LE Chapitre I : Rappels généraux. Chapitre 13 Les câbles

Dimension: px
Commencer à balayer dès la page:

Download "LE Chapitre I : Rappels généraux. Chapitre 13 Les câbles"

Transcription

1 E Chapitre I : appes générau. Chapitre 3 es câbes

2 38 Cacuer une structure : de a théorie à 'eempe Iustration au recto et photos ci-dessous : Mât haubané de mètres servant de soutien au tieu cassé de Doyon en Begique, pusieurs fois centenaire. Conception, ingénieur consei : Pierre atteur, 4-5. Croquis : Dominique angendries.

3 Chapitre 3. es câbes 39. INTODUCTION es câbes sont utiisés notamment pour es ponts suspendus ou haubanés, es pyônes haubanés, es couvertures suspendues ou es contreventements. es torons sont des assembages de fis métaiques enroués héicoïdaement autour d'un fi centra et constitués d'acier à très haute imite d'éasticité atteignant pusieurs fois cee de 'acier traditionne de charpente. Is peuvent contenir des centaines de fis et atteindre des imites de rupture de pusieurs centaines de tonnes. eur modue d'éasticité intrinsèque E c est pus petit que ceui du matériau acier à cause de 'enrouement des fis en héice : une vaeur de 7. [MPa] n'est pas rare. es câbes sont constitués d'un ensembe de torons aignés (on pare de câbes à torons paraèes) ou enroués autour d'une âme centrae métaique ou tetie (on pare aors de cordages). es cordages possèdent un modue d'éasticité intrinsèque encore pus faibe, qui peut être inférieur à 4. [MPa]. Fi métaique centra Toron Fi métaique périphérique Toron Cordage Âme métaique ou tetie Câbe à torons paraèes Ensembes de torons enroués : cordages Dans e cadre de cet ouvrage nous parerons toujours de câbe, indépendamment des distinctions ci-dessus. e cacu eact d'une structure composée de câbes est souvent aborieu pour une raison évidente : contrairement au structures à ééments rigides, a géométrie déformée d'un câbe après chargement est très différente de sa géométrie initiae. Cette particuarité a une doube conséquence : d'une part, e principe de superposition n'est pus appicabe et, d'autre part, e cacuateur ne peut pus se baser sur a géométrie de a structure non chargée pour écrire es équations d'équi-

4 3 Cacuer une structure : de a théorie à 'eempe ibre comme i a 'habitude de e faire pour es structures cassiques (dans a mesure où 'on peut négiger es effets du second ordre, voir chapitre, ).. GÉNÉAITÉS SU A STATIQUE DES CÂBES.. a paraboe et a chaînette 'arc funicuaire et e câbe sont des structures anaogues. En effet, pour une même géométrie et un même chargement, es efforts qui y règnent ne diffèrent que par eur signe : 'arc est en compression tandis que e câbe est en traction. Par aieurs, dans e chapitre reatif au arcs funicuaires, a géométrie paraboique a été cairement distinguée de a chaînette (chap., 5) : a paraboe est e funicuaire d'une charge uniformément répartie par unité de ongueur horizontae, par eempe un tabier suspendu (on négige e poids propre du câbe et des suspentes) : Charge distribuée de type : Paraboe q horiz [kn/m] uniforme a chaînette est e funicuaire d'une charge uniformément répartie par unité de ongueur prise e ong du câbe, comme son poids propre éventueement combiné à une couverture directement accrochée au câbe : Charge distribuée de type : Chaînette q horiz [kn/m] variabe

5 Chapitre 3. es câbes 3 Dans a suite de ce chapitre, on parera d'une charge distribuée de type orsque a charge est uniformément distribuée par unité de ongueur horizontae (paraboe) et d'une charge distribuée de type dans 'autre cas (chaînette)... es équations d'équiibre eterne et e cacu des réactions d'appui Nous ne considérons ici que es câbes soumis à des charges verticaes. Dans ce cas es deu réactions horizontaes sont forcément égaes mais de sens opposés. Par aieurs, es deu réactions d'appui verticaes peuvent être différentes si es charges sont dissymétriques ou es appuis à des niveau différents. 'équation d'équiibre horizonta servant à prouver que es deu réactions horizontaes sont égaes, trois équations sont encore nécessaires. En pus de 'équation d'équiibre vertica et de cee d'équiibre des moments par rapport à 'un des appuis, on peut encore profiter du fait que e moment féchissant est nu en tout point du câbe pour étabir une seconde équation d'équiibre des moments, par eempe par rapport au point e pus bas du câbe. Toutes es réactions d'appui peuvent aors être cacuées..3. Constance de a composante horizontae de 'effort de traction Si es charges sont verticaes, es deu réactions horizontaes sont égaes et de sens opposés. 'équiibre des efforts horizontau sur tout tronçon du câbe montre aors que a composante horizontae N de 'effort de traction qui y règne est constante et égae à a réaction d'appui horizontae. Cette propriété est aussi vaabe pour es câbes soumis à une charge distribuée. A N C ste A Q N N B VB Q Q Q 3

