SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :"

Transcription

1 SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique ; - limite I Gééralités : Défiitio : ) Défiitio : État doé ue suite (u ), mettre e œuvre des algorithmes permettat, lorsque cela est possible, de détermier : u seuil à partir duquel u 0 p, p état u etier aturel doé ; u seuil à partir duquel u l 0 p, p état u etier aturel doé Recoaître et justifier la présece d ue suite géométrique das ue situatio doée Coaître et utiliser la formule doat + q + + q, où q est u réel différet de Coaître et utiliser lim positif q pour q Pour exprimer que la suite (u ) a pour limite + quad ted vers +, o dit que, pour tout etier aturel p, o peut trouver u rag à partir duquel tous les termes u sot supérieurs à 0 p Pour exprimer que la suite (u ) a pour limite l quad ted vers +, o dit que, pour tout etier aturel p, o peut trouver u rag à partir duquel tous les termes u sot à ue distace de l iférieure à 0 p Comme e classe de première, il est importat de varier les outils et les approches O peut itroduire la otatio q i O étudie quelques exemples de comportemet de (q ) avec q égatif Ue suite umérique est ue foctio associat à tout ombre etier aturel, u ombre réel u() : u : N R u() Ce ombre u() est aussi oté u Soit la suite défiie par u = 0 Remarques : u 0 = -0 ; u = -8 ; u = -6 ; u = -4 ; u 0 = 0 - Le er terme de la suite est u 0, l idice est 0, et u 0 est le terme d idice 0, et c est le e terme de la suite - La suite (v ) défiie par v = est défiie que pour O la ote (v ) ) Suite défiie par so terme gééral : Défiitio : Ue suite est défiie par so terme gééral, (ou de faço explicite) lorsque le terme u est exprimé e foctio de Exemples : La suite (u ) défiie par u = La suite (v ) défiie par v = 0,5 +

2 Représetatio graphique : Soit f ue foctio défiie sur [0 ; + [ O défiit ue suite (u ) e posat, pour tout etier aturel, u = f() y u u u 0 C f O dispose, à partir de la courbe représetative de la foctio f, d ue représetatio graphique de la suite (u ) Sur l axe des ordoées, o peut lire les termes u 0, u, u, u 4 u x II Limite : Défiitio : ) Suite ayat ue limite ifiie : O dit qu'ue suite (u ) a pour limite + (respectivemet ) quad ted vers + si pour tout etier aturel p il existe u rag à partir duquel tous les termes de la suite sot supérieurs à 0 p (respectivemet iférieurs à 0 p ) O dit aussi que (u ) ted vers + ou diverge vers + (respectivemet ) O ote lim u = + ou lim (u ) = + (respectivemet lim u = ) (u désige le terme de la suite de rag et (u ) désige la suite) Remarque : Ue suite peut avoir pour tout etier aturel p des termes supérieurs à 0 p sas pour cela tedre vers + Exemple : O cosidère la suite (u ) telle que u = Soit p N u > 0 p > 0 p > 0 p + > 0 p + Ceci sigifie que pour tout etier aturel p, si > 0 p + Exemple : O cosidère la suite (u ) telle que u = Soit p N u < 0 p < 0 p > 0 p > 0 p + Ceci sigifie que pour tout etier aturel p, si > 0 p + lim = + Pour tout ombre etier p strictemet positif, lim p alors u > 0 p doc lim u = + alors u < 0 p doc lim u = = + Défiitio : ) Suite ayat ue limite fiie : O dit qu'ue suite (u ) a pour limite L (u ombre réel) quad ted vers + si pour tout etier aturel p il existe u rag à partir duquel tous les termes de la suite sot à ue distace de L iférieure à 0 p (c'est à dire que u L < 0 p ) O dit aussi que (u ) ted vers L ou ecore que (u ) coverge vers L O ote lim u = L ou lim (u ) = L

3 Remarque : Ue suite peut avoir pour tout etier aturel p des termes à ue distace de L iférieurs à 0 p sas pour cela tedre vers L O cosidère la suite (u ) telle que u = + Soit p N u < 0 p u < 0 p (car u > 0) < 0 p > 0 p Ceci sigifie que pour tout etier aturel p, si > 0 p alors u < 0 p Doc lim u = lim = 0 Pour tout ombre etier p strictemet positif, lim III Suites géométriques : ) Défiitio : p = 0 Ue suite (u ) est géométrique s il existe u ombre réel q tel que, pour tout ombre etier aturel, o ait : u + = q u q est appelé la raiso de la suite géométrique Remarque : Chaque terme est obteu e multipliat par u ombre costat le terme précédet Exemples : - La suite (u ) défiie par u = u 0 ; u ; u ; u ; u 4 ; (u ) est ue suite géométrique de premier terme et de raiso - La suite géométrique (v ) de premier terme v 0 tel que v 0 = et de raiso Applicatio : v 0 ; v ; v ; v ; v 4 ; -6 (u ) 0 défiie par u = est-elle ue suite géométrique? O calcule u u = (ue costate) La suite (u ) est géométrique de raiso et de premier terme u 0 = 4 ) Terme gééral d'ue suite géométrique : Le terme gééral d ue suite géométrique de premier terme u 0 et de raiso q est u = u 0 q

