Calcul matriciel. λa n,1 λa n,2... λa n,p. a 2,1 a 2,2... a 2,p... a n,1 a n,2... a n,p ... a n,1 + b n,1 a n,2 + b n,2...

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Calcul matriciel. λa n,1 λa n,2... λa n,p. a 2,1 a 2,2... a 2,p... a n,1 a n,2... a n,p ... a n,1 + b n,1 a n,2 + b n,2..."

Transcription

1 11 mars 014 Calcul matriciel I IA Matrices : définition, opérations et propriétés Définitions et structure d espace vectoriel Définition 1 (Définition Une matrice de type (n, p est un tableau à n lignes et p colonnes de coefficients a i,j K, où i est l indice de ligne et j l indice de colonne On l écrit : a 1,1 a 1, a 1,p a,1 a, a,p A (a i,j 1 i n a n,1 a n, a n,p On note M n,p (K l ensemble des matrices de type (n, p à coefficients dans K Exercice I1 : Écrire la matrice A (i j 1 i 1 j 3 Définition (Somme de matrices et produit d une matrice par un scalaire Soient A (a i,j 1 i n et B (b i,j 1 i n M n,p (K, et λ K : 1 On dit que A et B sont égales si leurs coefficients sont égaux (ie (i, j [[1,n]] [[ 1, p ]], on a a i,j b i,j On définit la somme de A et B par : A + B (a i,j + b i,j 1 i n a 1,1 + b 1,1 a 1, + b 1, a 1,p + b 1,p a,1 + b,1 a, + b, a,p + b,p a n,1 + b n,1 a n, + b n, a n,p + b n,p 3 On définit le produit de A par le scalaire λ K de la manière qui suit : λa (λa i,j 1 i n λa 1,1 λa 1, λa 1,p λa,1 λa, λa,p λa n,1 λa n, λa n,p Proposition 1 (Propriétés des opérations dans M n,p Soient A, B et C des matrices de M n,p (K et λ K 1 A + B B + A A + (B +C (A + B +C A + B +C 3 λ(a + B λa + λb Remarque 1 : La matrice nulle, (le vecteur nul de (M n,p (K,+, est : Mn,p (K Lycée Jean Perrin 013/014 1 / 8

2 IA Définitions et structure d espace vectoriel 11 mars 014 (( ( ( ( Exemples 1 : 1,,, est une base de M , (R Nous démontrerons en effet que toute matrice de M, (R s écrit de façon unique comme combinaison une linéaire de ces quatre matrices Quelques exemples de calculs élémentaires Définition 3 (Matrices particulières 1 Une matrice a 1 a a n de M n,1(k est appelée matrice colonne d ordre n Une matrice ( a 1 a a n de M1,n (K est appelée matrice ligne d ordre n a 1,1 a 1, a 1,n a,1 a, a,n 3 Une matrice de M n,n(k est appelée matrice carrée d ordre n a n,1 a n, a n,n Définition 4 (Matrices carrées particulières Soit A (a i,j 1 i n M n (K : 1 j n 1 A est dite diagonale si a i,j 0 pour i j λ λ A λ n diag(λ 1,λ,,λ n A est dite triangulaire supérieure si a i,j 0 pour i > j a 1,1 a 1, a 1,n 0 a, A an 1,n 0 0 a n,n 3 A est dite triangulaire inférieure si a i,j 0 pour i < j a 1,1 0 0 a,1 a, A 0 a n,1 a n,n 1 a n,n Lycée Jean Perrin 013/014 / 8

3 IB Produit matriciel 11 mars 014 IB Produit matriciel Définition 5 (Produit d une matrice par une matrice colonne Soient A (a i,j 1 i n M n,p (K et X x 1 x x p M p,1(k Le produit AX est la matrice colonne obtenue par combinaison linéaire des colonnes de A avec les coefficients de X, c est à dire :* x 1 a 1,1 + x a 1, + +x p a 1,p x 1 a,1 + x a, + +x p a,p AX M n,1(k x 1 a n,1 + x a n, + +x p a n,p ( 0 1 Exemple : Effectuons le produit matriciel de A 1 On pose l opération ainsi : ( Le résultat obtenu est donc AX 4 ( ( 1 par X ( 1 ( 4 Obtenu par combinaison linéaire des lignes de colonnes de A avec les coefficients de X Définition 6 (Produit de deux matrices Soient A (a i,j 1 i n M n,p (K et B (b i,j 1 i p 1 j q On définit le produit C AB (c i,j 1 i n 1 j q M p,q (K des matrices A et B par :c i,j p a i,k b k,j k1 Remarques : 1 La j-ième colonne de C est le produit de la matrice A par la j-ième colonne de B La i-ième ligne de C est obtenu comme le produit de la i-ième ligne de A par la matrice B 3 Le produit AB n a de sens que si le nombre de colonnes de A est égal au nombre de lignes de B! Calcul pratique : On dispose A et B ainsi : Ligne i a i,1 a i, a i,p colonne j b 1,j b,j b p,j c i,j On calcule c i,j a i,1 b 1,j + a i, b,j + + a i,p b p,j en additionnant les produits «terme à terme» des éléments de la ligne i de la matrice A et de la colonne j de la matrice B Lycée Jean Perrin 013/014 3 / 8

4 IB Produit matriciel 11 mars 014 ( 0 1 Exemple 3 : Effectuons le produit matriciel de A 1 ( B On pose l opération ainsi : ( Le résultat obtenu est donc C 3 1 ( par ( ( Exercice I : On donne les matrices : ( A ( B C Calculer AB puis (ABC Calculer BC puis A(BC Conclusion? Remarques 3 : 1 Si A M n,p (K et B M p,q (K, alors AB existe, mais si n q, B A n existe pas En général, si A M n,p (K et B M p,n (K alors AB B A (non commutativité ( ( ( ( ( ( Par exemple : mais AB 0 / A 0 ou B 0 Par exemple : On dit que M n (K n est pas intègre Propositions (Propriétés du produit matriciel ( ( ( }{{}}{{} Le produit matriciel est associatif, soit A M n,p, B M p,q, C M q,r alors : A(BC (ABC Distributif à gauche par rapport à l addition matriciel soit A M n,p, B M p,q, C M p,q alors : A(B +C AB + AC 3 Distributif à droite par rapport à l addition matriciel soit A M n,p, B M n,p, C M p,q alors : (A + BC AC + BC 4 Commute avec la loi externe : λ K, soit A M n,p, B M p,q alors : λ(ac (λac A(λC Remarques 4 (ATTENTION : 1 Le produit matriciel n est pas commutatif Le produit matriciel ne vérifie pas la propriété du «produit nul» Lycée Jean Perrin 013/014 4 / 8