6 3 Cacuer une structure : de a théorie à 'eempe Structure de a toiture de a gare de euven, Begique. Photo du dessus : câbe de contreventement des arcs métaiques supportant a couverture de a gare, vu de a naissance des arcs en tête de pie. Photo du dessous : accrochage de ces mêmes câbes en tête de pie. (Architectes et ingénieurs Samyn and Partners avec e bureau d'études Setesco; photos de 'auteur, 4).

7 Chapitre 3. es câbes Câbe droit effort infini a réaction d'appui horizontae d'un câbe dont es appuis sont au même niveau, de portée, de fèche et soumis à une charge répartie q, est égae à cee de 'arc (chap., 3.), soit q /(8). De ce fait, si e câbe est de pus en pus tendu, a fèche du câbe diminue et e dénominateur de 'epression précédente tend vers zéro. I est donc impossibe de rendre un câbe compètement droit puisqu'i faudrait pour cea ui appiquer une traction infinie..5. Modue d'éasticité seon a corde d'un câbe très tendu Par corde, on entend a droite joignant es appuis. Comme epiqué au, 'enrouement en héice est responsabe du fait que e modue d'éasticité intrinsèque E c d'un câbe est pus petit que e modue d'éasticité E du matériau. Dans certains cas, un autre phénomène doit aussi être pris en compte dans 'évauation du modue d'éasticité. En effet, orsque des câbes sont utiisés comme des barres de treiis destinées uniquement à reprendre des efforts normau, is sont fortement tendus entre deu points. C'est e cas des câbes de ponts haubanés, de ceu des pyônes haubanés ou de certains contreventements. Dans de tees situations, ces câbes, horizontau ou obiques, sont si tendus que 'œi pourrait faire croire qu'is sont parfaitement droits. En réaité, eur poids propre eur donne une déformée inévitabe : is se comportent aors comme des ééments droits, mais dont e modue d'éasticité est inférieur au modue d'éasticité intrinsèque E c du câbe. I est dès ors utie de définir un modue d'éasticité pris seon a corde du câbe (c'est-à-dire seon a droite joignant ses appuis), noté E corde, et qui est aors fonction à a fois du modue d'éasticité intrinsèque E c du câbe et de a contrainte qui y règne. Soit a ongueur d'un câbe tendu entre deu appuis. En supposant dans un premier temps qu'i est inetensibe (modue d'éasticité E du matériau infini), i est possibe de e tendre davantage par un suppément d'effort N, aant de pair avec un écartement de ses appuis éga à. Corde N e câbe de section A se comporte aors comme une barre dont e modue d'éasticité apparent vaut (on utiise ici a oi de ooke, voir chap., 7) :

8 34 Cacuer une structure : de a théorie à 'eempe E app ( N A) ( ) Comme e modue d'éasticité intrinsèque E c du câbe n'est pas infini (i vaut, par eempe, 7. [MPa]), e modue seon sa corde vaut finaement : Ec Eapp Ecorde < Ec < E E c app E.6. Tronçon soumis à 'effort de traction maima Comme a composante horizontae de 'effort de traction doit rester constante (voir.3), c'est e tronçon e pus inciné qui est soumis au pus grand effort de traction. C'est donc à 'un des deu appuis (et pas nécessairement au pus éevé) que cet effort sera maimum..7. Théorème d'anaogie avec a poutre N N C ste Ce théorème, égaement utie pour a recherche des formes funicuaires des arcs (voir chapitre, 7.5), est d'une importance capitae pour a résoution de certains probèmes iés au câbes. I postue que a forme du câbe est a même que cee du diagramme des moments d'une poutre de même portée soumise au mêmes charges. I s'énonce comme suit : Soit un câbe soumis à un cas de charge queconque (charges ponctuees et/ou distribuées) : V C V C D y Q n Q i Q i Q Q i Q n V P M V P

