Corrigé du Brevet de technicien supérieur session 2010 Géomètre topographe

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Corrigé du Brevet de technicien supérieur session 2010 Géomètre topographe"

Transcription

1 Corrigé du Brevet de technicien supérieur session 00 Géomètre topographe A. P. M. E. P. Exercice 8 points Partie A. Soit t un réel quelconque. On a : xt+=t+ sint+=t+ sint car sin est périodique. Donc xt+ =xt+. Par ailleurs, yt + = cost + = cost car cos est périodique. Donc yt+ = yt. Le vecteur M t M t+ a donc pour coordonnées xt+ xt xt+ xt = =, ce vecteur est donc constant. yt+ yt yt yt 0 Le point M t+ s obtient donc à partir de M t par une translation de vecteur ı. La courbe C est donc invariante par cette translation.. Soit t un réel quelconque. Alors : x t= t sin t= t+ sin t car sin est impaire. Donc x t = xt : la fonction x est impaire. Par ailleurs, y t = cos t = cost car cos est paire. Donc y t = yt. Le point M t s obtient donc à partir de M t par une symétrie par rapport à l axe des ordonnées. 3. D après la question., il suffit de construire un morceau de la courbe pour des valeurs de t comprises dans un intervalle de longueur puis de translater ce morceau de vecteurs k. ı pour obtenir la courbe entière. L intervalle peut donc être réduit à [ ; ]. Enfin, les parités de x et de y permettent de réduire l intervalle d étude à [0 ; ].. Tout d abord on construit le symétrique de C J par rapport à l axe des ordonnées pour obtenir une courbe C J. Ensuite on translate la réunion de C J et de C J par des translations de vecteurs k. ı pour obtenir la courbe entière. Partie B. a. Pour tout t [0 ; ] : x t= cost donc x t>0 cost>0 cost< cost < cos t >. car la fonction cosinus est décroissante sur J. Ainsi, x t>0 sur t =. ] ; ] et, de même, x t<0 sur [ 0 ; [ et x t=0 si b. Pour tout t [0 ; ] : y t= sint donc y t<0 sur ]0 ; [ et y t=0 si t = 0 ou t =.

2 Brevet de technicien supérieur A. P. M. E. P. c. Le signe de la dérivée donne les variations de la fonction. [ x est strictement décroissante sur 0 ; ] et strictement croissante sur [ ] ;. y est strictement décroissante sur [0 ; ]. t 0 x t 0 + xt 0 yt 3 0 y t 0 0. a. Il s agit d abord de voir à quel moment x et y s annulent pas simultanément de préférence. L étude faite aux questions b. et c. montre alors que : la courbe C J admet une tangente parallèle à l axe des abscisses quand x t 0 et y t = 0 donc quand t = 0 point M 0 0; ou t = point M ;. la courbe C J admet une tangente parallèle à l axe des ordonnées quand x t=0 et y t 0 donc quand t = point M ;. b. C J coupe l axe des abscisses au point M t tel que yt=0 donc cost=0 ce qui donne t = ici, t J. Le point a alors pour coordonnées ; a. t 0 xt 0 0, 0, 8 0, 6 3, yt 0, 7 0, 5 0 b. Par souci d économie de place, l échelle choisie dans l énoncé n a pas été respectée. 3 M / M 0 y O x M Géomètre topographe mai 00

3 Brevet de technicien supérieur A. P. M. E. P. Exercice 8 points Partie A. L angle Î est l angle entre les tangentes aux arcs I A et I B. θ I = θ A donc I A est un arc de méridien tandis que I B est un arc de l équateur ; les deux étant perpendiculaires, on a bien Î =. Comme I A est un arc de méridien, on a b= AI = ϕ I ϕ A =.. cos ˆB = cos  cos Î + sin  sin Î cosb= 0+ = donc B = cos Â= cos B cos Î+sin B sin Î cos a donc = 0+ cos a donc cos a= / = = 3/ Nous savons que a = B I = IOB en radians car le rayon de la sphère est. Donc a = θ B et, par ailleurs, ϕ B = 0. Pour tout point Mx ; y ; z de Σ : x = cosθ cosϕ ; y = sinθ cosϕ ; z = sin ϕ. x B = cos a cos0 = 3 ; y B = sin a cos0=sin a ; z B = sin 0=0. Comme cos a+ sin a=, on a sin a=± cos a. Comme ici, B a une longitude a négative, on obtient z B = sin a= 3 = 3 =. 3 Partie B. a. x A = cos 0cos z A = sin =. = ; y A = sin 0cos = 0 ; b. SN a pour coordonnées 0 ; 0 ; donc SN = d où SN = SN = SN. Les coordonnées de SN = SN sont 0 ; 0 ; ce qui donne x x S = 0 donc x = 0 ; y y S = 0 donc y = 0 et z z S = donc z = 0. Le point N est donc O. c. Le pôle S est sur la sphère Σ donc l image de la sphère Σ est un plan P perpendiculaire à la droite SO, passant par l image d un point de la sphère Σ par exemple celle de N. Le vecteur SO 0 ; 0 ; est normal au plan P donc une équation de P s écrit 0x+0y+z+d = 0 donc z = λ. Comme N = O appartient à P, on en déduit que l équation de P est z = 0. d. Soit M un point de Γ et M son image par T. Alors : SM = SO +OM = + = donc SM = SM = SM donc M = M.. S A a pour coordonnées ; 0 ; + donc S A = + = + + = d où Géomètre topographe 3 mai 00