5 IC Puissance d une matrice carrée 11 mars 014 IC Puissance d une matrice carrée Définition 7 On appelle matrice { identité d ordre n la matrice carrée notée I n : δi,i 1 I n (δ i,j avec δ i,j 0 si i j I n Remarque 5 : A M n,p (K, on a I n A AI p A, et A M n (K, on a I n A AI n A donc toute matrice carrée commute avec la matrice identité! Définition 8 (Puissance d une matrice A M n (K, on définit la puissance n-ième de A par : i A 0 I n ii A n AA n 1 pour n > 0 ( 1 1 Exercice I3 : Soit A 0 1 ( Démontrer que A n 1 n 0 1 Remarque 6 : On ne peut pas écrire d identités remarquables : (A + B A + B + AB en général Et de même, la formule du binôme ne s applique pas pour les matrices sauf dans le cas où A( et B commutent DONC : Dans le cas où A et B commutent, ie AB B A alors, on peut écrire : (A + B n kn n A k B n k k Exercice I4 : Reprendre l exercice précédent en remarquant que A peut s écrire comme somme de la matrice identité et d une autre matrice dont la puissance n-ième est simple ( 1 3 Exercice I5 (Calcul de la puissance d une matrice : Soit M Démontrer que M 3M + I 4 O, Après avoir déterminé le reste de la division euclidienne de X n par X 3X + en déduire M n pour tout entier n k1 II Matrices (carrées inversibles Définition 9 A M n (K est dite inversible (dans M n (K s il existe B M n (K tel que AB B A I n On note alors B A 1 Proposition 3 On note GL n (K l ensemble des matrices inversibles de M n (K (GL n (K, est un groupe dont l élément neutre est I n On l appelle groupe linéaire Lycée Jean Perrin 013/014 5 / 8

6 11 mars 014 Exercice II1 : On donne la matrice A Calculer A, puis montrer que A A + I 3 En déduire que A est inversible et calculer A 1 Remarques 7 : Soit A est une matrice carrée d ordre n : Si on note Y et X des vecteurs-colonne on a : Y AX X A 1 Y ce qui fournit une méthode de calcul de A 1 A est donc inversible si et seulement si tout système AX Y, où X et Y sont des matrices colonnes, admet une unique solution Donc si et seulement si le nombre de pivot de Gauss pour ce système est n, donc si le rang de ce système est n Méthode générale pour déterminer l inverse d une matrice : On va exposer cette méthode sur un exemple 4 1 Soit : A 1 3 x x 1 et X y et Y y 1 1 z z x 4 1 Y AX y 1 3 x z 1 y 1 1 z x x + 4y z x z y z (L 1 L 3 y x y + 3z z z x + y + 1 y 3y 5 z (L 3 L z z x + y + 1 z (L 3 y z x z ( L 1 z (z y 3(x z 3x y + 8z (L 3L 1 x z y 1 z z + 5 x + y 7z + 3 x + y 4z (L 3 y 5 x y + 7z z 3x y + 8z x 4x + 3y 10z Donc A Y AX x y z Exercice II : Déterminer l inverse de la matrice A x y z Remarques 8 (Cas des matrices diagonales : produit, puissance, inverse : Si A diag(λ 1,λ,,λ n et B diag(µ 1,µ,,µ n, alors : 1 AB diag(λ 1 µ 1,λ µ,,λ n µ n p N, A p diag(λ p 1,λp,,λp n Lycée Jean Perrin 013/014 6 / 8

7 11 mars A est inversible si et seulement si i [[1,n]], on a λ i 0 Dans ce cas : ( 1 A 1 diag, 1 1,, λ 1 λ Propositions 4 λ n Soient A et B deux matrices de GL n (K 1 A 1 est unique Si AB I n ou si B A I n alors B A 1 ( A 1 1 A 3 AB est inversible, et (AB 1 B 1 A 1 Démonstration AB(B 1 A 1 A BB }{{ 1 1 A AA 1 In, donc AB est inversible et (AB } 1 B 1 A 1 I n Exercice II3 : Déterminer les inverses des matrices : A et B ( III Applications linéaires de K p dans K n IIIA Remarque 9 : Linéarité, écriture matricielle d une application linéaire de K p dans K n On peut identifier l ensemble K p à l ensemble M 1,p [K] e 1 e En effet, tout élément e (e 1,e,,e p K p peut s écrire Définition 10 Soit A (a i,j 1 i n M n,p, l application définie par : e p { K p K n ϕ : X Y AX est une application linéaire de K p dans K n cela signifie : 1 (X, X K p K p alors ϕ(x + X ϕ(x + ϕ(x c est à dire A(X + X AX + AX X K p et λ K alors ϕ(λx λϕ(x c est à dire A(λX λax Démonstration Ces propriétés sont directement issues des propriétés du produit matriciel déjà démontrées Exemple 4 : On considère l application : { R R 3 f : (x, y (x, x y, x + y On a f ( e 1 (,1,1 f 1 + f + f 3 et f ( e (0,1, f + f 3, donc la matrice de f relativement aux bases canoniques de R et R 3 est : 0 f f M at f 1 f 3 f ( e 1 f ( e Lycée Jean Perrin 013/014 7 / 8