9 Chapitre 3. es câbes 35 soit a réaction d'appui horizontae; soit a distance verticae entre un point du câbe et a droite joignant ses appuis (définie par e terme corde); soit M e moment féchissant, au même point, d'une poutre isostatique de même portée que e câbe et supportant es mêmes charges. Aors on a : M Cette propriété se démontre aisément comme suit :. Équiibre des coupes etérieurs par rapport à 'appui droit, respectivement pour a poutre et e câbe : Poutre : Câbe : V V P C n i Q i D ( ) n i i Q i ( ) i V P V C D []. e moment en tout point (,y) du câbe est nu. En y faisant 'équiibre de rotation du tronçon situé à gauche de ce point, on obtient : i C y Qi i j ( ) V [] 3. e moment M en toute abscisse de a poutre vaut, en considérant e tronçon situé à gauche de cette abscisse : M V P i j ( ) Qi i [3] En éiminant e terme de somme entre [] et [3], on trouve : M ( V V ) y P C En éiminant de cette reation e terme ( V ) P C V à partir de [], on obtient : D y M ou encore : M (CQFD) emarquons que a démonstration est à peu de choses près identique si e câbe est soumis à des charges réparties, combinées ou non à des charges ponctuees.

10 36 Cacuer une structure : de a théorie à 'eempe.8. Un câbe peut-i reprendre de a compression? a réponse est : oui, s'i est précontraint, c'est-à-dire s'i est déjà e siège d'un effort de traction. Effort horizonta Q En effet, supposons un mât stabiisé par des barres obiques rigides. Compression : Traction : α orsqu'on appique un effort horizonta Q en tête, a barre de droite,5q/sinα,5q/sinα est tendue et cee de gauche comprimée, comme 'iustre a figure ci-contre. Supposons maintenant que es deu barres obiques soient des câbes. Ceui de gauche ne peut reprendre 'effort de compression car i se détend compètement. e mât subit aors un effort de compression Q/tgα et e câbe de droite un effort de traction pus grand, éga à Q/sinα. Cette situation est évidemment à proscrire car en pus, un câbe ne peut jamais être détendu pour des raisons de fatigue des assembages. Si on eerce uniquement une prétension (précontrainte) dans es deu câbes, par eempe via un dispositif à tendeur pacé à eurs appuis, on obtient es efforts suivants : Prétension P Effort de compression dans e mât : Pcosα α Prétension P Si maintenant a charge horizontae de tête s'appique en pus de a précontrainte, et pour autant que cette dernière soit suffisamment grande, on constate que e câbe de gauche n'est pus détendu mais qu'i peut cette fois reprendre un effort de compression éga à,5q/sinα, eactement comme une barre droite de même facteur EA e ferait : Effort horizonta Q Avec P>,5Q/sinα Traction : P,5Q/sinα α Traction : P,5Q/sinα Effort de compression dans e mât : Pcosα

11 Chapitre 3. es câbes Contrôe de a mise en tension dans un câbe Nombreuses sont es situations où on a besoin de mettre des câbes sous tension et de connaître avec eactitude a vaeur de eur précontrainte. Prenons eempe d un mât haubané. a précontrainte dans es haubans devra : être suffisante pour que ceu-ci ne soient jamais compètement détendus sous es charges variabes (de vent par eempe). Dans e cas contraire on s epose à des probèmes de fatigue des assembages, des probèmes de dépacements ecessifs de a structure et des déformations très visibes des câbes ; être imitée pour ne pas dépasser a contrainte maimae autorisée orsque es charges etérieures créent des efforts internes qui se superposent au efforts dus à a précontrainte. I eiste sur e marché certains appareis de mesure portabes capabes de mesurer effort de tension qui règne dans un câbe. Ces appareis sont toutefois coûteu et eur usage est imité au petits diamètres. On peut aussi munir es câbes de dispositifs de mesure fies et définitifs comme des capteurs de forces ou des jauges de contrainte fiées sur es tendeurs. Une autre méthode utie pour connaître a précontrainte est de tendre un fi éger entre es deu appuis du câbe de sorte que ce fi soit e pus confondu possibe avec a corde du câbe (fi e pus droit possibe). On mesure ensuite à mi-portée a distance verticae δ ma entre e fi et e câbe, ce qui permet indirectement de retrouver effort de précontrainte. Pour un câbe obique inscrit dans un rectange de argeur et de hauteur, de poids propre q et soumis à une précontrainte F préc, i est possibe d étabir, pour une vaeur de / donnée, une reation inéaire entre deu nombres sans dimensions, respectivement /δ ma et F préc/q. Ces nombres sont donc directement en rapport avec a fèche maimae δ ma d une part et effort de précontrainte F préc d autre part. Cette reation provient directement des équations d équiibre du câbe paraboique (ou de arc paraboique équivaent, voir es équations du chapitre, 3.5) : δ ma F fonction q préc a figure suivante traduit cette reation pour es rapports / es pus communs, avec un pas de, pour / (/ : horizonta, / : à 45, / ).