4 Remarque : Si le premier terme de la suite est u, o a : u = u q Plus gééralemet, o a : u = u p q p Exemples : suite géométrique Expressio explicite de (u ) premier terme u 0 = q = u = u 0 q premier terme u = 5 q = u = u = u q u = 5 Coclusio : Pour prouver qu'u suite (u ) est ue suite géométrique, o a deux possibilités : (i) Calculer u + u et motrer qu'il s'agit d'ue costate (qui est la raiso de la suite) (ii) Écrire le terme gééral u e foctio de pour recoaître u = u 0 q ou u = u q ) Limite d ue suite géométrique : (cas où u 0 = et q > 0) : Soit la suite géométrique (u ) de premier terme u 0 = et de raiso q > 0 O s itéresse aux valeurs de u lorsque deviet très grad O admet les résultats suivats : si 0 < q < alors lim q = 0 si q = alors la suite est costate et lim q = u 0 = ; si q > alors lim q = + u = < 4 7 < doc lim u = lim 4 7 = 0 Soit (u ) ue suite géométrique de raiso q et de premier terme u 0 si 0 < q < alors lim u = 0 si q = alors la suite est costate et lim u = u 0 ; si q > alors lim u = + si u 0 > 0 ; lim u = si u 0 < 0 ; lim u = 0 si u 0 = 0

5 4 ) Somme des termes : Si (u ) est ue suite géométrique de raiso q et de premier terme u 0 =, c'est à dire u = q alors : S = u 0 + u + + u = + q + + q = q i S = raisoombre de termes raiso = q+ q Démostratio : S = u 0 + u + u + u + + u S = + q + q + q + + q ( q)s = ( q) + ( q)q + ( q)q + ( q)q + + ( q)q ( q)s = q + q q + q q + q q q q + ( q)s = q + S = q q Corollaire : Preuve : ( i= ) = ( ) + = ( ) + = ( ( ) +) Si (u ) est ue suite géométrique de raiso q et de premier terme u 0, alors : S = u 0 + u + + u = u 0 q q de termes raisoombre S = premier terme raiso S = u 0 + u + + u = u 0 + u 0 q + u 0 q + u 0 q + u 0 q = u 0 ( + q + q + q + + q ) = u 0 q i = u 0 q+ q

Suites arithmétiques et géométriques

Suites arithmétiques et géométriques «I» : Suites arithmétiques 1/ Défiitio Suites arithmétiques et géométriques La suite (u ) est arithmétique de raiso r sigifie que : Pour tout etier aturel : u +1 = u + r Exemple : La suite ( ; 5 ; 8 ;

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

CH5 Algèbre : Suites numériques

CH5 Algèbre : Suites numériques ème Scieces CH5 Algèbre : Suites umériques Décembre 9 A LAATAOUI I Présetatio des suites umériques : Défiitio d ue suite : Ue suite (u ) est ue foctio défiie sur l'esemble N qui à tout etier aturel associe

Plus en détail

Suites numériques 1 / 12 A Chevalley

Suites numériques 1 / 12 A Chevalley MT8 A 03 Suites umériques Aleth Chevalley. Rappels.. Défiitio O appelle suite umérique réelle, toute applicatio f : ϒ qui à tout etier aturel, fait correspodre le ombre réel f() et o désige la suite par

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propriété P() dépedat de l idice Si les propositios ()

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propositio P() dépedat de l etier () la propositio est

Plus en détail

Suites. =3v n pour = 5.

Suites. =3v n pour = 5. Suites 1 Gééralités 11 Défiitio Défiitio : O appelle suite ue foctio sur N ou sur ue partie de N das R Exemples: Les foctios: u : +1 ; v : sot des suites Notatio : Soit u ue suite défiie sur D partie de

Plus en détail

Auteur : Simplice TANKOUA Activités de mise en place de la leçon.

Auteur : Simplice TANKOUA Activités de mise en place de la leçon. Auteur : Simplice TANKOUA (stakoua@yahoofr) Cours SUITES NUMÉRIQUES Leço : GÉNÉRALITÉS SUR LES SUITES Activités de mise e place de la leço Activité : (formule explicite) Exercice O cosidère la liste ordoée

Plus en détail

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal)

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal) Lycée Stedhal (Greoble) Niveau : Termiale S Titre Cours : Chapitre 0 : Les suites Aée : 204-205 «J'aimais et j'aime ecore les mathématiques pour elles-mêmes comme 'admettat pas l'hypocrisie et le vague,

Plus en détail

TS Exercices sur les limites de suites (1)