8 IIIB Noyau et image d une matrice 11 mars 014 Définition 11 Soit A M n,p (K On appelle application linéaire canoniquement associée à A l application linéaire f : K p K n dont la matrice est A dans les bases canoniques Exercice III1 : Déterminer les applications canoniquement associées aux matrices : A , A ( , A IIIB Noyau et image d une matrice Définition 1 On appelle noyau d une matrice A M n,p (K l ensemble des éléments X de K p qui vérifient AX 0 Mn,1 On note ker A cet ensemble ker A { X M p,1, AX 0 } Exercice III : En utilisant l exercice III1 déterminer le noyau de chacune de ces matrices Définition 13 On appelle image d une matrice A M n,p (K l ensemble des éléments Y de K n qui peuvent s écrire Y AX avec X M p,1 On note Im A cet ensemble Im A { Y M n,1, X M p,1,y AX } Exercice III3 : En utilisant l exercice III1 déterminer l image de chacune de ces matrices Table des matières I Matrices : définition, opérations et propriétés 1 IA Définitions et structure d espace vectoriel 1 IB Produit matriciel 3 IC Puissance d une matrice carrée 5 II Matrices (carrées inversibles 5 III Applications linéaires de K p dans K n 7 IIIA Linéarité, écriture matricielle d une application linéaire de K p dans K n 7 IIIB Noyau et image d une matrice 8 Lycée Jean Perrin 013/014 8 / 8

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3 Chapitre 10 Calcul matriciel 1 Généralités 2 11 Définitions 2 12 Matrices carrées particulières 3 2 Opérations sur les matrices 4 21 L espace vectoriel M np (R 4 22 Produit de deux matrices 5 23 Transposée

Plus en détail

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3 Chapitre 10 Calcul matriciel 1 Généralités 2 11 Définitions 2 12 Matrices carrées particulières 3 2 Opérations sur les matrices 4 21 L espace vectoriel M np (R 4 22 Produit de deux matrices 5 23 Transposée

Plus en détail

Chapitre 3 : Matrices

Chapitre 3 : Matrices Chapitre 3 : Matrices Sommaire I Notion de matrice et vocabulaire II Opérations de base sur les matrices 3 1 Addition de matrices et multiplication d un réel par une matrice 3 Multiplication matricielle

Plus en détail

Chapitre 3 : Matrices

Chapitre 3 : Matrices Chapitre 3 : Matrices Sommaire I Notion de matrice et vocabulaire II Opérations de base sur les matrices 3 1 Addition de matrices et multiplication d un réel par une matrice 3 Multiplication matricielle

Plus en détail

Chapitre 13. Calcul matriciel. Mathématiques PTSI. Mathématiques PTSI (Lycée Déodat de Séverac) Calcul matriciel 1 / 44

Chapitre 13. Calcul matriciel. Mathématiques PTSI. Mathématiques PTSI (Lycée Déodat de Séverac) Calcul matriciel 1 / 44 Chapitre 13 Calcul matriciel Mathématiques PTSI Lycée Déodat de Séverac Mathématiques PTSI (Lycée Déodat de Séverac) Calcul matriciel 1 / 44 On note K = R ou C Mathématiques PTSI (Lycée Déodat de Séverac)

Plus en détail

Maths en PCSI Année Chapitre n 12. Calcul matriciel

Maths en PCSI Année Chapitre n 12. Calcul matriciel Chapitre n 12 Calcul matriciel Dans tout ce chapitre, K désigne R ou C, et n, p et q des entiers naturels non nuls Les éléments de K seront aussi appelés des scalaires 1 Ensembles de matrices Définition

Plus en détail

Matrices. Chapitre 4. I - Notion de matrice et vocabulaire. Dans tout le chapitre n, p, q sont des entiers naturels non nuls.

Matrices. Chapitre 4. I - Notion de matrice et vocabulaire. Dans tout le chapitre n, p, q sont des entiers naturels non nuls. Chapitre 4 Matrices I - Notion de matrice et vocabulaire Dans tout le chapitre n, p, q sont des entiers naturels non nuls. Définition 1 Une matrice A à n lignes et p colonnes est un tableau défini par

Plus en détail

Notations du chapitre. Dans tout ce chapitre, n et p sont deux entiers naturels non nuls. désigne l ensemble ou l ensemble.

Notations du chapitre. Dans tout ce chapitre, n et p sont deux entiers naturels non nuls. désigne l ensemble ou l ensemble. Matrices Notations du chapitre Dans tout ce chapitre, n et p sont deux entiers naturels non nuls. désigne l ensemble ou l ensemble. Ensemble des matrices Définition 1.1 Matrice à n lignes et p colonnes

Plus en détail

VII. Systèmes linéaires - Matrices

VII. Systèmes linéaires - Matrices Systèmes d équations linéaires Définition d un système d équations linéaires Définition On appelle système linéaire de n équations à p inconnues le système d équations : a, u + a,2 u 2 + + a,p u p = v

Plus en détail

Définition (Rappel) On appelle matrice à n lignes et p colonnes, ou matrice n p un tableau d éléments de K que l on note

Définition (Rappel) On appelle matrice à n lignes et p colonnes, ou matrice n p un tableau d éléments de K que l on note Chapitre Matrices Matrices Règles de calcul Définition Rappel On appelle matrice à n lignes et p colonnes, ou matrice n p un tableau d éléments de K que l on note On note en abrégé a i,j i n j n a, a,

Plus en détail

Calcul matriciel. matrices-ligne et colonne : on appelle matrice-ligne toute matrice n ayant qu une seule ligne. On peut identifier

Calcul matriciel. matrices-ligne et colonne : on appelle matrice-ligne toute matrice n ayant qu une seule ligne. On peut identifier Calcul matriciel Dans ce qui suit, K désigne R ou C. 1 Petite visite au zoo matriciel 1.1 matrices générales notion de matrice : une matrice à coefficients dans K est une liste d éléments de K disposés

Plus en détail

Chapitre 2 : Matrices

Chapitre 2 : Matrices Chapitre 2 : Matrices 1 Notion de matrice et vocabulaire Notation 1 Dans tout le chapitre n, p, q sont des entiers naturels non nuls Définition 1 Une matrice A à n lignes et p colonnes est un tableau défini

Plus en détail

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (K) Dans tout ce chapitre, K désigne R ou C.

