + M 2 + p! M p 2 = I n + P M P + p! P M p P = P I n P + P M P + p! P M p P = P (I n + M + p! M p )P = P Σ p P où Σ p est la somme partielle de la série exp M. On en déduit donc, par passage à la limite que exp M 2 = P (exp M)P.

6 6 L2PC Chapitre. Diagonalisation Corollaire. Quelle que soit la matrice M M n (K), la matrice exp M est inversible et (exp M) = exp( M). Démonstration. En efet, il est évident que les matrices M et M commutent. On en déduit exp(m M) = exp(m) exp( M). Or Ainsi exp(m M) = exp 0 = I n. ce qui prouve le résultat annoncé. exp(m) exp( M) = I n 3.2. Exponentielle d une matrice diagonale. Proposition 3. Soit D la matrice diagonale D = Alors exp D est la matrice diagonale exp D = λ λ λ n e λ e λ e λn.. Démonstration. En effet, nous avons vu que pour tout entier p, on a λ p D p = 0 λ p λ p n On en déduit que chacune des sommes partielles de la série exp D est une matrice diagonale et donc exp D est aussi diagonale. Calculons chacun des termes de sa diagonale. le i-ème est + λ i + 2! λ2 i + + p! λp i + qui correspond au développement en série de e λλ i. D où le résultat.

7 3.3. Exponentielle d une matrice diagonalisable. Elisabeth Remm 7 Proposition 4. Soit M M n (K) une matrice diagonalisable et soit D = P MP une matrice diagonale semblable à M. Alors exp M = P (exp D)P. Démonstration. Soit Σ k = I n + M + + k! M k la somme partielle de la série exp M. Comme D = P MP, on a M = P DP et donc Σ k = I n + P DP + + k! (P DP ) k. Or on a vu que ce qui donne (P DP ) k = P D k P Σ k = I n + P DP + + k! P Dk P = P (I n + D + + k! Dk )P. On en déduit, par passage à la limite exp M = P (I n + D + + k! Dk + )P = P (exp D)P La fonction exp tm. Fixons nous une matrice M M n (R). Considérons la fonction t R exp tm C est une fonction d une variable réelle à valeurs dans l espace vectoriel M n (R). Cet espace est de dimension n 2 et peut donc être identifié à R n2. Proposition 5. La fonction t R exp tm. de la variable réelle t est dérivable et a pour dérivée d exp tm = M exp T M. dt Démonstration. exp tm est la somme de la série p! tp M p. p 0 Cette série est à valeurs dans M n (R) mais est sur chacune des composantes (d une matrice carrée) une série entière réelle. Chacune de ces composantes est donc indéfiniment de fois

8 8 L2PC Chapitre. Diagonalisation dérivable. On a alors d dt exp tm = M + tm t2 M + + pt p p! M P + = M(I n + tm + 2 t2 M (p )! tp M p + = M exp tm. 4. Systèmes différentiels linéaires à coefficients constants 4.. Cas homogène.

9 Elisabeth Remm 9 EXERCICES Exercice. Soit la matrice A = Calculer A p et montrer que l on a A p = a p A + b p I 3 a p et b p étant des constantes que l on déterminera. Exercice 2. Etudier la suite récurrente linéaire u n+ = 4u n u n. Trouver la solution correspondant a u = et u 0 = 0. Exercice 3. Etudier les suites récurrentes (u n ) et (v n ) définies par les relations { un = au n + bv n v n = cu n + dvn les termes initiaux u 0 et v 0 étant donnés. Etudier le cas particulier a = d, b = c.

Algèbre linéaire pour GM Jeudi 01 décembre 2011 Prof. A. Abdulle. Série 10 (Corrigé)

Algèbre linéaire pour GM Jeudi 01 décembre 2011 Prof. A. Abdulle. Série 10 (Corrigé) Algèbre linéaire pour GM Jeudi décembre Prof. A. Abdulle EPFL Série (Corrigé) Exercice Parmi les matrices suivantes, indiquer celles qui sont diagonalisables (toujours en justifiant), et le cas échéant

Plus en détail

AR - SUITES RECURRENTES LINEAIRES ET EQUATIONS DIFFERENTIELLES LINEAIRES

AR - SUITES RECURRENTES LINEAIRES ET EQUATIONS DIFFERENTIELLES LINEAIRES AR - SUITES RECURRENTES LINEAIRES ET EQUATIONS DIFFERENTIELLES LINEAIRES Suites de nombres complexes Notons l(c) l espace vectoriel sur C des suites de nombres complexes. Si (s n ) n 0 est un élément de

Plus en détail

n a k x k = 0, k=0 n a k x k. k=0

n a k x k = 0, k=0 n a k x k. k=0 Université Claude Bernard Lyon I CAPES de Mathématiques : Oral Année 2006 2007 Fonctions polynômes On travaille sur un corps K infini, par exemple R ou C. Définition, structures (a) Définition On appelle

Plus en détail

Algèbre linéaire pour GM Jeudi 28 novembre 2013 Prof. A. Abdulle , , )

Algèbre linéaire pour GM Jeudi 28 novembre 2013 Prof. A. Abdulle , , ) Algèbre linéaire pour GM Jeudi 8 novembre Prof. A. Abdulle EPFL Série (Corrigé) Exercice Parmi les matrices suivantes, indiquer celles qui sont diagonalisables (toujours en justifiant), et le cas échéant

Plus en détail

ÉCOLE NORMALE SUPÉRIEURE. (Durée : 6 heures) L utilisation des calculatrices n est pas autorisée pour cette épreuve.