12 38 Cacuer une structure : de a théorie à 'eempe δ ma / δ ma / / / 5 F préc q Eempe d utiisation de a figure ci-dessus : es photos de a page 3 montrent es câbes de contreventement d une couverture métaique qui doivent être mis en pace avec une précontrainte de 5 kn. Ces câbes pèsent 75,83 N/m et eur géométrie en pan est a suivante : δ ma 5,44 m 9,5 m F préc 5 On a : 33, 77 et / 5,44/9,5,79. 3 q 75, e graphique ci-dessus fournit aors a vaeur suivante de δ ma à considérer pour e montage des câbes : 5 donc δ ma 95/5 78, mm δ ma

13 Chapitre 3. es câbes ES SITUATIONS ENCONTÉES EN PATIQUE Indépendamment des hypothèses de cacu, des méthodes particuières de résoution, du type de chargement ou de a position des appuis, diverses situations peuvent se présenter à 'ingénieur praticien ou 'architecte. Nous en retiendrons trois : 'approche de conception C'est cee de 'architecte qui impose es dimensions gobaes de a structure et qui demande à 'ingénieur de ui cacuer a faisabiité de son projet. Dans ce contete, es données sont es dimensions et du câbe chargé ainsi que a vaeur et a position des charges. es indéterminées sont aors a géométrie eacte du câbe chargé, es efforts internes (et réactions d'appui) et a ongueur du câbe avant ( ) et après chargement. q Q 3 d? Q Q Q 3 d? Données : dimensions (, ), vaeurs q ou Q i et position horizontae i des charges. Indéterminées : géométrie eacte (d, d ), efforts internes et réactions d'appui, ongueur du câbe.

14 33 Cacuer une structure : de a théorie à 'eempe 'approche d'epertise Cette approche est cee de 'epert, face à sa mission d'enquête, qui a a possibiité de reever in situ a géométrie déformée de a structure et d'évauer a vaeur et a position des charges. D'un point de vue cacu, ce cas est pus facie à appréhender que e précédent puisqu'i s'en distingue par e fait que a déformée eacte, et donc aussi a ongueur du câbe, sont cette fois connues. De ce point de vue, c'est donc un cas particuier de 'approche de conception. 3 d d Q Q Q 3 Données : dimensions (, ), vaeurs q ou Q i et position horizontae i des charges, ongueur du câbe, géométrie eacte (d, d ). Indéterminées : efforts internes, réactions d'appui, ongueur initiae du câbe 'approche pragmatique Cette approche consiste à mette en pace un câbe de ongueur initiae connue sur eque ont été préaabement accrochées es charges. Dans ce contete, es données sont a ongueur initiae du câbe et a position des charges e ong du câbe (ainsi que eur vaeur). es indéterminées sont a fèche maimae du câbe, sa géométrie eacte, es efforts internes, es réactions d'appui et a ongueur du câbe chargé (compte tenu de son aongement).? d? S S S 3 Q Q Q 3 Données : portée (), vaeurs Q i des charges et ongueur S i des tronçons, ongueur initiae du câbe. Indéterminées : géométrie eacte (d, d ) et fèche maimae, ongueur du câbe chargé, efforts internes et réactions d'appui. Précisons toutefois que a vaeur q ou Q i des charges pourrait être une inconnue du probème, auque cas a résoution se compeifie et peut comporter pusieurs soutions. Ce type de probème ne sera pas abordé dans ce chapitre. d?