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (K) Dans tout ce chapitre, K désigne R ou C. Matrices Dans tout ce chapitre, K désigne R ou C Matrices rectangulaires Soient n, p deux nombres entiers non-nuls On appelle matrice à n lignes et p colonnes à coefficients dans K tout tableau rectangulaire

Plus en détail

Calcul matriciel CHAPITRE L'ensemble des matrices Dénitions. Dans tout le chapitre, K désigne le corps R ou C.

Calcul matriciel CHAPITRE L'ensemble des matrices Dénitions. Dans tout le chapitre, K désigne le corps R ou C. CHAPITRE 0 Calcul matriciel Dans tout le chapitre, K désigne le corps R ou C 0 L'ensemble des matrices 0 Dénitions Dénition Soient n, p N On appelle matrice à coecients dans K à n lignes et p colonnes

Plus en détail

Chapitre A8 : Matrices et systèmes linéaires

Chapitre A8 : Matrices et systèmes linéaires Chapitre A8 : Matrices et systèmes linéaires 1 Matrices Dans tout le chapitre n, p, q, r N et K = R ou C 1 a) Définitions Définition 11 On appelle matrice à n lignes et p colonnes une application de 1,

Plus en détail

Chapitre 10. Matrices Définitions

Chapitre 10. Matrices Définitions Chapitre 10 Matrices Nous allons dans ce chapitre découvrir la notion fondamentale de matrice Dans ce chapitre, on note K = R ou C 101 Définitions Définition 1011 On appelle matrice à n lignes et p colonnes

Plus en détail

Al 6 -Systèmes linéaires - Calcul matriciel

Al 6 -Systèmes linéaires - Calcul matriciel Al 6 -Systèmes linéaires - Calcul matriciel Dans ce chapitre K désignera R ou C, et n, p, q, r désigneront des entiers naturels non nuls 1 Matrices Définition 1 1 On appelle matrice de taille n p à coefficients

Plus en détail

4.1 Définitions et notations 1 CHAPITRE 4. Matrices Définitions et notations

4.1 Définitions et notations 1 CHAPITRE 4. Matrices Définitions et notations 4 Définitions et notations CHAPITRE 4 Matrices 4 Définitions et notations On désigne par K un des deux ensembles R ou C et par n et p deux entiers strictement positifs 4 Matrices Définition On appelle

Plus en détail

Chapitre 8. Matrices. 1 Vocabulaire et Notations

Chapitre 8. Matrices. 1 Vocabulaire et Notations ECE 1 - Année 2016-2017 Lycée français de Vienne Mathématiques - F Gaunard http://fredericgaunardcom Chapitre 8 Matrices Ce Chapitre introduit la notion de matrice ainsi que les règles de calcul matriciel

Plus en détail

Matrices. Chapitre 7. Sommaire

Matrices. Chapitre 7. Sommaire Chapitre 7 Matrices Sommaire 7.1 Notion de matrice et vocabulaire..................... 109 7.1.1 Définitions.................................. 109 7.1.2 Quelques cas particuliers...........................

Plus en détail

Calcul matriciel. 1 Ensemble des matrices Définitions Opérations sur les matrices Matrices carrées... 7

Calcul matriciel. 1 Ensemble des matrices Définitions Opérations sur les matrices Matrices carrées... 7 Chapitre 2 Calcul matriciel Ensemble des matrices 2 Définitions 2 2 Opérations sur les matrices 3 3 Matrices carrées 7 2 Opérations élémentaires de pivot et calcul matriciel 2 Matrices d opérations élémentaires

Plus en détail

Matrices. () Matrices 1 / 45

Matrices. () Matrices 1 / 45 Matrices () Matrices 1 / 45 1 Matrices : définitions 2 Calcul matriciel 3 Opérations élémentaires sur les lignes d une matrice 4 Transposition On va principalement travailler avec R Mais on peut remplacer

Plus en détail

Michel Rigo. October 7, 2009

Michel Rigo. October 7, 2009 MATRICES (INTRODUCTION) Michel Rigo Premiers bacheliers en sciences mathématiques October 7, 2009 champ K fixé une fois pour toutes matrice m n à coefficients dans K a 11 a 1n A =... a m1 a mn L élément

Plus en détail

Chapitre 2 : Matrices

Chapitre 2 : Matrices Chapitre : Matrices Notion de matrice et vocabulaire Notation Dans tout le chapitre n, p, q sont des entiers naturels non nuls Définition Une matrice A à n lignes et p colonnes est un tableau défini par

Plus en détail

deux matrices de M n,p (K) et λ K. On définit

deux matrices de M n,p (K) et λ K. On définit CHAPITRE 6 MATRICES Dans tout le chapitre, K désignera R ou C 1 Matrices à éléments dans K 11 Algèbre des matrices Définition 61 Soient n, p N On appelle matrice de taille (n, p) à coefficients dans K

Plus en détail

Matrices. Antoine Louatron

Matrices. Antoine Louatron Matrices Antoine Louatron 2/10 Table des matières Table des matières I Calcul sur les matrices 3 I1 Opérations 3 I2 Propriétés des opérations 4 I3 Matrices carrées 6 I4 Matrices particulières 6 II Matrices

Plus en détail

Matrices. 5 février 2018

Matrices. 5 février 2018 Matrices 5 février 218 Table des matières 1 Généralités 3 11 Généralités 3 111 Définitions 3 112 Notation 3 113 Egalité entre deux matrices : 3 114 Ensemble de matrices 3 12 Des cas particuliers 4 121

Plus en détail

I-Définitions: A matrice à n lignes et p colonnes : np éléments réels (ou éventuellement complexes). p. 2/2

I-Définitions: A matrice à n lignes et p colonnes : np éléments réels (ou éventuellement complexes). p. 2/2 Matrice p. 1/2 I-Définitions: A matrice à n lignes et p colonnes : np éléments réels (ou éventuellement complexes). p. 2/2 I-Définitions: A matrice à n lignes et p colonnes : np éléments réels (ou éventuellement