4 Brevet de technicien supérieur A. P. M. E. P. S A = S A qui a pour coordonnées Remarquons que = 0. + = + = +. Donc x x S = + donc x = + ; y y S = 0 donc y = 0 et z z S = donc z = 0. Le point A a pour coordonnées + ; 0 ; 0. Géomètre topographe mai 00

5 Brevet de technicien supérieur A. P. M. E. P. 3. Γ est un méridien car θ I = θ A donc passe par les pôles de la sphère donc par le pôle S de l inversion T et on travaille dans le plan OI S. Γ est donc une droite. Γ est contenu dans Σ donc Γ est contenue dans P. Γ est contenu dans OI S donc Γ aussi OI S passe par le pôle. Donc Γ est l intersection des plans P et OI S donc Γ = OI.. Γ est l intersection de Σ et du plan O AB. Le plan O AB ne passe pas par S sinon on aurait B O AS donc θ B = 0 donc son image est une sphère. La sphère Σ devient le plan P. Donc Γ est l intersection d une sphère et d un plan, qui ont au moins deux points communs A et B donc Γ est un cercle. 5. Pour le tracé de Γ, il nous faut trois points. Nous connaissons déjà A et B = B car B Γ. Il suffit de prendre le symétrique de B par rapport à O, qui est un point du cercle Γ et qui est aussi un point de Γ donc B = B. Le centre de Γ est l intersection des médiatrices de [BD] et de [B A ]. Pour information : l équation réduite de la médiatrice de [B A ] est y = 3 6x+ 3+ 6, celle de la médiatrice de [BD] est y = x et les coordonnées du centre de Γ sont ;. y Γ Ω Γ B = B O I A x Γ B = B En gras, l image du triangle sphérique AI B. Géomètre topographe 5 mai 00

Brevet de technicien supérieur session 2015 Géomètre topographe

Brevet de technicien supérieur session 2015 Géomètre topographe Brevet de technicien supérieur session 015 Géomètre topographe A. P. M. E. P. Exercice 1 10 points Le plan est muni du repère orthonormé direct, ı, ) j. Tout point M du plan, distinct du point, peut être

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

( ) Trigonométrie - équations. Lycée Jules Siegfried - Le Havre - Marc Bizet - Classe de Première STI2D. 1. unité d angle : le radian

( ) Trigonométrie - équations. Lycée Jules Siegfried - Le Havre - Marc Bizet - Classe de Première STI2D. 1. unité d angle : le radian Lycée Jules Siegfried - Le Havre - Marc Bizet - Classe de Première STID Trigonométrie - équations 1. unité d angle : le radian Dans un cercle de rayon r, on définit un angle AOB de 1 radian si la longueur

Plus en détail

Corrections. Fig. 1: La cycloïde ; l intervalle t ( π, π] se trouve au centre (gras, bleu)

Corrections. Fig. 1: La cycloïde ; l intervalle t ( π, π] se trouve au centre (gras, bleu) Corrections 1 Paramétrage Cartésien Correction de l exercice 1.1 (La cycloïde) Soit (Γ) la courbe définie par la représentation x(t) = 3(t sin(t)), y(t) = 3(1 cos(t)). 1. x(t) et y(t) sont bien définies

Plus en détail

LES FONCTIONS DE REFERENCE

LES FONCTIONS DE REFERENCE I. Les fonctions affines : LES FONCTIONS DE REFERENCE Définition : On appelle fonction affine toute fonction définie sur IR, ou sur un intervalle de IR, par f : a + b avec a et b deu nombres réels. Propriétés

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques Christophe ROSSIGNOL Année scolaire 04/05 Table des matières Rappels de trigonométrie. Définitions, premières propriétés..................................... Formules de trigonométrie.......................................

Plus en détail

TRIGONOMETRIE. Il en découle que nous pourrons effectuer les conversions de mesure à l aide d un tableau de proportionnalité :

TRIGONOMETRIE. Il en découle que nous pourrons effectuer les conversions de mesure à l aide d un tableau de proportionnalité : TRIGONOMETRIE I. LE RADIAN Définition : On appelle radian (rad) l angle au centre qui intercepte, sur un cercle de rayon R, un arc de longueur R Il en découle que nous pourrons effectuer les conversions

Plus en détail

FONCTIONS CIRCULAIRES

FONCTIONS CIRCULAIRES ère STI Ch : Fonctions circulaires /7 FONCTIONS CIRCULAIRES Table des matières I Le radian II Cercle trigonométrique III Angles orientés III. Mesure d un arc ou d angle orienté de vecteurs........................

Plus en détail

; et un sens direct (sens positif, au

; et un sens direct (sens positif, au I- Angles dans un cercle I- 1 : Cercle trigonométrique Définition 1: Un cercle trigonométrique, est un cercle orienté de centre O et de rayon 1, auquel, on associe un repère orthogonal direct, ( O i, j

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Mathématiques: Mise à niveau. Séance 10: Fonctions usuelles

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Mathématiques: Mise à niveau. Séance 10: Fonctions usuelles UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 04 05 L Économie Cours de M. Desgraupes Mathématiques: Mise à niveau Séance 0: Fonctions usuelles Table des matières Fonction

Plus en détail

Chapitre 13 Fonctions trigonométriques

Chapitre 13 Fonctions trigonométriques Capitre 13 Fonctions trigonométriques I. Définitions 1) Enroulement On considère le repère du plan (O; i, j), c le cercle trigonométrique, A le point de coordonnées (1; 0) et d la droite orientée munie

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques ère STID I - Cercle trigonométrique - Mesure des angles orientés Définition Dans le plan muni d un repère ; i, j, le cercle trigonométrique est le cercle de centre et de rayon

Plus en détail

I- LE RADIAN. Activité d introduction : enroulement de la droite numérique sur le cercle trigo.