ÉCOLE NORMALE SUPÉRIEURE. (Durée : 6 heures) L utilisation des calculatrices n est pas autorisée pour cette épreuve. ÉCOLE NORMALE SUPÉRIEURE CONCOURS D ADMISSION 2011 FILIÈRE MP COMPOSITION DE MATHÉMATIQUES D (U) (Durée : 6 heures) L utilisation des calculatrices n est pas autorisée pour cette épreuve. Dans tout le

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle 1 Fonction exponentielle Définition et variation Théorème Définition Il existe une unique fonction définie et dérivable sur telle que et Cette fonction est appelée fonction exponentielle

Plus en détail

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (K) Dans tout ce chapitre, K désigne R ou C.

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (K) Dans tout ce chapitre, K désigne R ou C. Matrices Dans tout ce chapitre, K désigne R ou C Matrices rectangulaires Soient n, p deux nombres entiers non-nuls On appelle matrice à n lignes et p colonnes à coefficients dans K tout tableau rectangulaire

Plus en détail

I. Matrices positives

I. Matrices positives 1 Corrigé du devoir 16 : Mines-Ponts PSI 26 I Matrices positives 1 Soit A une matrice positive B = t MAM est symétrique car t B = t M t A M = t M A M = B De plus, si X M p,1, on a (BX X) = (AMX MX) = (AY

Plus en détail

Commutant d une matrice

Commutant d une matrice Énoncé On désigne par n un entier naturel supérieur ou égal à 2, et par M n (IK) l algèbre sur IK des matrices carrées d ordre n à coefficients dans IK, avec IK = IR ou lc. La matrice identité de M n (IK)

Plus en détail

Exercices du chapitre 6 avec corrigé succinct

Exercices du chapitre 6 avec corrigé succinct Eercices du chapitre 6 avec corrigé succinct Eercice VI Ch6-Eercice On veut résoudre t + bt t + ctt =, b et c étant des fonctions réelles Transformer cette équation différentielle du second ordre en un

Plus en détail

I. Détermination de Rac(A) dans quelques exemples.

I. Détermination de Rac(A) dans quelques exemples. I. Détermination de Rac(A) dans quelques exemples. 1. Les sous espaces propres E λi (A) sont de dimension 1 et en somme directe. Leur somme a donc une dimension au moins égale à n. Comme elle est incluse

Plus en détail

TD 2 : Réduction des endomorphismes

TD 2 : Réduction des endomorphismes Université Paris-Est Marne-la-Vallée Licence L2 Maths/Info 1er semestre 2012/2013 Algèbre 2 TD 2 : Réduction des endomorphismes Exercice 1 (Projections Soit f un endomorphisme de E tel que f f = f 1 Montrer

Plus en détail

Formes quadratiques. 1. Formes bilinéaires symétriques et formes quadratiques

Formes quadratiques. 1. Formes bilinéaires symétriques et formes quadratiques Agrégation interne UFR MATHÉMATIQUES Formes quadratiques On se place sur un R-espace vectoriel E de dimension finie n. 1. Formes bilinéaires symétriques et formes quadratiques 1.1. Formes bilinéaires symétriques

Plus en détail

PROBLÈME 1 - Un calcul d intégrale Partie I - Une intégrale auxiliaire

PROBLÈME 1 - Un calcul d intégrale Partie I - Une intégrale auxiliaire PCSI 03-0 CORRECTION DS n 0 Lycée de L essouriau PROBLÈME - Un calcul d intégrale Partie I - Une intégrale auiliaire Soit g la fonction définie pour tout t ]0, [ par g(t = ln t t ln t g est continue sur

Plus en détail

PUISSANCE DE MATRICES

PUISSANCE DE MATRICES Adel HEDDID Mohamed YOUSSEF Jonathan LAWSON Didier DUSZA Hadi ALI 08 Le calcul de puissances de matrices est un exercice classique proche de la diagonalisation. Des résultats généraux en facilitent l approche.