Plus en détail

MATRICES. Ensemble des matrices et opérations. 1 o ) Définition et matrices particulières

MATRICES. Ensemble des matrices et opérations. 1 o ) Définition et matrices particulières MATRICES I Ensemble des matrices et opérations Dans toute cette partie, K désigne indifféremment R ou C, et n et p désignent des entiers naturels non nuls 1 o Définition et matrices particulières Définition

Plus en détail

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (R)

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (R) Matrices Matrices rectangulaires Soient n, p deux nombres entiers non-nuls On appelle matrice à n lignes et p colonnes un tableau rectangulaire de nombres réels comportant n lignes et p colonnes } }{{}

Plus en détail

ISET Jerba wwww.isetjb.rnu.tn Département Génie Électrique. Cours d algèbre2. Haj Dahmane DHAFER

ISET Jerba wwww.isetjb.rnu.tn Département Génie Électrique. Cours d algèbre2. Haj Dahmane DHAFER ISET Jerba wwwwisetjbrnutn Département Génie Électrique Cours d algèbre2 Haj Dahmane DHAFER 19 février 2015 Chapitre I Généralités sur les matrices Sommaire I Définitions et notations 1 II Opérations sur

Plus en détail

Cours d algèbre. Licence appliquée. ISET Jerba

Cours d algèbre. Licence appliquée. ISET Jerba Cours d algèbre Licence appliquée ISET Jerba Haj Dahmane DHAFER 21 mars 2014 Table des matières I Généralités sur les matrices 1 I Définitions et notations 1 II Opérations sur les matrices 3 II1 Somme

Plus en détail

Chapitre 3. Matrices. Définition 1.1. Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a a. 1q a 21 a 22...

Chapitre 3. Matrices. Définition 1.1. Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a a. 1q a 21 a 22... Chapitre 3 Matrices 1 Définitions et généralités Définition 11 Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a 12 a 1q a 21 a 22 a 2q A a p1 a p2 a ps Les coefficients a ij,

Plus en détail

Matrice et vocabulaire associé

Matrice et vocabulaire associé I Matrice et vocabulaire associé I1 Définitions Définition 1 Deux entiers naturels m et n étant donnés non nuls, on appelle matrice de format m, n tout tableau rectangulaire ayant m n éléments, disposés

Plus en détail

Chapitre 9. Matrices

Chapitre 9. Matrices Lycée Benjamin Franklin PTSI 2014-2015 D Blottière Mathématiques Chapitre 9 Matrices Table des matières 1 Notations 2 2 Matrices de format n p 2 3 Structure de K-espace vectoriel sur M n,p (K 3 31 Addition

Plus en détail

Chapitre 2. Introduction aux matrices

Chapitre 2. Introduction aux matrices L1 2012-2013 Université Paris 13 Algèbre linéaire Chapitre 2 Introduction aux matrices Référence: Liret-Martinais [2], chapitre 4 Nous avons déjà rencontré des tableaux de nombres, ou matrices Nous allons

Plus en détail

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice.

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice. Les matrices chapitre 2 : calcul matriciel I / Définitions Soit n et p deux entiers naturels non nuls Une matrice n p (on dit aussi de format n ; p ( ) est un tableau de nombres réels à n lignes et p colonnes

Plus en détail

Matrices. Chapitre Définition d une matrice

Matrices. Chapitre Définition d une matrice Chapitre 17 Matrices 171 Définition d une matrice Définition 171 : Soit un corps commutatif K et deux entiers n,p 1 On appelle matrice n p à coefficients dans K, une application { [[1,n]] [[1,p]] K A :

Plus en détail

Calcul matriciel .1. NOTION DE MATRICE. Chap. ALG02. Def.1. App.1

Calcul matriciel .1. NOTION DE MATRICE. Chap. ALG02. Def.1. App.1 Chap ALG0 Calcul matriciel NOTES DE COURS NOTION DE MATRICE Cadre de travail et/ou notation(s utilisée(s Dans tout ce chapitre et sauf mention contraire, n, p et q désigneront des entiers naturels non

Plus en détail

Techniques de calcul matriciel

Techniques de calcul matriciel Arnaud de Saint Julien - MPSI Lycée La Merci 2017-2018 1 Techniques de calcul matriciel Introduction Une matrice est un tableau de nombres avec lequel on pourra faire des opérations. C est un objet numérique

Plus en détail

Chapitre 8. Matrices. 1 Vocabulaire et Notations

Chapitre 8. Matrices. 1 Vocabulaire et Notations ECE 1 - Année 2017-2018 Lycée français de Vienne Mathématiques - F Gaunard http://fredericgaunardcom Chapitre 8 Matrices Ce Chapitre introduit la notion de matrice ainsi que les règles de calcul matriciel

Plus en détail

Cours de Mathématiques Calcul matriciel, systèmes linéaires. I Matrices à coefficients dans K... 3

Cours de Mathématiques Calcul matriciel, systèmes linéaires. I Matrices à coefficients dans K... 3 Table des matières I Matrices à coefficients dans K............................ 3 I.1 Généralités.................................. 3 I.2 Matrices particulières............................. 3 I.3 Matrices

Plus en détail

XIII. Matrices. 1 Opérations sur les matrices. On note K = R ou C.

XIII. Matrices. 1 Opérations sur les matrices. On note K = R ou C. XIII Matrices 1 Opérations sur les matrices On note K = R ou C Définition 1 On appelle matrice à n lignes et p colonnes à coefficients réels ou complexes un tableau rectangulaire à n lignes et p colonnes

Plus en détail

Techniques de calcul matriciel

Techniques de calcul matriciel Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Techniques de calcul matriciel Introduction Une matrice est un tableau de nombres avec lequel on pourra faire des opérations. C est un objet numérique

Plus en détail

Matrices. 6 On appelle matrice triangulaire inférieure toute matrice carrée d ordre n telle que, si