I- LE RADIAN. Activité d introduction : enroulement de la droite numérique sur le cercle trigo. Activité d introduction : enroulement de la droite numérique sur le cercle trigo. I- LE RADIAN Le radian est, comme le degré ou le grade, une unité de mesure d angles. Sur un cercle de centre O, l angle

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques I) Rappels 1) Repérage sur le cercle trigonométrique Sur un cercle trigonométrique : - à tout nombre réel t on associe un point M unique ; - si un point M est associé à un nombre

Plus en détail

Fonctions sinus et cosinus.

Fonctions sinus et cosinus. . Rappels de trigonométrie... P. Variations et représentations graphiques des fonctions sinus et cosinus... p8. Compléments... p0 Copyright meilleurenmaths.com. Tous droits réserwidevec{}vés . Rappels

Plus en détail

étude de fonctions trigonométriques 5) Calculer les limites aux bornes de cet ensemble d étude. Y a-t-il une asymptote?

étude de fonctions trigonométriques 5) Calculer les limites aux bornes de cet ensemble d étude. Y a-t-il une asymptote? Chapitre Eercice : étude de fonctions trigonométriques Terminale S sin Le but est d étudier et de représenter la fonction tangente définie par : tan = cos ) Déterminer l ensemble de définition de la fonction

Plus en détail

En enroulant l'axe des réels chaque réel «b» marque sur le cercle un point unique B. B est le point associé au réel «b» et on le note alors M(b).

En enroulant l'axe des réels chaque réel «b» marque sur le cercle un point unique B. B est le point associé au réel «b» et on le note alors M(b). Angles et Trigonométrie I º] Rappels : repérage d'un point sur le cercle trigonométrique Le sens direct est aussi appelé sens trigonométrique ou sens positif Un cercle trigonométrique est un cercle de

Plus en détail

Correction du baccalauréat S La Réunion juin 2007

Correction du baccalauréat S La Réunion juin 2007 Durée : 4 heures Correction du baccalauréat S La Réunion juin 007 EXERCICE Commun à tous les candidats y ln a. a. Aa ; ln a.mx ; y A T x a = a y = x ln a. a b. P0 ; y T y = ln a. P0 ; ln a. Longueur PQ

Plus en détail

Courbes en coordonnées polaires

Courbes en coordonnées polaires Chapitre II Courbes en coordonnées polaires A Étude et tracé de courbes définies en coordonnées polaires On suppose le plan muni d un repère orthonormal O, ı, j ). A.1 Représentation d une courbe en coordonnées

Plus en détail

I. COSINUS ET SINUS J M. On munit le cercle trigonométrique d un repère orthonormé (O, OI, OJ ) et d un sens (le «sens direct») O x A

I. COSINUS ET SINUS J M. On munit le cercle trigonométrique d un repère orthonormé (O, OI, OJ ) et d un sens (le «sens direct») O x A www.mathsenligne.com STI - N4 - FNCTINS TRIGNMETRIQUES CURS (/5) PRGRAMMES Etude des fonctions ï sin et ï cos : dérivée, sens de variation. Equations cos = α et sin = α. CMMENTAIRES n s aidera de l interprétation

Plus en détail

CORRECTION DM8. = - sin x( 1 + cos x) car la fonction sinus est impaire et la fonction cosinus est paire. = - f(x)

CORRECTION DM8. = - sin x( 1 + cos x) car la fonction sinus est impaire et la fonction cosinus est paire. = - f(x) ORRETION DM8 EXERIE : Etude d une fonction trigonométrique f est la fonction définie sur R par : f(x) sin x ( + cosx) ) a) i) Pour tout x R, (x + ) R ii) Pour tout x R, f(x + ) sin(x + )( +cos(x + ) sin

Plus en détail

Corrigé du baccalauréat S Métropole La Réunion 16 septembre 2011

Corrigé du baccalauréat S Métropole La Réunion 16 septembre 2011 Corrigé du baccalauréat S Métropole La Réunion 16 septembre 11 EXERCICE 1 Partie A 1 La loi suivie par la variable aléatoire X prenant pour valeur le nombre de moteurs tombant en panne est une loi binomiale

Plus en détail

par les vecteurs unitaires OI et OA tel que ( ) α rapport à (OI), on définit par les vecteurs unitaires OI et OB, l angle orienté ( OI, OB) tel que.

par les vecteurs unitaires OI et OA tel que ( ) α rapport à (OI), on définit par les vecteurs unitaires OI et OB, l angle orienté ( OI, OB) tel que. I- Angles orientés I- : Déinitions Déinition : À tout point A du cercle trigonométrique, on associe l angle orienté ( OI, OA) déini OI, OA et si B est le symétrique du point A par par les vecteurs unitaires

Plus en détail

Les angles orientés ( En première S )

Les angles orientés ( En première S ) Les angles orientés ( En première S ) Dernière mise à jour : Mercredi 4 Septembre 008 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble Lycée Stendhal, Grenoble ( Document de : Vincent Obaton )

Plus en détail

Trigonométrie. Chapitre Enroulement de la droite des réels Le cercle trigonométrique

Trigonométrie. Chapitre Enroulement de la droite des réels Le cercle trigonométrique Chapitre 4 Trigonométrie 4. Enroulement de la droite des réels 4.. Le cercle trigonométrique Dénition. On se place dans le plan repéré par le repère orthonormé (O; u; v). Le cercle trigonométrique est