TS Exercices sur les limites de suites (1) TS Exercices sur les limites de suites () Soit u ue suite géométrique de premier terme u 0 et de raiso q. Das chacu des cas suivats, doer la limite de la suite u. ) u0 ; q ) u 0 ; q ) 0 4 ) u0 6 ; q )

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

FRLT Page 1 15/08/2014

FRLT Page 1 15/08/2014 Algorithmes à aalyser O cosidère l algorithme : - u est du type ombre - q est du type ombre - p est du type ombre - S est du type ombre - Lire u - Lire q - Lire p - S pred la valeur de u - Tat que (u >

Plus en détail

Comportement asymptotique des suites

Comportement asymptotique des suites Comportemet asymptotique des suites Table des matières 1 Itroductio 2 2 Limite d ue suite 2 2.1 Limite fiie d ue suite........................................... 2 2.2 Limite ifiie d ue suite..........................................

Plus en détail

Chapitre 4: Croissance, divergence et convergence des suites

Chapitre 4: Croissance, divergence et convergence des suites CHAPITRE 4 CROISSANCE ET CONVERGENCE 43 Chapitre 4: Croissace, divergece et covergece des suites 4.1 Quelques défiitios Défiitios : Ue suite est croissate si chaque terme est supérieur ou égal à so précédet

Plus en détail

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés Suites umériques. 1. Mode de géératio des suites... p2 4. Le raisoemet par récurrece... p4 2. Relatio de récurrece... p3 5. Ses de variatio des suites... p6 3. Suites arithmétiques, suites géométriques...

Plus en détail

TS Limites de suites (3)

TS Limites de suites (3) TS Limites de suites (3) I. Rappels sur les suites majorées, miorées, borées ) Défiitio (suite majorée, miorée, borée) 5 ) Propriété Si u réel M est u majorat d ue suite u, alors tous les réels supérieurs

Plus en détail

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN LIMITES DE SUITES I Limites fiies ou ifiies Exercice 1 Pour chacue des suites, e calculat différets termes, cojecturer la valeur limite de u quad deviet ifiimet grad (c'est-à-dire quad ted vers + ). 1

Plus en détail

Suites numériques. Généralités. 5 novembre Introduction. Dénitions. Représentation graphique

Suites numériques. Généralités. 5 novembre Introduction. Dénitions. Représentation graphique Suites umériques 5 ovembre 009 I Gééralités Itroductio Exemple 1. [Si vous travaillez chaque mois, vous recevez u salaire : u ombre.] Juillet oût Septembre Octobre Novembre Décembre Javier Février Mars

Plus en détail

SUITES. I. Suites géométriques. 1) Définition

SUITES. I. Suites géométriques. 1) Définition SUITES I Suites géométriues ) Défiitio Exemple : Cosidéros ue suite umériue (u ) où le rapport etre u terme et so précédet reste costat et égale à 2 Si le premier terme est égal à 5, les premiers termes

Plus en détail

EXERCICES SUR LES SUITES NUMERIQUES

EXERCICES SUR LES SUITES NUMERIQUES EXERCICES SUR LES SUITES NUMERIQUES 1 Etudier la mootoie des suites a ) 0 défiies par : a) a = b) a = + 1) + ) + ) c) a =! d) a = α + 1) α réel positif) Soit a, la suite de terme gééral a = 3 + 1 3 + Trouver

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

12 Cours - Suites.nb 1/11. Suites

12 Cours - Suites.nb 1/11. Suites 12 Cours - Suites.b 1/11 Suites I) Gééralités 1) Défiitio 2) Notatio 3) Commet peut être défiie ue suite 4) Suites et ordre 5) Propriété vraie à partir d u certai rag 6) Exercice 7) Suites arithmétiques,

Plus en détail

1. Limite d'une suite... p2. Suites convergentes

1. Limite d'une suite... p2. Suites convergentes Suites covergetes 1.... p2 4. Cas particuliers... p9 2. Limites et comparaiso... p6 5. Suites mootoes... p11. Opératios sur les limites... p7 1. Limite d'ue suite 1.1. Limite ifiie a) Défiitios O dit que

Plus en détail

( ) ( ) ( ) ( 4) Terminale S Exercices sur le chapitre «Suites numériques» Page 1. deux nombres réels. Initialisation Récupérer la valeur de M

( ) ( ) ( ) ( 4) Terminale S Exercices sur le chapitre «Suites numériques» Page 1. deux nombres réels. Initialisation Récupérer la valeur de M Termiale S Exercices sur le chapitre «Suites umériques» Page Exercice : O cosidère la suite ( p ) défiie sur N par ) O cosidère l algorithme suivat : Variables u etier aturel et deux ombres réels Iitialisatio

Plus en détail

Synthèse de cours PanaMaths (TS) Suites numériques

Synthèse de cours PanaMaths (TS) Suites numériques Sythèse de cours PaaMaths (TS) Suites umériques Das ce chapitre, le terme «suite» désige ue suite umérique (c'est-à-dire, das le cadre du programme de Termiale S, ue suite de réels). Ue telle suite sera