Plus en détail

Initiation aux processus : Chaînes de Markov (solutions)

Initiation aux processus : Chaînes de Markov (solutions) Initiation aux processus : Chaînes de Markov (solutions) Fabrice Rossi 8 février Espace d état fini. Exercice.. Question Pour représenter la chaîne, on choisit de numéroter les états de à, dans l ordre

Plus en détail

Concours PT 2004 Maths PT I-B

Concours PT 2004 Maths PT I-B Concours PT 4 Maths PT I-B L usage des calculatrices est interdit Partie A ) ( ) ( ) a a Soit A = b b et B = deux éléments de S a a b b ( ) c c C = AB = avec c c c i = a ik b k, évidemment i =,, c i =

Plus en détail

Crochet de Lie. [http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 1

Crochet de Lie. [http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 1 Crochet de Lie Exercice 1 [ 00775 ] [Correction] Soient A, B M n (R) vérifiant AB BA = A. (a) Calculer A k B BA k pour k N. (b) À quelle

Plus en détail

Chapitre 2. Introduction aux matrices

Chapitre 2. Introduction aux matrices L1 2012-2013 Université Paris 13 Algèbre linéaire Chapitre 2 Introduction aux matrices Référence: Liret-Martinais [2], chapitre 4 Nous avons déjà rencontré des tableaux de nombres, ou matrices Nous allons

Plus en détail

Corrigé de Banque PT 2015 Épreuve A

Corrigé de Banque PT 2015 Épreuve A Lycée Laetitia Bonaparte Spé PT Corrigé de Banque PT 2015 Épreuve A Problème d Algèbre linéaire Partie I 1(a Notons β (e 1, e 2, e 3, e 4 la base canonique de R 4 On a De même, [ f(e1 ] β [ f ] β [ ] e

Plus en détail

Chapitre 2 : Matrices

Chapitre 2 : Matrices Chapitre 2 : Matrices 1 Notion de matrice et vocabulaire Notation 1 Dans tout le chapitre n, p, q sont des entiers naturels non nuls Définition 1 Une matrice A à n lignes et p colonnes est un tableau défini

Plus en détail

Calcul matriciel : rappels et compléments

Calcul matriciel : rappels et compléments CHAPITRE 5 Calcul matriciel : rappels et compléments 5 L ensemble M n,p (K) 5 Structure d espace vectoriel Définition Soit K = R ou C On note M n,p (K) l ensemble des matrices ayant n lignes et p colonnes

Plus en détail

EPREUVE SPECIFIQUE FILIERE PC MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. Notations et objectifs

EPREUVE SPECIFIQUE FILIERE PC MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. Notations et objectifs SESSION 2010 PCM1002 EPREUVE SPECIFIQUE FILIERE PC MATHEMATIQUES 1 Durée : 4 heures Les calculatrices sont interdites N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision

Plus en détail

Chapitre 3 : Matrices

Chapitre 3 : Matrices Chapitre 3 : Matrices Sommaire I Notion de matrice et vocabulaire II Opérations de base sur les matrices 3 1 Addition de matrices et multiplication d un réel par une matrice 3 Multiplication matricielle

Plus en détail

Chapitre 4. Fonction exponentielle. Objectifs du chapitre : item références auto évaluation. propriétés numériques de la fonction exponentielle

Chapitre 4. Fonction exponentielle. Objectifs du chapitre : item références auto évaluation. propriétés numériques de la fonction exponentielle Chapitre 4 Fonction exponentielle Objectifs du chapitre : item références auto évaluation propriétés numériques de la fonction exponentielle propriétés de la fonction exponentielle calculs de ites avec

Plus en détail

Problèmes de Mathématiques Matrices et carrés magiques

Problèmes de Mathématiques Matrices et carrés magiques Dans tout le problème, n est un entier supérieur ou égal à 2. On désigne par M n (IR) l algèbre des matrices carrées d ordre n à coefficients réels. Pour tout A de M n (IR), on note a ij le coefficient

Plus en détail

Notations et préliminaires

Notations et préliminaires Notations et préliminaires Tous les corps figurant dans le problème sont supposés commutatifs. N désigne l ensemble des nombres entiers naturels N désigne l ensemble des nombres entiers naturels non nuls

Plus en détail

CCP PSI un corrigé

CCP PSI un corrigé CCP26 - PSI un corrigé Cas n 2. Puissances de A(α, β ( α α. A(α, β I 2 n est pas la matrice nulle car (α, β (, et son rang est. β β (, est clairement élément du noyau qui, par théorème du rang, est de

Plus en détail

Exercice I.1 Montrer que la somme de vecteurs et le produit d un vecteur par un nombre réel donnent à IR 3 une structure d espace vectoriel sur IR.

Exercice I.1 Montrer que la somme de vecteurs et le produit d un vecteur par un nombre réel donnent à IR 3 une structure d espace vectoriel sur IR. Exercices avec corrigé succinct du chapitre 1 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qui apparaissent dans ce texte sont bien définis dans la version

Plus en détail

Matrices. 6 On appelle matrice triangulaire inférieure toute matrice carrée d ordre n telle que, si

Matrices. 6 On appelle matrice triangulaire inférieure toute matrice carrée d ordre n telle que, si Agrégation interne UFR MATHÉMATIQUES Matrices On note K un corps commutatif. n et p représentent deux entiers naturels non nuls. 1. Notion de matrice 1.1. Définitions Définition 1 On appelle matrice d

Plus en détail

Chapitre 8. Réduction des matrices. 8.1 Valeurs propres, vecteurs propres

Chapitre 8. Réduction des matrices. 8.1 Valeurs propres, vecteurs propres Chapitre 8 Réduction des matrices La réduction des matrices constitue le premier pas de ce que l on appelle la théorie spectrale, vaste sujet. Ses applications pratiques sont nombreuses : modélisation

Plus en détail

Applications linéaires

Applications linéaires Chapitre 4 Applications linéaires I) Généralités sur les applications linéaires 1) Définitions Définition 1 Soient E et F deux R-espaces vectoriels On appelle application linéaire de E dans F toute application

Plus en détail

Concours commun 2009 des écoles des mines d Albi, Alès, Douai, Nantes.