Plus en détail

CHAPITRE 2. Courbes paramétrées

CHAPITRE 2. Courbes paramétrées CHAPITRE Courbes paramétrées Dans tout ce chapitre nous choisissons un repère du plan affine ce qui permet d identifier les points du plan avec les éléments de R (par leurs coordonnées) et les vecteurs

Plus en détail

Sujets de bac : Géométrie dans l espace 1

Sujets de bac : Géométrie dans l espace 1 Sujets de bac : Géométrie dans l espace Sujet n : La Réunion juin 23 On considère un cube d arête. Le nombre désigne un réel strictement positif. On considère le point de la demi-droite défini par. ) Déterminer

Plus en détail

BTS Maintenance industrielle - Les fonctions

BTS Maintenance industrielle - Les fonctions de référence. en escaliers Une fonction en escaliers est une fonction constante par intervalles. Eemple. la fonction f définie sur [,[ - 5 6 7 8. affines Une fonction affine f est définie sur par où a

Plus en détail

Formules utiles. Cosinus de l angle d intersection ϑ [0, π] des deux courbes regulières f : I 1 R n, g : I 2 R n : , si f(t 1 ) = g(t 2 ).

Formules utiles. Cosinus de l angle d intersection ϑ [0, π] des deux courbes regulières f : I 1 R n, g : I 2 R n : , si f(t 1 ) = g(t 2 ). Chapitre Courbes dans R n.1 Exercices Formules utiles. Cosinus de l angle d intersection ϑ [, π] des deux courbes regulières f : I 1 R n, g : I R n : cos ϑ = f (t 1 ), g (t ) f (t 1 ) g (t ), si f(t 1

Plus en détail

I) A quoi sert une fonction circulaire?

I) A quoi sert une fonction circulaire? FCHE METHODE sur les FONCTONS CRCULARES ) A quoi sert une fonction circulaire? a) Exemples :. Un triangle a deux cotés de cm et l angle entre ces cotés est de x! Comment varie son aire en fonction de l

Plus en détail

Trigonométrie. 1 Une nouvelle unité de mesure des angles. 2 Rappel - Trigonométrie dans le triangle rectangle. 2.1 Rappels sur le triangle rectangle

Trigonométrie. 1 Une nouvelle unité de mesure des angles. 2 Rappel - Trigonométrie dans le triangle rectangle. 2.1 Rappels sur le triangle rectangle Trigonométrie 1 Une nouvelle unité de mesure des angles On considère un cercle de centre O et de rayon r. B θ r A Exercice 1. 1. Quelle est la circonférence de ce cercle? L aire du disque associé? O. Exprimer,

Plus en détail

Dossier n 51 : Exemples d étude de situations issues de la géométrie, de la mécanique ou de la physique, conduisant à des courbes paramétrées

Dossier n 51 : Exemples d étude de situations issues de la géométrie, de la mécanique ou de la physique, conduisant à des courbes paramétrées Dossier n 51 : Exemples d étude de situations issues de la géométrie, de la mécanique ou de la physique, conduisant à des courbes paramétrées Rédigé par Cécile COURTOIS, le cecile-courtois@wanadoo.fr I

Plus en détail

Exo7. Courbes planes. 1 Courbes d équation y = f (x) 2 Courbes paramétrées en coordonnées cartésiennes. Fiche de Léa Blanc-Centi.

Exo7. Courbes planes. 1 Courbes d équation y = f (x) 2 Courbes paramétrées en coordonnées cartésiennes. Fiche de Léa Blanc-Centi. Eo7 Courbes planes Fiche de Léa Blanc-Centi. Courbes d équation = f () Eercice Représenter les courbes d équation cartésienne = f (), donner l équation de leur tangente au point d abscisse = et la position

Plus en détail

Fonctions de référence 1

Fonctions de référence 1 Fonctions de référence Les fonctions sinus et cosinus. Définitions Le plan étant muni d un repère orthonormé (O; I, J), on peut associer à tout réel x un unique point M sur le cercle trigonométrique. (voir

Plus en détail

Corrigé du baccalauréat S Amérique du Sud novembre 2008

Corrigé du baccalauréat S Amérique du Sud novembre 2008 Durée : heures Corrigé du baccalauréat S Amérique du Sud novembre 008 EXERCICE 1 1. AB = b a = +i = +1=5 ; AC = c a = 1+i = 1+=5. AB = AC AB=AC ABC est isocèle en A. 5 points. Z I = 1 + i 7. z z ( I z

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques Jérôme Germoni Novembre 2 Première étude : par équation différentielle.. Définition On s inspire de la définition de l exponentielle vue en terminale. Théorème (admis) Il existe

Plus en détail

Dérivation et fonctions trigonométriques

Dérivation et fonctions trigonométriques Dérivation et fonctions trigonométriques 1. Compléments sur la dérivation Théorème. Soit une fonction à valeurs positives dérivable sur un intervalle. Alors est dérivable sur et. Soit. La fonction est

Plus en détail

Exo7. Quadriques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur

Exo7. Quadriques. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur Exo7 Quadriques Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Plus en détail

Révision d algèbre et d analyse

Révision d algèbre et d analyse Révision d algèbre et d analyse Chapitre2 : Rappels de géométrie, courbes et surfaces Équipe de Mathématiques Appliquées UTC Mars 2011 suivant Chapitre II Rappels de géométrie, courbes et surfaces II.1

Plus en détail

Fonctions d'une variable réelle (M-1.1)

Fonctions d'une variable réelle (M-1.1) Fonctions d'une variable réelle (M-.) I. Fonctions définies par morceaux Définition des fonctions en escalier : une fonction en escalier est une fonction constante par intervalles. Sa représentation graphique

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace I Modes de repérage dans l espace 1 I.A Coordonnées cartésiennes...................... 1 I.B Coordonnées cylindriques...................... 2 I.C Coordonnées sphériques.......................