Plus en détail

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées Termiale S Ch1 SUITES PARTIE 1 récurrece et suites borées Das tout le chapitre, les etiers cosidérés sot aturels, c'est-à-dire positifs ouls I Raisoemet par récurrece 1 / Itroductio Exercice 1 : soit u

Plus en détail

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 )

) sur l axe des abscisses ( on tracera les droites d équations y = x et y = x + 1 ) Exercice Suites umériques u O cosidère la suite ( u ) défiie pour tout par u = et u = + u + O admettra que pour tout etier aturel, u >. a) Calculer u et u b) Cette suite est-elle arithmétique? Est-elle

Plus en détail

CHAPITRE IV. Rappels et compléments sur les suites

CHAPITRE IV. Rappels et compléments sur les suites CHPITRE IV Rappels et complémets sur les suites SUITES NUMÉRIQUES 1 Sommaire I Notio de suite...................................... 30 Exemples.......................................... 30 B Défiitio..........................................

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TermS Limites de suites et de foctios I ] Suites ) Défiitio : Ue suite réelle est ue foctio de! das!, défiie à partir d'u certai rag 0. Notatio : u = lire "u idice " = terme d'idice, ou de rag = terme

Plus en détail

SUITES ARITHMÉTIQUES ET GÉOMÉTRIQUES

SUITES ARITHMÉTIQUES ET GÉOMÉTRIQUES SUITES ARITHMÉTIQUES ET GÉOMÉTRIQUES Cours Première S Suites arithmétiues ) Défiitio par récurrece Défiitio : O dit u ue suite ( u ) est ue suite arithmétiue, s il existe u réel r tel ue pour tout etier

Plus en détail

Limite d'une suite. soit n > 9

Limite d'une suite. soit n > 9 Limite d'ue suite I) Limite d'ue suite : a) ite ifiie : défiitio : Ue suite (u ) a pour ite + quad ted vers + si tout itervalle de la forme ]A; +[ (A état u réel) cotiet tous les termes u à partir d'u

Plus en détail

Les suites. Suite définie par une fonction (= Suites définies en fonction du rang n (du type ;

Les suites. Suite définie par une fonction (= Suites définies en fonction du rang n (du type ; Les sites Rappel : désige l esemble des etiers atrels, ;;;; UNE SUITE DE NOMBRES REELS EST UNE LISTE ORDONNEE DE NOMBRES REELS, FINIE OU INFINIE I ) Gééralités Notio de site Défiitio : Ue site est e foctio

Plus en détail

Exercices sur les suites v 0 = 1 On considère la suite numérique ( v n ) définie pour tout entier naturel n par 9.

Exercices sur les suites v 0 = 1 On considère la suite numérique ( v n ) définie pour tout entier naturel n par 9. Liba 13 v 0 = 1 O cosidère la suite umérique ( v ) défiie pour tout etier aturel par 9 v +1 = 6 v Partie A 1 O souhaite écrire u algorithme affichat, pour u etier aturel doé, tous les termes de la suite,

Plus en détail

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques Chapitre Rappels sur les suites arithmétiques et les suites géométriques Nous allos ici rappeler les différets résultats sur les suites de ombres réels qui sot des suites arithmétiques ou des suites géométriques

Plus en détail

Chapitre 1 METHODES SUR LES SUITES

Chapitre 1 METHODES SUR LES SUITES Chapitre 1 METHODES SUR LES SUITES Nous allos voir commet : 1) Cojecturer le comportemet d ue suite ) Raisoer par récurrece 3) Utiliser les suites arithmétiques et géométriques 4) Étudier le comportemet

Plus en détail

TD 2 : Suites numériques réelles

TD 2 : Suites numériques réelles Uiversité Paris-Est Mare-la-Vallée Licece L Maths/Ifo d semestre 0/0 Aalyse TD : Suites umériques réelles Exercice Cours) Motrer que si ue suite réelle u ) N coverge, alors toute sous-suite de u ) coverge

Plus en détail

Cours I : SUITES NUMERIQUES. I Quelques rappels

Cours I : SUITES NUMERIQUES. I Quelques rappels Agrocampus Ouest ENIHP ère aée p. Cours I : SUITES NUMERIQUES / Défiitio I Quelques rappels Défiitio : Ue suite u est ue applicatio de l esemble N ou ue partie de N das R qui à chaque élémet de N associe

Plus en détail

Fiche 8 : Fonctions II. Limites

Fiche 8 : Fonctions II. Limites Uiversité Paris-Est Val-de-Mare Créteil DAEU-B Fiche 8 : Foctios II. Limites Das la fiche 7 "Foctios I", o a vu la défiitio d ue foctio et différetes otios afféretes. E particulier, o a travaillé sur le

Plus en détail

s'exprime en fonction de u 10. Calculer u n ). u et on étudie son signe. = 2. Déterminer le sens de variation de cette suite.