Concours commun 2009 des écoles des mines d Albi, Alès, Douai, Nantes. Concours commun 009 des écoles des mines d Albi, Alès, Douai, Nantes. Corrigé Problème (Algèbre et géométrie Partie (Étude de deu applications Nous noterons deg P le degré du polynôme P. Pour tout polynôme

Plus en détail

À propos des transvections

À propos des transvections À propos des transvections Antoine Ducros Préparation à l agrégation de mathématiques 1 Les transvections : aspect matriciel On fixe pour toute la suite du texte un corps commutatif k. (1.1) Définition.

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle Table des matières I Introduction de la fonction exponentielle Théorème.................................................. Démonstration...............................................

Plus en détail

Eléments propres d un endomorphisme

Eléments propres d un endomorphisme [http://mp.cpgedupuydelome.fr] édité le 5 mai 16 Enoncés 1 Eléments propres d un endomorphisme Eercice 1 [ 768 ] [Correction] Soient E = C (R, R) et D l endomorphisme de E qui à f associe sa dérivée f.

Plus en détail

Généralités sur les nombres de Stirling

Généralités sur les nombres de Stirling Corrigé 206 Centrale TSI Math I /3 I Généralités sur les nombres de Stirling I.A. Premières propriétés des nombres de Stirling I.A.. a) La seule décomposition de 3 en somme de deux entiers non nuls est

Plus en détail

Eléments de calcul matriciel

Eléments de calcul matriciel Eléments de calcul matriciel Définition et propriétés des matrices Définition Une matrice (l x c) (lire l croix c) est un ensemble de l fois c nombres, réels ou complexes, regroupés sous la forme d un

Plus en détail

CH IV : Récurrence, calculs de sommes et produits

CH IV : Récurrence, calculs de sommes et produits ECE1-B 01-015 On a notamment : CH IV : Récurrence, calculs de sommes et produits a truc N, 3 truc+1 + truc+ est un multiple de 7 Par la suite, on gardera la notation n, plus adaptée I0 Une première tentative

Plus en détail

FB - EXERCICES SUR LES MATRICES

FB - EXERCICES SUR LES MATRICES FB 1 FB - EXERCICES SUR LES MATRICES Soit S n ++ (R) l ensemble des matrices carrées d ordre n définies positives à coefficients réels. Soit A dans S n ++ (R) de valeurs propres Si X et Y sont dans E =

Plus en détail

E3A 2007 MP - Maths B

E3A 2007 MP - Maths B E3A 2007 MP - Maths B Exercice 1 1. Suivant l énoncé, soit y une fonction dérivable sur J, et soit z : x x α y(x). Puisque J ne contient pas 0, z est elle aussi dérivable sur J, et on a : si J R + : x

Plus en détail

Opérations élémentaires et déterminants

Opérations élémentaires et déterminants 10 Opérations élémentaires et déterminants On note toujours K le corps de réels ou des complexes On se donne un entier n 1 et M n (K désigne l espace vectoriel des matrices carrées d ordre n à coefficients

Plus en détail

MT23-Algèbre linéaire

MT23-Algèbre linéaire MT23-Algèbre linéaire Chapitre 6 : Equations différentielles ÉQUIPE DE MATHÉMATIQUES APPLIQUÉES UTC juillet 2014 suivant Chapitre 6 Equations différentielles 6.1 Rappels........................................

Plus en détail

Espaces vectoriels notes de cours Licence Sciences et Technologies, L1, M 2

Espaces vectoriels notes de cours Licence Sciences et Technologies, L1, M 2 Espaces vectoriels notes de cours Licence Sciences et Technologies, L1, M 2 H. Le Ferrand, leferran@u-bourgogne.fr February 26, 2007 Contents 1 Espaces vectoriels 2 1.1 Définition.................................................

Plus en détail

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3 Chapitre 10 Calcul matriciel 1 Généralités 2 11 Définitions 2 12 Matrices carrées particulières 3 2 Opérations sur les matrices 4 21 L espace vectoriel M np (R 4 22 Produit de deux matrices 5 23 Transposée

Plus en détail

1. Réduction d un endomorphisme en dimension finie, d une matrice

1. Réduction d un endomorphisme en dimension finie, d une matrice Réduction des endomorphismes en dimension finie 4-1 Sommaire 1 Réduction en dimension finie 1 11 Polynôme caractéristique 1 12 Ordre de multiplicité 2 2 Diagonalisation en dimension finie 2 21 Diagonalisibilité

Plus en détail

Devoir non surveillé Équation différentielle, fonction définie par une intégrale

Devoir non surveillé Équation différentielle, fonction définie par une intégrale Devoir non surveillé Équation différentielle, fonction définie par une intégrale Pelletier Sylvain, BCPST Lycée Hoche $\ CC BY: pour le 0 juin Eercice Résoudre l équation différentielle : E y y + 5y cos