Plus en détail

FONCTIONS CIRCULAIRES

FONCTIONS CIRCULAIRES BTS DOMOTIQUE Fonctions circulaires 8- FONCTIONS CIRCULAIRES Table des matières I Fonctions circulaires I. Définitions............................................... I. Valeurs remarquables.........................................

Plus en détail

Chapitre 11. Fonctions sinus et cosinus

Chapitre 11. Fonctions sinus et cosinus I. Rappels Chapitre. Fonctions sinus et cosinus (rappels et compléments) On rappelle ici les principau résultats en trigonométrie établis dans les classes précédentes. ) Enroulement de l ae réel sur le

Plus en détail

Correction Baccalauréat S Amérique du Nord Mai 2008 http ://www.maths-express.com

Correction Baccalauréat S Amérique du Nord Mai 2008 http ://www.maths-express.com Correction Baccalauréat S Amérique du Nord Mai 28 http ://www.maths-express.com Exercice. Voir la figure finale à la fin de l exercice! 2. (a) Le cercle Γ est l ensemble des points M du plan tels que AM

Plus en détail

I- Cercle trigonométrique, Radian

I- Cercle trigonométrique, Radian er S TRIGONOMETRIE Objectifs : Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale. Déterminer les cosinus et les sinus d angles associés. Résoudre dans les équations d inconnue

Plus en détail

Mathématiques - département MP, S2

Mathématiques - département MP, S2 Mathématiques - département MP, S 11 mars 006 Table des matières 1 Courbes paramétrées 1.1 Équation cartésienne, équation paramétrique, équation polaire 1.1.1 La droite.......................... 4 1.1.

Plus en détail

Algèbre linéaire. Calcul matriciel et infographie

Algèbre linéaire. Calcul matriciel et infographie Sommaire Préambule...3 Méthode générale...4 Coordonnées homogènes...5 Rotations dans R2...7 Rotations dans R3...9 Rotation d axe Ox... 10 Rotation d axe Oy... 11 Rotation d axe Oz... 12 Récapitulatif...

Plus en détail

Baccalauréat S Métropole La Réunion 21 juin 2012

Baccalauréat S Métropole La Réunion 21 juin 2012 Baccalauréat S Métropole La Réunion juin 0 EXERCICE Commun à tous les candidats 4 points. Sur l intervalle [ 3, ], tous les points de la courbe ont une ordonnée négative. VRAIE. Sur l intervalle ] ; [,

Plus en détail

On peut aussi trouver une équation cartésienne de la médiatrice de [AB] en écrivant que M (d) si AM = BM ou bien AM 2 = BM 2

On peut aussi trouver une équation cartésienne de la médiatrice de [AB] en écrivant que M (d) si AM = BM ou bien AM 2 = BM 2 1S Corrigé DS n o 9 Durée :h Exercice 1 ( 5,5 points ) Dans un repère orthonormé du plan, on considère les points A(3; 1), B(; ) et C( ; 1). 1. Déterminer une équation de la droite (d 1 ), médiatrice de

Plus en détail

GEOMETRIE ANALYTIQUE DANS LE PLAN

GEOMETRIE ANALYTIQUE DANS LE PLAN WORKBOOK PCD -GEOMETRIE ANALYTIQUE DU PLAN 016 GEOMETRIE ANALYTIQUE DANS LE PLAN 1 Déterminer l'équation du cercle centré en C et de rayon r si : a) C (0; 0) et r = 1; b) C = (1; ) et r c) C (3; -4) et

Plus en détail

Capacité travaillée: Utiliser le cercle trigonométrique pour déterminer le cosinus et sinus d angles associées

Capacité travaillée: Utiliser le cercle trigonométrique pour déterminer le cosinus et sinus d angles associées Capacité travaillée: Utiliser le cercle trigonométrique pour déterminer le cosinus et sinus d angles associées Contenu: Radian; Cercle trigonométrique; Mesure d un angle orienté; Mesure principale. Mevel

Plus en détail

CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6)

CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6) 3D2 LMRL CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6) 1 Rappels - classe de quatrième Théorème de Pythagore : Dans un triangle rectangle, le carré de l hypoténuse est égal à la somme des

Plus en détail

TS - Maths - Révisions Nombres complexes

TS - Maths - Révisions Nombres complexes TS - Maths - Révisions Nombres complexes Exercice 1 LIBAN 01 On considère la suite de nombres complexes z n définie par z 0 = i et pour tout entier naturel n : z n+1 = 1 + iz n. Les parties A et B peuvent

Plus en détail

( ) ( ) Terminale S Chapitre 10 «Nombres complexes 2 ème partie» Page 1 sur 9. I) Forme exponentielle. 1) Argument du produit

( ) ( ) Terminale S Chapitre 10 «Nombres complexes 2 ème partie» Page 1 sur 9. I) Forme exponentielle. 1) Argument du produit Terminale S Chapitre 0 «Nombres complexes ème partie» Page sur 9 I) Forme exponentielle ) Argument du produit Propriété : Soient deux nombres complexes et d'arguments respectifs θ et θ. A B A B Alors un

Plus en détail

Trigonométrie. I. Le cercle trigonométrique

Trigonométrie. I. Le cercle trigonométrique I. Le cercle trigonométrique Définition. Dans le plan rapporté à un repère orthonormal ( ), le cercle trigonométrique est le cercle de centre O et de raon sur lequel on choisit une orientation : le sens