s'exprime en fonction de u 10. Calculer u n ). u et on étudie son signe. = 2. Déterminer le sens de variation de cette suite. Première S / mathématiques Préparatio Termiale S Mme MAINGUY Défiir ue suite umérique Sythèse Ê SUITES NUMÉRIQUES u s'exprime e foctio de Cette suite est défiie par u = f ( ) Ê par ue formule explicite

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM FACULTE DES SCIENCES ET TECHNIQUES. UHA MULHOUSE L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM Chapitre 2 Séries etières Cotets. Gééralités sur les séries etières 2.. Défiitio

Plus en détail

Comportement asymptotique

Comportement asymptotique Comportemet asymptotique NB: Les phrases écrites etre guillemets e italique sot écessaires à la compréhesio de la otio de ite, mais sot peu utilisées das la pratique où l o fait plutôt appel au propriétés

Plus en détail

SUITES (Partie 2) = 3u n. et u 0. q n na (inégalité de Bernoulli), a pour limite car lim 4 n = +.

SUITES (Partie 2) = 3u n. et u 0. q n na (inégalité de Bernoulli), a pour limite car lim 4 n = +. SUITES (Partie ) I Comportemet à l'ifii d'ue suite géométrique ) Rappel Défiitio : Ue suite (u ) est ue suite géométrique s'il existe u ombre q tel que pour tout etier, o a : u + = q u Le ombre q est appelé

Plus en détail

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série.

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série. Les calculatrices sot autorisées **** NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio Si u cadidat est ameé à repérer ce qui peut lui sembler

Plus en détail

Comportement d une suite

Comportement d une suite CHAPITRE 6 Comportemet d ue suite ACTIVITÉS Activité L aire ajoutée (celle d u carré compese exactemet l aire elevée a p 6 ; p 5 ; p 6 6 b La suite (p est géométrique de raiso car la logueur de la lige

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

» car lim 3n 2 8=+ et lim 2 n 2 +5=+

» car lim 3n 2 8=+ et lim 2 n 2 +5=+ TS. 2014/2015. Lycée Prévert. Corrigé du devoir commu du premier trimestre. Durée : heures. Vedredi 14/11/2014 Exercice 1 : ( 7 pts). A ) Étudier les limites suivates : a) lim 2 8 2 2 +5. Il s'agit d'ue

Plus en détail

LES SUITES NUMERIQUES

LES SUITES NUMERIQUES LES SUITES NUMERIQUES I. Défiitio - Vocablaire - Notatios O appelle site mériqe tote foctio d'e partie P o ide de, das est le terme d'idice de la site. C'est l'image par de (o arait p la oter () mais est

Plus en détail

LOGARITHME NÉPÉRIEN. Définition. Propriétés. Exercice 01. Remarque ( voir animation ) Remarques. (voir réponses et correction)

LOGARITHME NÉPÉRIEN. Définition. Propriétés. Exercice 01. Remarque ( voir animation ) Remarques. (voir réponses et correction) LOGARITHME NÉPÉRIEN Exercice 0 ) E utilisat la courbe de la foctio expoetielle dessiée ci-cotre, détermier u ecadremet au dixième du réel a tel que e a = 7 ) E faisat avec la calculatrice u tableau de

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k SÉRIES NUMÉRIQUES K désige le corps R ou C. Gééralités. Défiitios Défiitio. Série Soit (u ) 0 ue suite umérique (i.e. à valeurs das K). O appelle série de terme gééral u la suite (S ) 0 où 0, S = u k Cette

Plus en détail

TS DEVOIR n 3 lundi 13 novembre lim x. 1. Lire dans le tableau les limites de f en et en +. En déduire une asymptote à la courbe de f.

TS DEVOIR n 3 lundi 13 novembre lim x. 1. Lire dans le tableau les limites de f en et en +. En déduire une asymptote à la courbe de f. TS DEVOIR 3 ludi 3 ovembre 207 sur 4,5 poits Calculer les trois ites suivates : a) 3x 4 x x 2 x b) 2si( x) x x c) 8x 5 x 2 x 3 2 sur 3,5 poits Soit f ue foctio défiie sur dot o doe ci-dessous le tableau

Plus en détail

Calculer la raison d une suite arithmétique dont la somme des trois premiers termes est 18 et e septiemme terme est 19

Calculer la raison d une suite arithmétique dont la somme des trois premiers termes est 18 et e septiemme terme est 19 Suites EXERCICE N 1 O cosidère la suite ( u ) défiie par : Pour tout etier aturel : u = 2-2 a) Calculer u 1,u 2,u 3 et u 4 b) Calculer pour tout etier aturel u +1, u +1, (u ) 2, u 2, u 2+3,u 2 +3 EXERCICE

Plus en détail

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π.