Plus en détail

Module Complémentaire Poursuites études

Module Complémentaire Poursuites études 1/39 Diagonalisation Suites numériques Series Intégrales curvilignes Intégrales de surface Module Complémentaire Poursuites études Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/

Plus en détail

EPREUVE SPECIFIQUE - FILIERE MP MATHEMATIQUES 2. Durée : 4 heures. Les calculatrices sont autorisées

EPREUVE SPECIFIQUE - FILIERE MP MATHEMATIQUES 2. Durée : 4 heures. Les calculatrices sont autorisées SESSION 2015 MPMA206 EPREUVE SPECIFIQUE - FILIERE MP MATHEMATIQUES 2 Durée : heures N.B. : le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Plus en détail

Un corrigé de la composition d algèbre. Problème 1 : puissances de matrices

Un corrigé de la composition d algèbre. Problème 1 : puissances de matrices Université de Poitiers Année 24-2 M MEEF Un corrigé de la composition d algèbre Mardi mars 2 à 3h durée : cinq heure Sujet et corrigé proposés par Anne Moreau Sources : deuxième composition de l épreuve

Plus en détail

Algèbre Lineaire (II)

Algèbre Lineaire (II) Résumé du cours Algèbre Lineaire (II) Table des matières I Les matrices 1 I1 Ensembles de matrices remarquables 1 I2 L opérateur L A 1 I3 Produit 2 I4 Inversibilité 3 I5 Lignes et colonnes 3 I51 Manipulations

Plus en détail

Préparation à l'agrégation Interne Ce devoir est constitué de deux problèmes totalement indépendants. PROBLÈME 1

Préparation à l'agrégation Interne Ce devoir est constitué de deux problèmes totalement indépendants. PROBLÈME 1 Préparation à l'agrégation Interne 2005-2006 F. Dupré Ce devoir est constitué de deux problèmes totalement indépendants. PROBLÈME On notera N n l'ensemble des entiers compris entre et n, n désignant un

Plus en détail

Un objet mathématique fondamental est le groupe symétrique.

Un objet mathématique fondamental est le groupe symétrique. CHAPITRE 14 Groupe symétrique Un objet mathématique fondamental est le groupe symétrique. 14.1 Définition Soit n 1. Le groupe symétrique de degré n est l ensemble des bijections de {1, 2, {1, 2,, n}. Une

Plus en détail

Vincent Pilaud Kholles de mathématiques 8 novembre 2005 MP* - Lycée Charlemagne - Paris a 0 a 1...,a n V (a 0,...

Vincent Pilaud Kholles de mathématiques 8 novembre 2005 MP* - Lycée Charlemagne - Paris a 0 a 1...,a n V (a 0,... Vincent Pilaud Kholles de mathématiques 8 novembre 2005 MP* - Lycée Charlemagne - Paris Algèbre linéaire 1 Déterminants Exercice [Van Der Monde] 1 Soient a 0,,a n K Calculer 1 1 1 a 0 a 1,a n V (a 0,,a

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE PC MATHEMATIQUES 1

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE PC MATHEMATIQUES 1 SESSION 2007 CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE PC MATHEMATIQUES PARTIE I I Soit a R M a + ai = 4a + 4a a + 2a 2 + a a 2 a + 4a + a 0 0 0 + a 0 0 0 + a = a 4a + 4a a 2 a 2 + a a 2

Plus en détail

MT23-Algèbre linéaire

MT23-Algèbre linéaire MT23-Algèbre linéaire Chapitre 4 : Valeurs propres - Vecteurs propres ÉQUIPE DE MATHÉMATIQUES APPLIQUÉES UTC juillet 2014 suivant Chapitre 4 Valeurs propres - Vecteurs propres 4.1 Vecteurs propres - Valeurs

Plus en détail

Chapitre X. Chapitre X : Matrice inverse et réciproque d une application

Chapitre X. Chapitre X : Matrice inverse et réciproque d une application Chapitre X Chapitre X : Matrice inverse et réciproque d une application Introduction Dans ce chapitre, on fera le lien entre la matrice d une application linéaire et l inverse d une matrice (notion vue

Plus en détail

Mathématiques 2. Équations linéaires

Mathématiques 2. Équations linéaires Mathématiques 2 PC 4 heures Calculatrices autorisées 212 Dans tout le problème, le corps de base des espaces vectoriels est R. Les matrices et les sstèmes linéaires sont à coefficients réels. Les suites

Plus en détail

( ) dx t dt. ( ) B( t) Le principe de la résolution se base sur la diagonalisation de la matrice A ou à défaut sa trigonalisation.