15 Chapitre 3. es câbes ES YPOTÈSES SIMPIFICATICES Comme epiqué au, a non inéarité du comportement propre à un câbe peut rendre es méthodes de cacu ourdes et fastidieuses. appeons cependant que a pupart des ogicies actues sont capabes de traiter es probèmes sans aucune simpification. I reste toutefois utie de pouvoir apprécier infuence de certaines hypothèses, combinabes ou non, pouvant entraîner une simpification non négigeabe des probèmes. Ces hypothèses simpificatrices sont es suivantes : a parfaite feibiité du câbe Vu a très grande feibiité des câbes, cette hypothèse postue que e moment féchissant est nu en toute section de ceu-ci. 'éancement géométrique / Quand un câbe est très tendu, on dit qu'i est éancé ou que son éancement / est grand. Pour /, a ongueur du câbe ne vaut que,6 fois sa portée et on peut raisonnabement commencer, pour / supérieur à, à parer de grand éancement. / / / 3 / 4 Comme epiqué au., a charge peut ne pas être distribuée de manière uniforme par unité de ongueur horizontae (charge de type ), de tee sorte que pus 'éancement / du câbe est faibe, pus sa forme quitte a paraboe pour rejoindre cee de a chaînette, d'équation pus compee. 'hypothèse de grand éancement / permet de considérer que es charges de type et sont équivaentes, ce qui a pour conséquence de pouvoir adopter a géométrie paraboique. On pare aussi de câbe surbaissé mais cette dénomination prête à confusion.

16 33 Cacuer une structure : de a théorie à 'eempe 'inetensibiité du câbe e câbe travaie en traction, contrairement à 'arc comprimé dont e dimensionnement au fambement ui confère une section qui travaie souvent bien oin de a imite d'éasticité du matériau et qui en fait une structure très peu déformabe orsqu'i est e funicuaire des charges. Par aieurs, e type d'acier utiisé pour es câbes est souvent un matériau à très haute imite d'éasticité ( [MPa] 5 [MPa] ). I en résute qu'is peuvent avoir une section très faibe par rapport au efforts qu'is supportent et que eur ongueur, après mise en charge, peut être sensibement pus grande que a ongueur à a pose. 'hypothèse d'inetensibiité est donc à faire avec prudence et ne peut être considérée que ors d'un avant-projet. On montrera au 5. que 'hypothèse d'inetensibiité est en faveur de a sécurité à a rupture, mais qu'ee peut par contre sous-estimer grandement 'augmentation verticae de a fèche du câbe, et ceci d'autant pus que ceui-ci est éancé. 'importance reative des charges ponctuees et des charges réparties Seon 'importance reative des charges ponctuees et des charges réparties (par eempe e poids propre), on pourra négiger es unes ou es autres. I est évident qu'un te choi n'est pas toujours facie et nécessite de a part de 'ingénieur qui e fait suffisamment de sens pratique et d'epérience. 'importance du poids propre Négiger e poids propre doit se faire en connaissance de cause. De façon générae, orsqu'un câbe est dimensionné pour reprendre des charges etérieures et qu'i travaie à une contrainte proche de sa imite d'éasticité, e poids propre est négigeabe. Ceci est détaié au 5.. Toutefois, i peut arriver que, pour diverses raisons (imitation des effets de a fatigue, décaage des modes propres, déformabiité, etc ), un câbe travaie à une contrainte bien inférieure à sa imite d'éasticité. Dans ce cas i se peut que e poids propre du câbe ne soit pas négigeabe et i est aors opportun d'en tenir compte. es commentaires précédents permettent d'étabir e schéma de a page 333, qui met en évidence si cas distincts, correspondant chacun à une situation, des hypothèses et des équations descriptives parfois très différentes. Ces si cas sont étudiés en détais au 5, 6, 7, 8, 9 et.

17 Chapitre 3. es câbes 333 TABEAU ÉCAPITUATIF DES CAS TAITÉS AUX 5, 6, 7, 8, 9 ET Câbe soumis à une charge répartie Charge répartie de type Charge répartie de type Inetensibe (*), éancement queconque Inetensibe (*) Etensibe Éancé Éancement queconque Éancement queconque (*) : 'etensibiité peut toutefois être prise en compte de manière indirecte CAS ( 5) : paraboe (*) CAS ( 6) CAS 3 ( 7) Câbe soumis à des charges ponctuees combinées ou non à une charge répartie Charges ponctuees prépondérantes, inetensibe (*) Charges ponctuees et réparties du même ordre de grandeur Charge répartie de type Charge répartie de type Inetensibe Etensibe α Q CAS 4 ( 8) (*) CAS 5 ( 9) CAS 6 ( ), CAS PATICUIE : e câbe précontraint soumis à un effort transversa