Matrices. 6 On appelle matrice triangulaire inférieure toute matrice carrée d ordre n telle que, si Agrégation interne UFR MATHÉMATIQUES Matrices On note K un corps commutatif. n et p représentent deux entiers naturels non nuls. 1. Notion de matrice 1.1. Définitions Définition 1 On appelle matrice d

Plus en détail

VII. Systèmes linéaires - Matrices

VII. Systèmes linéaires - Matrices VII Systèmes linéaires - Matrices Systèmes d équations linéaires Définition d un système d équations linéaires Définition On appelle système linéaire de n équations à p inconnues le système d équations

Plus en détail

Lycée Dominique Villars ECE 1 CALCUL MATRICIEL

Lycée Dominique Villars ECE 1 CALCUL MATRICIEL Lycée Dominique Villars ECE 1 COURS CALCUL MATRICIEL 1 Définitions et Notations Soit n N et m N On appelle matrice à n lignes et m colonnes tout tableau de la forme suivant : a 1,1 a 1,2 a 1,m a 2,1 a

Plus en détail

1 Ensemble de matrices

1 Ensemble de matrices 1 Ensemble de matrices Définition 1 : M n,p (R) désigne l ensemble des matrices à n lignes et p colonnes à coefficients a 11 a 1p dans R, c est à dire de tableaux d éléments de R A = notés de manière condensée

Plus en détail

Révisions sur les matrices

Révisions sur les matrices BCPST2 9 5 2 10Révisions sur les matrices I Dénition et structure A) Ensemble des matrices Soient n, p N des entiers xés On appelle matrice à n lignes et p colonnes et à coecients à K la donnée d'une famille

Plus en détail

Chapitres 5. Les matrices. Définition et notations: on appelle matrice m par n à coefficients dans K tout tableau. a 11 a 1n a 21 a 2n A = a m1 a mn

Chapitres 5. Les matrices. Définition et notations: on appelle matrice m par n à coefficients dans K tout tableau. a 11 a 1n a 21 a 2n A = a m1 a mn Université Lyon 1 Classes préparatoires 2015-2016 Algèbre linéaire Serge Parmentier 1 L ensemble des matrices Soit K un corps et n, m N \ {0} Chapitres 5 Les matrices Définition et notations: on appelle

Plus en détail

Chapitre 6 Matrices. descend! Table des matières

Chapitre 6 Matrices. descend! Table des matières descend! Chapitre 6 Matrices Version du 25-09-2017 à 06:15 Table des matières 1 Matrices de format n p 2 Structure de K-espace vectoriel sur M n,p (K 3 Produit matriciel 4 Matrices carrées 5 Matrices carrées

Plus en détail

Chapitre 10. Matrices, le retour

Chapitre 10. Matrices, le retour ECE 1 - Année 018-019 Lycée français de Vienne Mathématiques - F Gaunard http://fredericgaunardcom Chapitre 10 Matrices, le retour Ce Chapitre complète le premier chapitre sur les matrices, notamment en

Plus en détail

Matrices. Matrices. Paris Descartes Mathématiques et calcul 1. Matrices. 1 Matrices

Matrices. Matrices. Paris Descartes Mathématiques et calcul 1. Matrices. 1 Matrices Matrices Matrices Matrices 1 Matrices Définitions Espace vectoriel des matrices n p Multiplication des matrices Inverse d une matrice Systèmes linéaires Applications linéaires Changement de bases Matrices

Plus en détail

Table des matières. Cours PCSI ( ) Les matrices Lycée Baimbridge

Table des matières. Cours PCSI ( ) Les matrices Lycée Baimbridge Table des matières Introduction...2 I- Opérations sur les matrices...3 1- s et ensembles de matrices...3 2- Structure d'espace vectoriel de Mnp(K)...4 a- Somme de deux matrices de même dimension...4 b-

Plus en détail

Cours d Algèbre Mathématiques et Outils logiciels Semestre 2

Cours d Algèbre Mathématiques et Outils logiciels Semestre 2 Florent ARNAL Cours d Algèbre Mathématiques et Outils logiciels Semestre 2 Résolution de systèmes par la méthode du pivot de Gauss Matrices & Déterminants Université de Bordeaux Adresse électronique :

Plus en détail

Cours de mathématiques ECT 2ème année. Chapitre 1. Matrices

Cours de mathématiques ECT 2ème année. Chapitre 1. Matrices ECT 2ème année Chapitre 1 Matrices Adrien Fontaine Année scolaire 2018 2019 1 GÉNÉRALITÉS Définition 1 : Soient n et p dans N On appelle matrice à n lignes et p colonnes à coefficients dans R tout tableau

Plus en détail

Matrices. Chapitre V. 1 Révisions. a) Généralités

Matrices. Chapitre V. 1 Révisions. a) Généralités Chapitre V Matrices 1 Révisions a) Généralités Définitions Soient m, n et un corps commutatif Une matrice de type m, n à coefficients dans est un tableau de mn éléments de à m lignes et n colonnes, que

Plus en détail

Matrices et opérations

Matrices et opérations Matrices et opérations I Matrices et opérations I1 definitions Définition 1 Soient n et p deux entiers naturels non nuls Une matrice de format (n, p est un tableau de nombres réels comportant n lignes

Plus en détail

2 Diverses interprétations des matrices

2 Diverses interprétations des matrices 1 Rappels Espace vectoriel M p,n (K) : Addition : dénition et propriétés élémentaires : commutativité, associativité, existence d'un neutre, toute matrice admet un(e) opposé(e) pour + Multiplication par

Plus en détail

colonne j ligne i Proposition 12.1: Deux matrices sont égales ssi elles ont même taille et mêmes coefficients.

colonne j ligne i Proposition 12.1: Deux matrices sont égales ssi elles ont même taille et mêmes coefficients. Chapitre 12 : Matrices - résumé de cours Dans tout le chapitre désigne ou, n et p deux entiers naturels non nuls. 1. L'ensemble M n,p() 1.1 Définition et vocabulaire Déf: On appelle matrice à n lignes

Plus en détail

Calcul matriciel : rappels et compléments

Calcul matriciel : rappels et compléments CHAPITRE 5 Calcul matriciel : rappels et compléments 5 L ensemble M n,p (K) 5 Structure d espace vectoriel Définition Soit K = R ou C On note M n,p (K) l ensemble des matrices ayant n lignes et p colonnes

Plus en détail

Matrices. Table des matières. Cours de É. Bouchet ECS1. 23 novembre 2017

Matrices. Table des matières. Cours de É. Bouchet ECS1. 23 novembre 2017 Matrices Cours de É. Bouchet ECS novembre 07 Table des matières Ensemble de matrices M n,p (K. Premières dénitions............................................... Matrices carrées.................................................