( ) dx t dt. ( ) B( t) Le principe de la résolution se base sur la diagonalisation de la matrice A ou à défaut sa trigonalisation. Equations différentielles linéaires du premier ordre à coefficients constants (ou système d équation différentielles linéaires scalaire à coefficients constants du premier ordre) dx t dt B( t) + AX t x

Plus en détail

MHT201. Quelques indications de TD 12 (suite)

MHT201. Quelques indications de TD 12 (suite) MHT01 Quelques indications de TD 1 (suite) Exo 1 (1) Notons e 1 = (1, 0, 0), e = (0, 1, 0), et e 3 = (0, 0, 1) Alors {e 1, e, e 3 } est la base canonique de R 3 D après la définition de f, on a f(e 1 )

Plus en détail

1. Familles de vecteurs

1. Familles de vecteurs Compléments d algèbre linéaire 1-1 Sommaire 1 Familles de vecteurs 1 11 Famille libre 1 1 Famille génératrice 1 13 Base 14 Propriétés Sous-espaces vectoriels 1 Somme de sous-espaces vectoriels Base adaptée

Plus en détail

PROBLÈME 1 : Une équation matricielle PRÉLIMINAIRES PARTIE I

PROBLÈME 1 : Une équation matricielle PRÉLIMINAIRES PARTIE I TD - Chapitres 19 et 0 - ALGÈBRE LINÉAIRE PROBLÈME 1 : Une équation matricielle Extrait sujet «Petites Mines» 010 Le but de ce problème est d étudier différentes matrices qui commutent avec leur transposée,

Plus en détail

EXERCICES MPSI A 8 B. MATRICES R. FERRÉOL 13/14

EXERCICES MPSI A 8 B. MATRICES R. FERRÉOL 13/14 EXERCICES MPSI A 8 B MATRICES R FERRÉOL 13/14 1 : Calculer si c est possible : (a) (b) (c) 1 2 3 4 5 6 7 8 9 1 i i 0 1 2 1 2 1 2 1 2 3 2 1 i 0 i 1 2 1 0 ; 1 2 3 4 5 6 2 1 2 1 2 3 1 2 1 2 MATRICES 1 0 2

Plus en détail

Devoir surveillé 5 mathématiques

Devoir surveillé 5 mathématiques Devoir surveillé 5 mathématiques BCPST 205-206 Exercice. Soit t un réel strictement positif. On définit la suite ( n N par la donnée de x 0 = t et la relation de récurrence : n N, + =.. (a Soit g la fonction

Plus en détail

Algèbre linéaire pour GM Jeudi 07 novembre 2013 Prof. A. Abdulle. Exercice 1 Calculer les produits suivants en utilisant la multiplication par bloc :

Algèbre linéaire pour GM Jeudi 07 novembre 2013 Prof. A. Abdulle. Exercice 1 Calculer les produits suivants en utilisant la multiplication par bloc : Algèbre linéaire pour GM Jeudi 07 novembre 2013 Prof A Abdulle EPFL Série 7 Corrigé Exercice 1 Calculer les produits suivants en utilisant la multiplication par bloc : a b c 3 1 0 4 1 2 1 1 2 2 1 1 2 1

Plus en détail

Interpolation. Chapitre Introduction

Interpolation. Chapitre Introduction Chapitre 4 Interpolation Dans ce chapitre, on s intéresse au problème suivant Étant donné une fonction continue, comment peut-on l approcher par un polynôme? Plus précisément, on se donne une fonction

Plus en détail

ECRICOME option ECONOMIQUE EXERCICE La matrice A est-elle inversible? (On ne demande pas la matrice A 1 ).

ECRICOME option ECONOMIQUE EXERCICE La matrice A est-elle inversible? (On ne demande pas la matrice A 1 ). ECRICOME 003 option ECONOMIQUE EXERCICE 1 On considère l espace vectoriel E = R 3 et f l endomorphisme de E dont la matrice dans la base canonique B = ( e 1, e, e 3 ) est la matrice A : 3 3 A = 1 0 0 0

Plus en détail

Corrigé du concours commun 2010 des écoles des mines d Albi, Alès, Douai, Nantes Épreuve spécifique.

Corrigé du concours commun 2010 des écoles des mines d Albi, Alès, Douai, Nantes Épreuve spécifique. Corrigé du concours commun 2 des écoles des mines d Albi, Alès, Douai, Nantes Épreuve spécifique. Problème Partie (Étude de courbes paramétrées) Si a = b, (t) = y(t) pour t dans [, + [. L application t

Plus en détail

Énoncés des exercices

Énoncés des exercices Énoncés Énoncés des exercices Exercice 1 [ Indication ] [ Correction ] Donner une base de M 2 (R) qui soit formée de matrices inversibles Exercice 2 [ Indication ] [ Correction ] 1 a 0 0 0 1 a 0 Calculer

Plus en détail

APPLICATIONS LINÉAIRES

APPLICATIONS LINÉAIRES APPLICATIONS LINÉAIRES 1 Définition et premiers exemples 1.1 Définition Définition 1.1 Application linéaire Soient E et F deux K-espaces vectoriels. On appelle application linéaire de E dans F toute application

Plus en détail

Université Joseph Fourier, Grenoble I Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies 1 e année

Université Joseph Fourier, Grenoble I Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies 1 e année Université Joseph Fourier, Grenoble I Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies 1 e année Calcul matriciel Bernard Ycart Ce chapitre est essentiellement technique

Plus en détail

La décomposition de Dunford des endomorphismes.