18 334 Cacuer une structure : de a théorie à 'eempe 5. CAS : CÂBE PAABOIQUE Comme e montre e récapituatif en page 333, cette situation correspond à : un câbe inetensibe d'éancement / queconque soumis à une charge distribuée de type, grande par rapport au poids propre du câbe; un câbe inetensibe d'éancement / grand (câbe fort tendu) soumis à une charge distribuée de type, comme son poids propre par eempe. emarque : i est possibe de prendre indirectement en compte 'etensibiité du câbe comme epiqué au 5.. emarque : i est possibe de prendre en compte des appuis situés à des niveau différents (voir, eempes, et 3). V q/ V q/ y q [kn/m] a réaction horizontae s'obtient en faisant 'équiibre de rotation de a moitié gauche du câbe, par rapport à son point bas. On obtient eactement es mêmes vaeurs que pour 'arc funicuaire (chapitre, 3) : q V avec V 4 q q [] 8 Notons que, pour un câbe obique dont a distance verticae avec sa corde à miportée est notée δ ma, a réaction horizontae est encore a même que pour arc obique, soit q /8δ ma (voir chapitre, 3.5). On démontre aussi, de a même manière que pour 'arc, que a géométrie est une paraboe. En effet, e moment en tout point de coordonnées (,y) est nu et, en considérant a partie de câbe située à gauche de ce point, on a : q q 4 M (, y) y ( q) y ( ) [] 8

19 Chapitre 3. es câbes 335 'effort maima se produit au appuis et vaut : N ma q 4 V [3] 8 Enfin, a ongueur totae du câbe vaut (voir figure correspondante et démonstration au chapitre reatif au arcs funicuaires, 3.4) : d d dy avec f 4 dy d d 4 4 n f 4 es équations précédentes sont adaptabes orsque es appuis ne sont pas au même niveau : voir eempes à 3 au. Mode de résoution dans un cas de conception ou d'epertise :, et q sont connus. On en déduit directement a géométrie paraboique par [], es réactions d'appui par [], 'effort norma maima par [3] et a ongueur du câbe par [4]. Mode de résoution pour 'approche pragmatique : ce cas consiste à mettre en pace, entre deu appuis distants de, un câbe de ongueur donnée, éventueement chargé avant ou après mise en pace par une charge uniformément répartie. Dans ce cas, a reation impicite [4] permet de cacuer a fèche en fonction de a ongueur du câbe et de a portée qui sont connus. es équations [] à [3] permettent ensuite de cacuer directement es réactions d'appui, 'effort maima dans e câbe et 'équation de a paraboe. 5.. Peut-on négiger e poids propre du câbe? Soit q et a charge etérieure et q pp a charge de poids propre du câbe, considérées toutes deu comme des charges de type. a charge totae q est aors a somme de ces deu charges. Soit ρ e poids voumique de 'acier [kn/m 3 ] et σ a contrainte à aquee e câbe travaie en service, incuant donc es cœfficients de sécurité. a charge de poids propre q pp n'est pas connue puisque e poids propre dépend de a section A du câbe, qui ee-même dépend de 'effort maima N ma cacué à partir de a charge totae. d α d dy [4]

20 336 Cacuer une structure : de a théorie à 'eempe Sachant que si e câbe travaie à a contrainte de service σ, on a : N ma σ A et ρa q pp N ma q pp σ ρ Par aieurs, en réécrivant [3], on obtient : N ma ( q q ) pp 8 et 4 En éiminant N ma des deu équations précédentes, on obtient une nouvee équation dans aquee seue a charge de poids propre q pp est inconnue : q σ pp ρ ( q q ) pp 8 et Ee peut encore s'écrire : 4 q pp qet σ 8 ρ 4 [5] 'équation précédente permet d'étabir a figure ci-dessous, cacuée en considérant une contrainte de service σ égae à [MPa] et un poids voumique de [N/mm 3 ]. 6 5 q q pp et [%] 5 [m] σ câbe [MPa] 4 3 [m] [m] 5 [m] [m] /