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π. Quelques repères historiques SUITES NUMERIQUES Archimède a défii das les aées 220 avat J.-C. deux suites permettat d'obteir de très boes valeurs approchées de π. Héro d'alexadrie au premier siècle après

Plus en détail

Chapitre 5 : Matrices et suites. matrices colonnes dont les coefficients sont les suites numériques ( ) n définies pour tout entier naturel n par u n

Chapitre 5 : Matrices et suites. matrices colonnes dont les coefficients sont les suites numériques ( ) n définies pour tout entier naturel n par u n Chapitre 5 : Matrices et suites I Suites de matrices coloes Exemples La suite ( U ) défiie pour tout etier aturel par U = est ue suite de 3 + v matrices coloes dot les coefficiets sot les suites umériues

Plus en détail

Etude d une limite de suite

Etude d une limite de suite Etude d ue ite de suite I) Limites de suite usuelle ) Suites de référece de ites fiies + + + = 0 = 0 2 = 0 et plus gééralemet o a : + p = 0 avec p N 2) Suites de référece de ites ifiies = + + = + + + 2

Plus en détail

4 ème aée Maths Limites Cotiuité et dérivabilité Octobre 9 A LAATAOUI Eercice : La figure ci cotre est la représetatio graphique d ue foctio f défiie et cotiue sur IR O ote que (ζf) admet au voisiage de

Plus en détail

On considère qu une suite admet une limite l, ou converge vers l, lorsque :

On considère qu une suite admet une limite l, ou converge vers l, lorsque : I. Gééralités sr les limites de sites. Site covergete O cosidère q e site admet e limite l, o coverge vers l, lorsqe : tot itervalle overt coteat l cotiet tos les termes de la site à partir d certai rag.

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k. Exo7 Suites et séries de foctios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN FONCTION LOGARITHME NÉPÉRIEN Cours Termiale S La foctio logarithme épérie O a vu das u chapitre précédet que la foctio epoetielle est cotiue et strictemet croissate sur R et que l image de R par cette

Plus en détail

Chapitre 13 Comportement d une suite. Table des matières. Chapitre 13 Comportement d une suite TABLE DES MATIÈRES page -1

Chapitre 13 Comportement d une suite. Table des matières. Chapitre 13 Comportement d une suite TABLE DES MATIÈRES page -1 Chapitre 13 Comportemet d ue suite TABLE DES MATIÈRES page -1 Chapitre 13 Comportemet d ue suite Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

EXERCICES SUR LES SUITES NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique

EXERCICES SUR LES SUITES NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique EXERCICE : EXERCICES SR LES SITES NMÉRIQES Site MathsTICE de Adama Traoré Lycée Techique I) r désigat respectivemet le premier terme, le ième terme, la raiso et la somme des premier termes d ue suite arithmétique,

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

SERIES NUMERIQUES réelles ou complexes

SERIES NUMERIQUES réelles ou complexes UE7 - MA5 : Aalyse SERIES NUMERIQUES réelles ou complexes I. Gééralités Défiitio Etat doée ue suite (u ) de ombres réels ou complexes, o appelle série de terme gééral u la suite (S ) défiie par : () S

Plus en détail

CHAINES DE MARKOV. de variables aléatoires définies sur le même espace probabilisé, TPà, valeurs dans un ensemble fini E telles que, pour tout n tout

CHAINES DE MARKOV. de variables aléatoires définies sur le même espace probabilisé, TPà, valeurs dans un ensemble fini E telles que, pour tout n tout COURS CHAIES DE MARKOV Défiitio O appelle chaîe de Marov toute suite de variables aléatoires défiies sur le même espace probabilisé, TPà, valeurs das u esemble fii E telles que, pour tout tout i, i,, i

Plus en détail

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1 Correctio Exercice 1 O cosidère la suite (v ) défiie par v 0 = 3 et pour tout 1, v +1 = v 2 3v +4. 1. Démotrer que la suite est croissate. v +1 v = v 2 4v +4 = (v 2) 2 0 quelque soit etier. Doc (v ) est

Plus en détail

Chap2 Les suites : Raisonnement par récurrence limites de suites

Chap2 Les suites : Raisonnement par récurrence limites de suites I Rappels de première Chap2 Les suites : Raisoemet par récurrece limites de suites II Suites majorées, miorées, borées Défiitios : O dit qu ue suite ( u ) est majorée lorsqu il existe u réel M tel que

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( )

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( ) Termiale S Chapitre : Foctios, cotiuité et TVI Page sur 5 Ce que dit le programme : Défiitio Soiet f ue foctio défiie sur u itervalle I de R et a = O dit que f est cotiue e a si lim f x f a O dit que f

Plus en détail

Compléments sur les suites Suites adjacentes

Compléments sur les suites Suites adjacentes DERNIÈRE IMPRESSION LE 7 février 07 à 6:3 Complémets sur les suites Suites adjacetes I Ecadremet d ue suite EXERCICE ) Motrer que pour tout k N et pour tout x [k ; k+], o a : k+ k+ k x dx k ) O pose u

Plus en détail

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S

BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S Lycée Fraçais d Agadir Termiales SA SB 216-217 BACCALAURÉAT BLANC GÉNÉRAL MATHÉMATIQUES SÉRIE S DUREE DE L EPREUVE : 4 HEURES Utilisatio de la calculatrice autorisée Ce sujet comporte 7 pages umérotées

Plus en détail

Fiche 2 : Les fonctions

Fiche 2 : Les fonctions Nº : 300 Fiche : Les foctios Calculer des limites O commece par aalyser f (). Peut o directemet appliquer l u des théorèmes du cours (limites et opératios, théorèmes de comparaiso)? Das la égative, il

Plus en détail

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne.