Plus en détail

Les fonctions cosinus et sinus

Les fonctions cosinus et sinus TS Les fonctions cosinus et sinus ) Application à la dérivée de la composée d une fonction affine suivie de la fonction sinus ou cosinus Rappel I. Dérivées des fonctions cosinus et sinus ) Formules (admises

Plus en détail

I. MESURE D UN ANGLE EN RADIANS

I. MESURE D UN ANGLE EN RADIANS www.mathsenligne.com STID - N - FNCTINS TRIGNMETRIQUES CURS (/6) PRGRAMMES CAPACITES ATTENDUES CMMENTAIRES Fonctions circulaires Éléments de trigonométrie : cercle trigonométrique, radian, mesure d un

Plus en détail

Chapitre 6. Fonctions trigonométriques

Chapitre 6. Fonctions trigonométriques Chapitre 6 Fonctions trigonométriques Corrigés des exercices-tests Vrai La hauteur issue de M dans le triangle OIM est également médiane Donc le triangle OIM est isocèle en M Étant aussi isocèle en O,

Plus en détail

Produit scalaire. Expressions et propriétés du produit scalaire

Produit scalaire. Expressions et propriétés du produit scalaire Produit scalaire 1ère STI2D I - Expressions et propriétés du produit scalaire 1 Définitions Le produit scalaire de deux vecteurs non nuls u et v, noté u v, est le nombre, u v = u. u.cos ( u, v. u v θ u

Plus en détail

La trigonométrie. I Le cercle trigonométrique 1 1 Associer un point à un réel Valeurs particulières... 2

La trigonométrie. I Le cercle trigonométrique 1 1 Associer un point à un réel Valeurs particulières... 2 Table des matières I Le cercle trigonométrique Associer un point à un réel........................................ Valeurs particulières............................................ II Angles orientés Mesures

Plus en détail

LES FONCTIONS DE REFERENCE

LES FONCTIONS DE REFERENCE I. Les fonctions affines : LES FONCTIONS DE REFERENCE Définition : On appelle fonction affine toute fonction définie sur IR, ou sur un intervalle de IR, par f : a + avec a et deu nomres réels. Propriétés

Plus en détail

Correction des Exercices

Correction des Exercices DAEU-B Maths UGA 016-017 Correction des Exercices Géométrie plane : la méthode des coordonnées. Exercice n o 1 Soit (D) la droite d équation y = x 1. a. Les points A(1, 3) et B(4, 9) appartiennent-ils

Plus en détail

Cours de Terminale S / Compléments sur les fonctions. E. Dostal

Cours de Terminale S / Compléments sur les fonctions. E. Dostal Cours de Terminale S / Compléments sur les fonctions E. Dostal septembre 013 Table des matières 3 Compléments sur les fonctions 3.1 Fonctions trigonométriques................................... 3.1.1 Définitions

Plus en détail

OUTILS MATHEMATIQUES L1 SVG Paul Broussous

OUTILS MATHEMATIQUES L1 SVG Paul Broussous OUTILS MATHEMATIQUES L1 SVG 011 01 Paul Broussous Paul Broussous Maître de Conférences, Département de Mathématiques Contact : Laboratoire de Mathématiques, Site du Futuroscope, Bureau 013 (Prendre rendez-vous

Plus en détail

TRIGONOMETRIE. I. Radian et cercle trigonométrique

TRIGONOMETRIE. I. Radian et cercle trigonométrique TRIGONOMETRIE I Radian et cercle trigonométrique ) Le radian Soit un cercle C de centre O et de rayon On appelle radian, noté rad, la mesure de l'angle au centre qui intercepte un arc de longueur du cercle

Plus en détail

TRIGONOMÉTRIE. Ph DEPRESLE. 27 juin Le radian : unité de mesure d angle 2. 2 Le cercle trigonométrique 2

TRIGONOMÉTRIE. Ph DEPRESLE. 27 juin Le radian : unité de mesure d angle 2. 2 Le cercle trigonométrique 2 TRIGNMÉTRIE Ph DEPRESLE 7 juin 015 Table des matières 1 Le radian : unité de mesure d angle Le cercle trigonométrique Cosinus et Sinus.1 Enrlement d une droite autr du cercle trigonométrique.............

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2007 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2007 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 07 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 007 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

1 Le radian : unité de mesure d angle

1 Le radian : unité de mesure d angle Le radian : unité de mesure d angle Définition. Soit C un cercle de centre et de rayon. Un radian est la mesure d un angle au centre qui intercepte un arc de longueur du cercle. La mesure en radians d

Plus en détail

Trigonométrie. I] Cercle trigonométrique et radians

Trigonométrie. I] Cercle trigonométrique et radians I] Cercle trigonométrique et radians Dans le plan muni d un repère orthonormé, on appelle cercle trigonométrique le cercle de centre O et de rayon 1 sur lequel on définit un sens de parcours appelé sens

Plus en détail

8 Fonctions trigonométriques

8 Fonctions trigonométriques 8 Fonctions trigonométriques Rappel Voici le grape de la fonction sinus : 6 3 On rappelle quelques propriétés de la fonction sinus démontrées aux exercices.6 et.9 : ) elle est définie sur l ensemble des

Plus en détail

cosinus - mathématiques. 1 PRÉSENTATION

cosinus - mathématiques. 1 PRÉSENTATION cosinus - mathématiques. 1 PRÉSENTATION cosinus, fonction trigonométrique, complémentaire de la fonction sinus, introduites toutes deux dans la définition de la mesure d un angle en géométrie euclidienne.