La décomposition de Dunford des endomorphismes. Document de travail pour l atelier de la journée régionale APMEP d Aix-Marseille du 17 mai André BONNET andre.bonnet9@orange.fr La décomposition de Dunford des endomorphismes. En travaillant avec un jeune

Plus en détail

Etude de l ensemble des matrices

Etude de l ensemble des matrices Autour du produit Exercice 1 - Produits possibles - L1/Math ( Sup - ) On considère les matrices suivantes : A = 1 2 3, B = ( 1 2 ), C = 2 1 3 0 1 2, D = ( 2 5 5 0 ), E = 1 1 3 1 4 0 0 2 5 Quels sont les

Plus en détail

RÉDUCTION DES ENDOMORPHISMES

RÉDUCTION DES ENDOMORPHISMES UNIVERSITÉ PARIS 7 D E N I S D I D E R O T MI3 Algèbre et analyse fondamentales I CHAPITRE IV RÉDUCTION DES ENDOMORPHISMES année 28-29 Auteur : Thierry Joly Département de Formation de 1 er Cycle de Sciences

Plus en détail

Code sujet : 298 Tournez la page S.V.P.

Code sujet : 298 Tournez la page S.V.P. Code sujet : 98 1/4 Tournez la page S.V.P. Fichier généré pour Visiteur (), le 01/03/017 Fichier généré pour Visiteur (), le 01/03/017 /4 Fichier généré pour Visiteur (), le 01/03/017 3/4 Tournez la page

Plus en détail

Cours 04 : Réduction des endomorphismes

Cours 04 : Réduction des endomorphismes Cours 04 : Réduction des endomorphismes 1 Cours 04 : Réduction des endomorphismes Nous avons vu en première année la simplification, dans l étude des puissances d une matrice M, que procure le fait de

Plus en détail

Variables aléatoires réelles

Variables aléatoires réelles 23 Variables aléatoires réelles Pour ce paragraphe, (Ω, B, P est un espace probabilisé. 23.1 Définition et propriétés des variables aléatoires réelles Définition 23.1 On dit qu une application X : Ω R

Plus en détail

Autour de la réduction de Jordan

Autour de la réduction de Jordan Autour de la réduction de Jordan G Vial 30 septembre 2008 Résumé Le but de ces quelques pages est de présenter, de manière élémentaire, la réduction de Jordan d une matrice et quelques-unes de ses nombreuses

Plus en détail

Les séries entières. () Les séries entières 1 / 42

Les séries entières. () Les séries entières 1 / 42 Les séries entières () Les séries entières 1 / 42 1 Séries entières d une variable complexe 2 Série entière d une variable réelle 3 Développements en séries entières 4 Exponentielle complexe et fonctions

Plus en détail

Déterminants. Théorème 3 On suppose que F est une somme directe de n sous-espaces vectoriels F i. Alors. i=1

Déterminants. Théorème 3 On suppose que F est une somme directe de n sous-espaces vectoriels F i. Alors. i=1 Déterminants Dans tout le chapitre, K représente un corps commutatif 1 Applications et formes multilinéaires Soient E 1,, E p et F des espaces vectoriels sur K et ϕ une application de E 1 E p dans F Définition

Plus en détail

Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques A MP

Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques A MP SESSION 2007 Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE E3A Epreuve de Mathématiques A MP Partie I ) Puisque la matrice F n est pas nulle, H est l hyperplan de vecteur normal F 2) Soit X = (x i,j ) i,j

Plus en détail

Chapitre 4. Séries entières. I. Disque et rayon de convergence

Chapitre 4. Séries entières. I. Disque et rayon de convergence Chapitre 4 Séries entières On appelle série entière réelle (resp. complexe) une série de fonction de la forme a n x n où x est une variable réelle (resp. a n z n où z est une variable complexe). Les nombres

Plus en détail

Feuille d Exercices : Calcul matriciel

Feuille d Exercices : Calcul matriciel ECS 1 Dupuy de Lôme Semaine du 24 janvier 2005 Feuille d Exercices : Calcul matriciel Opérations sur les matrices Exercice 1 : Calculez A 2, A 3, A 4 puis A n dans les cas suivants : 1 0 1 0 1, 0 0 0,

Plus en détail

Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007

Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007 Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007 Corrigé en janvier 2009 Rapidité de convergence d une suite réelle L objectif de ce texte est de se donner des outils pour «mesurer» la rapidité

Plus en détail

N1MA3W01 Algèbre 2 - Examen final En janvier, 3h - 35 points

N1MA3W01 Algèbre 2 - Examen final En janvier, 3h - 35 points N1MA3W01 Algèbre 2 - Examen final En janvier, 3h - 35 points Exercice 0 (sur 6 points) 1. Calculer les valeurs et vecteurs propres des matrices 1 2 0 0 0 0 A = 2 1 0 et B = 1 0 0. 0 0 3 6000 80008 4 2.