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne. 1 Séries umériques Das toute cette sectio, si cela est pas précisé, E désigera l espace R m, m 1, et la orme euclidiee. 1.1 Gééralités Défiitio 1.1. Soit (x ) N ue suite de E et pour chaque N, o défiit

Plus en détail

1 Propriétés - Suites monotones

1 Propriétés - Suites monotones Uiversité d Aix-Marseille Licece de Mathématiques Semestre 06-07 Aalyse Plache - Suites umériques Propriétés - Suites mootoes Exercice Soiet les suites défiies, pour tout, par u = et v = Vérifier qu elles

Plus en détail

a quand n tend vers plus l infini. d. Interpréter le résultat précédent en terme de nombre d abonnements de type A.

a quand n tend vers plus l infini. d. Interpréter le résultat précédent en terme de nombre d abonnements de type A. Liba Jui 23 Série ES Exercice U théâtre propose deux types d aboemets pour ue aée : u aboemet A doat droit à six spectacles ou u aboemet B doat droit à trois spectacles. O cosidère u groupe de 2 5 persoes

Plus en détail

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand?

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand? Exercice : Détermier la limite de chaque suite (u ). a) u = si π b) u = () c) u = + d) 0,5 + cos(π) Exercice 2 : la costate d Apéry Pour tout etier, u = 3 + + 2 3 +. + 3 ) Doer u miorat de cette suite.

Plus en détail

Premières S A et S C : pour s entraîner pour le devoir n 8

Premières S A et S C : pour s entraîner pour le devoir n 8 Premières S A et S C : por s etraîer por le devoir 8 Savoirs et savoir faire (oveax depis le DS7) : Barycetres das l espace : Démotrer qe des poits sot coplaaires à l aide de barycetres Savoir détermier

Plus en détail

Cours de Mathématiques : Polynômes et Suites

Cours de Mathématiques : Polynômes et Suites Uiversité de Cergy-Potoise Départemet de Mathématiques L MIPI - S2 205/206 Cours de Mathématiques : Polyômes et Suites - Polycopié d Exercices Chapitre : Nombres complexes Exercice a) Détermier la partie

Plus en détail

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013 Master Métiers de l Eseigemet, Mathématiques - ULCO, La Mi-Voix, 202/203 ANALYSE 2 Fiche de Mathématiques 4 - Séries umériques Soit E u espace vectoriel sur le corps K = R ou C Pour toute famille fiie

Plus en détail

Chapitre 6 Théorèmes de convergence

Chapitre 6 Théorèmes de convergence Chapitre 6 Théorèmes de covergece 1. La covergece e loi O a déjà recotré ue covergece e loi lors de l approximatio d ue loi biomiale par ue loi de Poisso. Ce problème se place das u cadre plus gééral où

Plus en détail

1.Définition. L image par f de l entier n est le terme général de la suite noté : u n = f(n).

1.Définition. L image par f de l entier n est le terme général de la suite noté : u n = f(n). SUITES ET SERIES SUITES 1.Défiitio O appelle site esemble de ombres 1, 2,... défiis das l ordre croissat et vérifiat certaies règles de défiitio. Chaqe ombre de la site s appelle terme, est par exemple

Plus en détail

Cours 4 SUITES DE NOMBRES RÉELS

Cours 4 SUITES DE NOMBRES RÉELS Cours 4 SUITES DE NOMBRES RÉELS A/ GÉNÉRALITÉS 1. Défiir ue suite de ombres réels Ue suite u de ombres réels, est ue foctio défiie sur N qui, à chaque etier aturel, associe u ombre oté u. Ce ombre u s

Plus en détail

BA + DB. Métropole La Réunion septembre 2008

BA + DB. Métropole La Réunion septembre 2008 étropole La Réuio septembre 008 EXERCICE 4 poits Commu à tous les cadidats Das ue kermesse u orgaisateur de jeu dispose de roues de 0 cases chacue. La roue comporte 8 cases oires et cases rouges. La roue

Plus en détail

UNIVERSITE D ANGERS Mathematiques L2. Devoir. Corrigé sur le web le 31/10/2014

UNIVERSITE D ANGERS Mathematiques L2. Devoir. Corrigé sur le web le 31/10/2014 UNIVERSITE D ANGERS Mathematiques L. Devoir. Corrigé sur le web le 1/10/014 O traitera au choix l u des deux exercices ou. Exercice 1 : ci-dessous : Détermier la ature de chacue des 6 séries dot le terme

Plus en détail

Limites de suites, cours, terminale S

Limites de suites, cours, terminale S Limites de suites, cours, termiale S Covergece de suites Déitio : Soit (u ) ue suite. O dit que (u ) coverge vers u réel l ou a pour limite l lorsque tout itervalle ouvert A coteat l, cotiet tous les termes

Plus en détail

Chapitre 5 Les suites Chapitre 5 Les suites. N dans R, donc si U est une telle suite, on aura : est le n ème terme de la suite.