Plus en détail

Compléments sur la dérivation Fonctions sinus et cosinus

Compléments sur la dérivation Fonctions sinus et cosinus I. Dérivation Compléments sur la dérivation Fonctions sinus et cosinus A faire : revoir notions vues en 1 S, p 384-385 du livre 1) Activité ( à traiter sur feuille annexe ) Soient la fonction définie sur

Plus en détail

FONCTIONS DE REFERENCE FONCTIONS DE REFERENCE

FONCTIONS DE REFERENCE FONCTIONS DE REFERENCE Seconde 4 006/007 Lycée de Bouwiller Introduction Dans ce chapitre, nous allons étudier les fonctions usuelles (linéaires, affines, carré, inverse, cosinus et sinus). Nous commencerons par des rappels

Plus en détail

Plan d'étude d'une fonction. , f x = f x alors f est impaire.

Plan d'étude d'une fonction. , f x = f x alors f est impaire. 1 Recherche de l'ensemble de définition Plan d'étude d'une fonction. Fonctions rationnelles. f x existe si le dénominateur n'est pas nul. 2n Fonctions avec radical du type. f x existe si la quantité sous

Plus en détail

CONCOURS COMMUN 2006

CONCOURS COMMUN 2006 CONCOURS COMMUN 006 DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve de Mathématiques (toutes filières PREMIER PROBLEME Etude d une fonction.. D = C \ {i}.. a Soient (x, y R, puis z = x + iy. z

Plus en détail

ANGLES ORIENTÉS - TRIGONOMETRIE

ANGLES ORIENTÉS - TRIGONOMETRIE hapitre 04 Angles orientés - Trigonométrie ANGLES RIENTÉS - TRIGNETRIE I- esure d un angle en radians Soit, A, B trois points du plan distincts deux à deux. n considère le cercle de centre et de rayon

Plus en détail

Correction : Les fonctions sinus et cosinus

Correction : Les fonctions sinus et cosinus Correctioneercices mars Correction : Les fonctions sinus et cosinus Rappels Eercice ) 5 ) 5) 7) 9) ) ) ) 8) Eercice ) sin = sin =sin ) = + k = 5 k Z + k 5 ) cos = cos =cos ) 5 5 + k = 5 k Z + k 5 5 ) cos)=cos

Plus en détail

Chapitre : Trigonométrie

Chapitre : Trigonométrie Chapitre : Trigonométrie Dans tout le chapitre, le plan est muni d un repère orthonormé ;, I. Cercle trigonométrique 1) Repérage sur le cercle trigonométrique Définition : Le cercle trigonométrique C est

Plus en détail

Chapitre 5 : Fonctions de référence. 1 Fonction carré. 1.1 Définition et représentation graphique. 1.2 Symétrie. 1.3 Variations et extrémum

Chapitre 5 : Fonctions de référence. 1 Fonction carré. 1.1 Définition et représentation graphique. 1.2 Symétrie. 1.3 Variations et extrémum Chapitre 5 : Fonctions de référence 1 Fonction carré 1.1 Définition et représentation graphique Définition 1 La fonction définie sur R par f(x) = x est la fonction carré. Dans la suite de cette partie,

Plus en détail

Pondichéry Enseignement spécifique. Corrigé

Pondichéry Enseignement spécifique. Corrigé Pondichéry. 06. Enseignement spécifique. Corrigé EXERCICE Partie A ) a) Le symétrique x du réel par rapport au réel 3,9 vérifie x+ Graphique. = 3,9 et donc x = 3,9 =,8. 0.8 0 3,9 b) P,8 T ) = PT,8) PT

Plus en détail

CHAPITRE 6 : PRODUIT SCALAIRE

CHAPITRE 6 : PRODUIT SCALAIRE CHPITRE 6 : PRODUIT SCLIRE I. Produit scalaire de deux vecteurs dans le plan 1. Généralités Définition : Soit u et v deux vecteurs du plan non nuls, et, B, C trois points du plan tels que Le produit scalaire

Plus en détail

Etude des fonctions usuelles

Etude des fonctions usuelles Etude des fonctions usuelles 1. Introduction Soit f une fonction réelle de la variable réelle, on a vu que ces fonctions sont souvent définies par des formules, c est-à-dire définies par des epressions

Plus en détail

9 page 333 du LIVRE : EXERCICE N 5 : Extrait de l épreuve du concours EFREI (mai 2010) ÉLÉMENTS DE RÉPONSE DES EXERCICES DU CHAPITRE 5.

9 page 333 du LIVRE : EXERCICE N 5 : Extrait de l épreuve du concours EFREI (mai 2010) ÉLÉMENTS DE RÉPONSE DES EXERCICES DU CHAPITRE 5. 1 FICHE : EXERCICE N 1 : 1. j = 1.. j = j. 1 + j + j = 0 et j = 1. EXERCICE N : 15 page du LIVRE : correction page 474 du livre. EXERCICE N : 6 page du LIVRE : z 1 = 1 + 1 i ; z = 7 + 7 i ; z = 4 5 + 5

Plus en détail

EXERCICES : TRIGONOMÉTRIE

EXERCICES : TRIGONOMÉTRIE Chapitre wicky-math.fr.nf Trigonométrie EXERCICES : TRIGONOMÉTRIE Exercice 1. Sur le cercle trigonométrique C de centre O ci-dessous, les points A et B sont tels que : ÎOA=5 et ÎOB= 10 Donner une mesure

Plus en détail

π π ; 2 π tel que z = 1 + e i θ.