Plus en détail

Calcul matriciel. Chapitre Généralités Premières dénitions

Calcul matriciel. Chapitre Généralités Premières dénitions Table des matières 8 Calcul matriciel 2 81 Généralités 2 811 Premières dénitions 2 812 Matrices carrées particulières 4 82 Somme et produit par un réel 5 83 Produit 7 84 Transposée 10 85 Puissance d'une

Plus en détail

Mathématiques - ECS1. Matrices. 30 avenue de Paris Versailles. c 2015, Polycopié du cours de mathématiques de première année.

Mathématiques - ECS1. Matrices. 30 avenue de Paris Versailles. c 2015, Polycopié du cours de mathématiques de première année. Mathématiques - ECS1 7 Matrices Lycée La Bruyère 30 avenue de Paris 78000 Versailles c 2015, Polycopié du cours de mathématiques de première année 7 Matrices Dans tout ce qui suit, K désigne R ou C 71

Plus en détail

Chapitre n o 12. Matrices

Chapitre n o 12. Matrices Lycée Roland Garros Mathématiques BCPST 1ère année 2013-2014 Chapitre n o 12 Matrices Dans ce chapitre K désignera R ou C Un élément de K est appelé un scalaire 1 Dénitions Dénition 1 Soient n, p N Une

Plus en détail

Matrices. Hervé Hocquard. 18 novembre Université de Bordeaux, France

Matrices. Hervé Hocquard. 18 novembre Université de Bordeaux, France Matrices Hervé Hocquard Université de Bordeaux, France 18 novembre 2015 Définitions Matrice On appelle matrice de taille n p à coefficients dans R (K = R ou C) toute famille A de np éléments de R présentée

Plus en détail

CH XIII : Calcul matriciel

CH XIII : Calcul matriciel CH XIII : Calcul matriciel I Généralités sur les matrices Soient n et p deux entiers naturels non nuls On appelle matrice à n lignes et p colonnes à cœfficients dans R un tableau de nombres réels Si A

Plus en détail

Chapitre 6. Algèbre matricielle. 6.1 Opérations linéaires sur les matrices

Chapitre 6. Algèbre matricielle. 6.1 Opérations linéaires sur les matrices Chapitre 6 Algèbre matricielle En plus d être des tableaux de nombres susceptibles d être manipulés par des algorithmes pour la résolution des systèmes linéaires et des outils de calcul pour les applications

Plus en détail

Les Matrices. Chapitre II. Table des matières

Les Matrices. Chapitre II. Table des matières Chapitre II Les Matrices Table des matières Partie A : Définitions et notations. Définition et vocabulaire des matrices................................ Matrices particulières.........................................

Plus en détail

Calcul matriciel 1. Calcul matriciel

Calcul matriciel 1. Calcul matriciel Calcul matriciel 1 le 29 Novembre 2008 UTBM MT11 Arthur LANNUZEL http ://mathutbmal.free.fr Calcul matriciel Introduction. A un système linéaire de p équations à n inconnues on associe un tableau avec

Plus en détail

Chapitre 13 : Matrices

Chapitre 13 : Matrices Chapitre 13 : Matrices ECE3 Lycée Carnot 9 février 01 Introduction Pour introduire le concept de matrice, intéressons-nous au problème très concret suivant : dans le village de Trouperdu, le boulanger

Plus en détail

14 Cours - Calcul matriciel.nb 1/13. Calcul matriciel

14 Cours - Calcul matriciel.nb 1/13. Calcul matriciel 14 Cours - Calcul matriciel.nb 1/13 Calcul matriciel I) Ensemble M n,p HKL 1) Définition d une matrice à n lignes et p colonnes 2) Notation dévelopée ou condensée 3) Ensemble des matrices à n lignes et

Plus en détail

Matrices. Hervé Hocquard. 25 février Université de Bordeaux, France

Matrices. Hervé Hocquard. 25 février Université de Bordeaux, France Matrices Hervé Hocquard Université de Bordeaux, France 25 février 2013 Définitions Matrice On appelle matrice de taille n p à coefficients dans R (K = R ou C) toute famille A de np éléments de R présentée

Plus en détail

a 1,1 x a 1,m x m = b 1 a 2,1 x a 2,m x m = b 2. . = b n

a 1,1 x a 1,m x m = b 1 a 2,1 x a 2,m x m = b 2. . = b n Chapitre Calcul matriciel Dans tout ce chapitre la lettre K désignera Q,R, ou C Systèmes et point de vue matriciel Rappelons qu un système d équations linéaires (disons, à n équations et m inconnues x,,x

Plus en détail

COURS CHAPITRE VII CALCUL MATRICIEL

COURS CHAPITRE VII CALCUL MATRICIEL COURS CHAPITRE VII CALCUL MATRICIEL 07-08 I) Définitions : ) Définitions Une matrice est un tableau à double entrées où chaque élément du tableau est repéré par son indice de ligne i et son indice de colonne

Plus en détail

Calcul matriciel. Systèmes linéaires. I.1 Reconnaître un système linéaire. Dénition 1

Calcul matriciel. Systèmes linéaires. I.1 Reconnaître un système linéaire. Dénition 1 MTB - ch1 Page 1/11 Calcul matriciel Dans tout ce chapitre, K désigne soit l'ensemble R des nombres réels, soit l'ensemble C des nombres complexes. On appelle scalaire un nombre réel lorsque K = R ou complexe

Plus en détail

10.1 L ensemble des matrices et son vocabulaire

10.1 L ensemble des matrices et son vocabulaire Chapitre 10 Matrices Sommaire 10.1 L'ensemble des matrices et son vocabulaire................... 93 10.1.1 Dénitions...................................... 93 10.1.2 Quelques cas particuliers...............................