Chapitre 5 Les suites Chapitre 5 Les suites. N dans R, donc si U est une telle suite, on aura : est le n ème terme de la suite. ECG JP A 00-00 F. FRANZOSI & A. WENGER http://math.aki.ch 5. Défiitio et gééralités Défiitio : Ue suite réelle est ue applicatio de * N das R, doc si U est ue telle suite, o aura : U : N * R U ( ) U U

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Comparaiso des suites Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

I- Nombre dérivé de f en a

I- Nombre dérivé de f en a I- Nombre dérivé de f e a Défiitio 1: Soit f ue foctio défiie sur u itervalle I, a I et h R* tel que a+h I f est dérivable e a I, si, et seulemet si, ( a + h) f ( a) Cette limite est le ombre dérivé de

Plus en détail

Fiche N 8 : Matrices.

Fiche N 8 : Matrices. Lycée Paul Gaugui CPGE-EC1 Aée 014/015 Fiche N 8 : atrices Gééralités sur les matrices atrices : Défiitios O appelle matrice à liges et p coloes tout tableau rectagulaire de ombres réels à liges et p coloes

Plus en détail

Mardi 10 janvier h-13h

Mardi 10 janvier h-13h Mardi javier 27 8h-3h Il sera teu compte de faco importate de la qualité de la rédactio et de l argumetatio. E particulier, répodre juste à ue questio est valorisé, répodre faux est péalisé et e pas répodre

Plus en détail

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

Leçon 9 Les suites réelles

Leçon 9 Les suites réelles Leço 9 Les suites réelles C est ue leço importate qui se prologera e termiale et souvet, il y a u exercice à faire au BAC sur les suites. Il est très importat de bie compredre au début les otatios., 5,8

Plus en détail

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004 3 octobre 2004 Exemple 2. O se doe a I et q C(I, K). L équatio différetielle liéaire : y (x) q(x) y(x) = 0 avec les coditios y(a) = α, y (a) = β SUITES ET SÉRIES DE FONCTIONS PC*2 3 octobre 2004 Admet

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

Soit n un entier supérieur ou égal à 0. On note b n la proportion des adhérents ayant un abonnement de type. l année n.

Soit n un entier supérieur ou égal à 0. On note b n la proportion des adhérents ayant un abonnement de type. l année n. Amérique du Nord Mai 1 Série ES Exercice U club de sport propose à ses adhérets deux types d aboemets : l aboemet de type A qui doe accès à toutes les istallatios sportives et l aboemet de type B qui,

Plus en détail

DEVOIR COMMUN. Terminales S. Mathématiques. Candidats non spécialistes

DEVOIR COMMUN. Terminales S. Mathématiques. Candidats non spécialistes Jeudi 20 javier 2011 DEVOIR COMMUN Termiales S Mathématiques Cadidats o spécialistes Le sujet comporte 4 exercices. Ue feuille aexe est à redre complétée avec les copies. L'usage du téléphoe portable 'est

Plus en détail

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème

Exercices. Limites de suites. Limite d une suite Dans les exercices suivants, déterminer la limite de la suite (u n ) en précisant le théorème Exercices Limites de suites Exercice Limite d ue suite Das les exercices suivats, détermier la limite de la suite (u ) e précisat le théorème utilisé. ) u = + + + + ) u = cos(), N 3) u = + cos 4 3 4) u

Plus en détail

Suites numériques. I/ Définition, propriétés globales Résumé du cours de MPSI

Suites numériques. I/ Définition, propriétés globales Résumé du cours de MPSI Ξ 2 Suites umériques 2016-2017 Résumé du cours de MPSI I/ Défiitio, propriétés globales 1/ Défiitio Ue suite de complexes u est ue applicatio de N das C Notatios : L'image d'u etier par u se ote u( ou

Plus en détail

P U n est une suite géométrique.

P U n est une suite géométrique. Notre Dame de La Merci Exercices sur les suites arithmético-géométriques CORRIGES e deuxième partie Exercice : Das u pays, u orgaisme étudie l évolutio de la populatio Compte teu des aissaces et des décès,

Plus en détail

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4 Atilles-Guyae septembre 5 EXERCICE 6 POINTS Commu à tous les cadidats 6 poits Soit u etier aturel o ul. O cosidère la foctio f défiie et dérivable sur l esemble des ombres réels par f (x) = x e x O ote

Plus en détail