Plus en détail

ENSI 98 - Filière MP - MATHÉMATIQUES 2. Thème : Pseudo-inverse d une matrice - Méthode des moindres carrés discrets

ENSI 98 - Filière MP - MATHÉMATIQUES 2. Thème : Pseudo-inverse d une matrice - Méthode des moindres carrés discrets ENSI 98 - Filière MP - MATHÉMATIQUES 2 Thème : Pseudo-inverse d une matrice - Méthode des moindres carrés discrets PARTIE I - CONSTRUCTION D UNE MATRICE INVERSE A GAUCHE On suppose dans cette partie que

Plus en détail

Le Béaba des Espaces Normés et Algèbres de Banach

Le Béaba des Espaces Normés et Algèbres de Banach Le Béaba des Espaces Normés et Algèbres de Banach Alain Prouté Université Denis Diderot-Paris 7 Dernière révision de ce texte : 21 novembre 2012 Ce texte a été écrit pour le niveau Licence 2. Table des

Plus en détail

MPSI 2 : DL 07. pour le 26 mars 2003

MPSI 2 : DL 07. pour le 26 mars 2003 MPSI 2 : DL 07 pour le 26 mars 2003 Q 1 Dans le problème, E désigne un R-ev de dimension n 2. On notera D n (R) l ensemble des matrices diagonales de M n (R). E ij désigne la matrice de la base canonique

Plus en détail

Les nouveaux programmes de terminales S conseillent d introduire la fonction exponentielle avant la fonction logarithme.

Les nouveaux programmes de terminales S conseillent d introduire la fonction exponentielle avant la fonction logarithme. Introduction ÉQUATION DIFFÉRENTIELLE y = y & FONCTION EXPONENTIELLE Les nouveaurogrammes de terminales S conseillent d introduire la fonction exponentielle avant la fonction logarithme. Nous allons montrer

Plus en détail

Exercices du chapitre 3 avec corrigé succinct

Exercices du chapitre 3 avec corrigé succinct Exercices du chapitre 3 avec corrigé succinct Exercice III.1 Ch3-Exercice1 Calculer les déterminants suivants : a b c d, 3a 3b c d, 4 2 3 0 3 4 0 0 5, 4 2 3 0 1 2 4 1 2, 4 3 2 0 2 1 4 2 1, 1 2 2 3 1 1

Plus en détail

Matrices antisymétriques

Matrices antisymétriques [http://mp.cpgedupuydelome.fr] édité le 24 septembre 2016 Enoncés 1 Matrices antisymétriques Exercice 1 [ 02503 ] [Correction] Soit M M n (R) telle que M + t M soit nilpotente. Montrer que M est antisymétrique.

Plus en détail

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (R)

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (R) Matrices Matrices rectangulaires Soient n, p deux nombres entiers non-nuls On appelle matrice à n lignes et p colonnes un tableau rectangulaire de nombres réels comportant n lignes et p colonnes } }{{}

Plus en détail

PARTIE I : Etude d un produit scalaire.

PARTIE I : Etude d un produit scalaire. 1 PARTIE I : Etude d un produit scalaire. Dans toute la suite nous nous autoriserons à noter E k l espace vectoriel des fonctions polynômes réelles de degré inférieur ou égal à k, et ceci pour tout k dans

Plus en détail

Chapitre 18 : équations différentielles linéaires

Chapitre 18 : équations différentielles linéaires Math Spé MP Chapitre 18 : équations différentielles linéaires 13/3/2012 1 Rappels de 1 re année Résolution d une équation différentielle linéaire de la forme de (E) (E) : y = a(x) y +b(x), a,b C(I,R) L

Plus en détail

École polytechnique - Écoles normales supérieures. Concours d admission filière MP. Corrigé de l épreuve de mathématiques A

École polytechnique - Écoles normales supérieures. Concours d admission filière MP. Corrigé de l épreuve de mathématiques A École polytechnique - Écoles normales supérieures Concours d admission 2016 - filière MP Corrigé de l épreuve de mathématiques A corrigé de l énoncé modifié par Abdellah Bechata, après correction des erreurs

Plus en détail

1 Quelques propriétés du spectre d un opérateur borné

1 Quelques propriétés du spectre d un opérateur borné Université Paris 7, Master 1 de Mathématiques Année 008/009 Notes pour le cours de théorie spectrale 1 Quelques propriétés du spectre d un opérateur borné Nous supposons ici que E est un espace de Banach

Plus en détail

a 11 a 1n A = (a ij ) = ... a m1 a mn

a 11 a 1n A = (a ij ) = ... a m1 a mn Chapitre 4 Les matrices 4 Notions de bases Définition Une matrice est un tableau rectangulaire contenant des nombres : a a n A a ij a m a mn Les matrices peuvent représenter toutes sortes d informations

Plus en détail

Problèmes matriciels

Problèmes matriciels Problèmes matriciels Exercice 1. I + a(x t Y Y t X inversible? Soient X, Y M n,1 (R indépendantes, a R et M la matrice n n telle que m ij x i y j x j y i. A quelle condition I + am est-elle inversible?

Plus en détail

Corrigé Centrale PC 2 : Opérateur de différence

Corrigé Centrale PC 2 : Opérateur de différence Corrigé Centrale PC : Opérateur de différence I L opérateur de translation et l opérateur de différence I.A - L opérateur de translation I.A.1) Soit P = d a X, un polynôme non nul de R n [X], de degré

Plus en détail