Plus en détail

Centrale Maths 2 MP 2008 Énoncé 1/8

Centrale Maths 2 MP 2008 Énoncé 1/8 Centrale Maths 2 MP 2008 Énoncé 1/8 Épreuve :MATHÉMATIQUES II Concours Centrale - Supélec 2008 FilièreMP Notations Dans tout le problème n est un entier supérieur à 2, M n est l ensemble des matrices carrées

Plus en détail

Cours d algèbre 2. CHOULLI Hanan, MOUANIS Hakima et ZENNAYI Mohammed. UNIVERSITÉ SIDI MOHAMED BEN ABDELLAH FACULTÉ DES SCIENCES Dhar El Mehraz

Cours d algèbre 2. CHOULLI Hanan, MOUANIS Hakima et ZENNAYI Mohammed. UNIVERSITÉ SIDI MOHAMED BEN ABDELLAH FACULTÉ DES SCIENCES Dhar El Mehraz UNIVERSITÉ SIDI MOHAMED BEN ABDELLAH FACULTÉ DES SCIENCES Dhar El Mehraz Cours d algèbre 2 CHOULLI Hanan, MOUANIS Hakima et ZENNAYI Mohammed Département de Mathématiques Filières SMP-SMC (Semèstre 1) Module

Plus en détail

MATRICES. I- Définitions

MATRICES. I- Définitions MATRICES I- Définitions Une matrice A de format n, p est un tableau de nombres à n lignes et p colonnes Ces nombres sont appelés coefficients de la matrice Le coefficient de la i ème et de la j ème est

Plus en détail

Chapitre R2. Matrices

Chapitre R2. Matrices Chapitre R2 Matrices I. Opérations sur les matrices............................................................ 2 1/ Définition............................................................................

Plus en détail

Chapitre 6 : Matrices

Chapitre 6 : Matrices Chapitre 6 : Matrices Ce chapitre est consacré à l'étude des matrices Nous y introduisons les bases du calcul matriciel : somme, produit, inverse et transposée Table des matières 1 Matrice à n lignes,

Plus en détail

Algèbre 4 CALCUL MATRICIEL SYSTEMES LINEAIRES

Algèbre 4 CALCUL MATRICIEL SYSTEMES LINEAIRES Algèbre - cha 4 /9 Dans tout le chaitre K désigne R ou C, n et désignent des entiers naturels non nuls.. OPERATIONS SUR LES MATRICES. Notion de matrice Algèbre 4 CALCUL MATRICIEL SYSTEMES LINEAIRES Définition

Plus en détail

PRODUIT SCALAIRE ET ORTHOGONALITÉ

PRODUIT SCALAIRE ET ORTHOGONALITÉ Chapitre 9 : ECS2 Lycée La Bruyère, Versailles Année 2015/2016 PRODUIT SCALAIRE ET ORTHOGONALITÉ 1 Formes bilinéaires 2 1.1 Définition............................................. 2 1.2 Représentation

Plus en détail

1/2 2/2. 2. Matrices. Sections 2.4 et 2.5 MTH1007. J. Guérin, N. Lahrichi, S. Le Digabel École Polytechnique de Montréal A2016.

1/2 2/2. 2. Matrices. Sections 2.4 et 2.5 MTH1007. J. Guérin, N. Lahrichi, S. Le Digabel École Polytechnique de Montréal A2016. 2. Matrices Sections 2.4 et 2.5 MTH1007 J. Guérin, N. Lahrichi, S. Le Digabel École Polytechnique de Montréal A2016 (v4) MTH1007: algèbre linéaire 1/18 Plan 1. Les règles des opérations matricielles 2.

Plus en détail

Chapitre 12. Matrices

Chapitre 12. Matrices Chapitre 12 Matrices. I Dans la suite, n, p, q, r désignent des entiers naturels non nuls. K désigne R ou C. Matrices 1 Dénition Dénition 1 On appelle matrice à n lignes et p colonnes, ou matrice de type

Plus en détail

Matrices. 1. Définition Définition

Matrices. 1. Définition Définition Matrices Vidéo partie Définition Vidéo partie Multiplication de matrices Vidéo partie 3 Inverse d'une matrice : définition Vidéo partie 4 Inverse d'une matrice : calcul Vidéo partie 5 Inverse d'une matrice

Plus en détail

MT23-Algèbre linéaire

MT23-Algèbre linéaire MT23-Algèbre linéaire Chapitre 2 : Applications linéaires et matrices ÉQUIPE DE MATHÉMATIQUES APPLIQUÉES UTC juillet 2014 suivant Chapitre 2 Applications linéaires et matrices 2.1 Applications linéaires...............................

Plus en détail

MATRICES. 1. Définition. 2. Matrices carrées particulières. ADDITIONS ET MULTIPLICATION EXTERNE DANS M n,p (K)

MATRICES. 1. Définition. 2. Matrices carrées particulières. ADDITIONS ET MULTIPLICATION EXTERNE DANS M n,p (K) 21-10- 2007 JFC Mat p 1 MATRICES I GÉNÉRALITÉS 1 Définitions 2 Matrices carrées particulières II ADDITIONS ET MULTIPLICATION EXTERNE DANS M n,p (K) 1 Structure d espace vectoriel de M n,p (K) 2 Base canonique

Plus en détail

L p B calculer le produit matriciel ligne par ligne, ou bien colonne par colonne.

L p B calculer le produit matriciel ligne par ligne, ou bien colonne par colonne. 40 CHAPITRE 4. MATRICES ligne L M 1,n (K) et d une matrice B M n,q (K) est encore une matrice ligne. De plus, si on note L i la i-ième ligne de A, alors le produit AB est la L 1 B L 2 B matrice (la juxtaposition

Plus en détail