π π ; 2 π tel que z = 1 + e i θ. EXERIE 1 (5 points) Dans le plan complexe muni d'un repère orthonormal (O ; u, v ) (unité graphique : cm), on considère les points, et d'affixes respectives a, b 1 i et c 1 + i. 1. a. Placer les points,

Plus en détail

Radian et cercle trigonométrique

Radian et cercle trigonométrique Seconde Chapitre 7 : Angles et Trigonométrie 5- I Radian et cercle trigonométrique I. Le radian Le radian est une unité de mesure des angles choisie de façon que l angle plat de 8 degrés ait une mesure

Plus en détail

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction On dit qu une fonction est dérivable sur un intervalle I si elle est définie sur I et admet en chaque point de I un nombre dérivé.

Plus en détail

MATHÉMATIQUES II. Soit IP le plan vectoriel IR 2 muni du produit scalaire usuel et orienté par la base

MATHÉMATIQUES II. Soit IP le plan vectoriel IR 2 muni du produit scalaire usuel et orienté par la base MATHÉMATIQUES II Soit IP le plan vectoriel IR 2 muni du produit scalaire usuel et orienté par la base canonique (, ij) On notera o = (,) 00 l origine du plan Tout élément ( xy, ) de IP peut s interpréter

Plus en détail

Le but de cet exercice est de tracer la courbe de la fonction cosinus et d en étudier quelques propriétés

Le but de cet exercice est de tracer la courbe de la fonction cosinus et d en étudier quelques propriétés Capitre 7 Fonctions trigonométriques I Eercices 7.1 Le but de cet eercice est de tracer la courbe de la fonction cosinus et d en étudier quelques propriétés 1. Tracer à l écran de la calculatrice la représentation

Plus en détail

Durée : 1 heure 30 Épreuves communes ENI GEIPI POLYTECH Série S 11 mai 2016

Durée : 1 heure 30 Épreuves communes ENI GEIPI POLYTECH Série S 11 mai 2016 Durée : 1 heure 30 Épreuves communes ENI GEIPI POLYTECH Série S 11 mai 2016 Nous vous conseillons de répartir équitablement les 3 heures d épreuves entre les sujets de mathématiques et de physique-chimie

Plus en détail

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions 1 Langage de la continuité... 2 1.1 Définition... 2 1.2 Illustration grapique... 2 1.3 Fonctions usuelles... 2 2 Téorème des valeurs intermédiaires...

Plus en détail

Correction du baccalauréat S Pondichéry 16 avril 2008

Correction du baccalauréat S Pondichéry 16 avril 2008 Correction du baccalauréat S Pondichéry 6 avril 008 EXERCICE Commun à tous les candidats 4 points. a. x e x e ou encore e x e e x > par croissance de la fonction exponentielle). f est donc bien définie

Plus en détail

Activités d approche. ACTIVITÉ 1 Vers de nouvelles formules de dérivation. Partie A : Fonction sous radical. Partie B : Fonction en puissance

Activités d approche. ACTIVITÉ 1 Vers de nouvelles formules de dérivation. Partie A : Fonction sous radical. Partie B : Fonction en puissance Dérivation. Fonctions cosinus et sinus ANALYSE Connaissances nécessaires à ce chapitre Calculer la dérivée d une fonction f Déterminer certaines caractéristiques de f à partir de f Utiliser le cercle trigonométrique,

Plus en détail

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. Utiliser le cercle trigonométrique, notamment

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. Utiliser le cercle trigonométrique, notamment Chapitre 6 Trigonométrie CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale. Utiliser le cercle trigonométrique, notamment

Plus en détail

GÉOMÉTRIE DANS L ESPACE

GÉOMÉTRIE DANS L ESPACE GÉOMÉTRIE DANS L ESPACE On se place dans un repère orthonormal du plan ( O ; i, j, k ) I Équation de plan Exercice 1 : On considère le point A ( 0;1;4) et le vecteur n ( ;3; ) Déterminer une équation du

Plus en détail

Fonctions trigonométriques - Corrigé. 2 2 cos 1

Fonctions trigonométriques - Corrigé. 2 2 cos 1 Exercice 1 : Fonctions trigonométriques - Corrigé 1. a. est dérivable sur comme somme de fonctions dérivables sur et =1 cos On sait que, pour tout réel et donc en particulier pour tout, cos 1 donc 0 et

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

Un corrigé de l épreuve 2 du Capes Mathématiques 2005

Un corrigé de l épreuve 2 du Capes Mathématiques 2005 Un corrigé de l épreuve du Capes Mathématiques 005 Partie I : Puissance d un point par rapport à un cercle. 1 H est le pied de la hauteur issue du sommet O du triangle isocèle OT 1 T ; c est donc aussi

Plus en détail

Trigonométrie 1.0 OLIVIER LÉCLUSE CREATIVE COMMON BY-NC-SA

Trigonométrie 1.0 OLIVIER LÉCLUSE CREATIVE COMMON BY-NC-SA Terminale S Trigonométrie 1.0 OLIVIER LÉCLUSE CREATIVE COMMON BY-NC-SA Octobre 2013 Table des matières Objectifs 5 Introduction 7 I - Définition - dérivabilité 9 A. Construction Sinus et Cosinus...9 B.

Plus en détail

P R O D U I T S C A L A I R E.

P R O D U I T S C A L A I R E. ère S 00/005 Produit scalaire J TAUZIEDE P R O D U I T S C A L A I R E I- DEFINITION ET PREMIERES PROPRIETES ) Produit scalaire de deux vecteurs colinéaires Définition Soit u et v deux vecteurs colinéaires

Plus en détail