21 Chapitre 3. es câbes 337 Cette figure montre que, même pour un câbe en acier de 5 mètres de portée déjà reativement éancé (/ ) et travaiant à une contrainte de [MPa], e poids propre ne représente que 5,5% de a charge etérieure. 5.. Peut-on négiger 'etensibiité du câbe? I est, à ce stade, intéressant de se demander quee est 'infuence de 'hypothèse d'inetensibiité sur es résutats. En supposant que e câbe travaie à a contrainte de service σ, sa ongueur après chargement vaut (σ/e c) en vertu de a oi de ooke (chapitre, 7). En prenant σ [MPa] et E c 7. [MPa], un aongement maima du câbe de,6% est obtenu. 'équation [4] de a page 335 permet aors, par une résoution numérique, de cacuer a fèche α (α>) du câbe après déformation, en fonction de son éancement géométrique / : [4] : [4] : f,6 f α,6 f ( α > ) f α impicite enα a résoution de 'équation précédente pour pusieurs vaeurs de / permet de tracer a figure suivante :,8,6,4,, α Facteur mutipicatif α de a fèche d'un câbe travaiant à a contrainte de 5, ou 5 [MPa] suite à son aongement : α 5 [MPa],8,6 [MPa],4, 5 [MPa], /

22 338 Cacuer une structure : de a théorie à 'eempe e graphique ci-dessus est éoquent : i montre que pus e câbe est éancé (/ grand), pus son augmentation reative de fèche va être importante ors de a mise en charge. Par eempe, pour un éancement prévu de /5, augmentera de 5% pour un acier travaiant à 5 [MPa]. En d'autres termes, pus 'hypothèse de grand éancement est vaabe, moins cee d'inetensibiité 'est. Cette concusion est toutefois à prendre avec certaines réserves. En effet, une augmentation de a fèche aura pour effet de diminuer non seuement es réactions horizontaes mais aussi 'effort maima dans e câbe, comme e montrent [] et [3]. Ceci veut donc dire que même si 'hypothèse d'inetensibiité peut sous-estimer argement es dépacements, ee est en faveur de a sécurité. Câbes de contreventement d'une ossature métaique devant être couverte d'une toie tendue. Sur a photo es câbes n'ont pas encore été compètement tendus. (Station de Métro Erasme, Bruees, 3 architectes et ingénieurs Samyn and Partners avec e bureau d'études Setesco; Photo Guy Cantin).

23 Chapitre 3. es câbes CAS : CÂBE INEXTENSIBE EN CAÎNETTE Comme e montre e récapituatif en page 333, cette situation correspond à un câbe inetensibe d'éancement / queconque soumis à son poids propre combiné éventueement à une autre charge distribuée de type. Si / est grand, on se retrouve dans e cas ( 5). 'approche de cacu consiste ici à isoer un morceau infinitésima de câbe et à étabir des équations d'équiibre en fonction de sa géométrie. Cette démarche conduit au équations ci-dessous, dans esquees est a coordonnée courante e ong du câbe, a réaction d'appui horizontae, N() 'effort dans e câbe, a ongueur totae du câbe et q a charge par mètre e ong du câbe, c'est-à-dire e poids d'un mètre de câbe et de couverture, e cas échéant. Équation impicite en : q q sinhyp [] e cacu de permet aors 'utiisation des epressions suivantes, dans esquees sinhyp et coshyp sont es fonctions sinus et cosinus hyperboiques : [4] coshyp ) ( [3] sinhyp ) ( [] coshyp coshyp ) ( q N q q q q q q y Pour rappe, ( ) ( ) coshyp et sinhyp e e e e V q/ y q V q/

24 34 Cacuer une structure : de a théorie à 'eempe Mode de résoution dans un cas de conception ou d'epertise :, et q sont connus. 'équation impicite [] fournit a vaeur de (en posant y( /) ). 'équation [] donne aors directement. 'équation [] donne a géométrie et a [4] 'effort dans e câbe (maima en ). Mode de résoution pour 'approche pragmatique : a ongueur du câbe est connue, ainsi que et q. 'équation impicite [] fournit a vaeur de. 'équation [] donne a géométrie et a [4] 'effort dans e câbe (maima en ). emarque : si es appuis ne sont pas au même niveau, se rapporter au CAS 3. Mâts haubanés pour éoiennes. (îes du Cap Vert, Boa-Vista; Photo de 'auteur, )

25 Chapitre 3. es câbes CAS 3 : CÂBE EXTENSIBE EN CAÎNETTE Comme e montre e récapituatif en page 333, cette situation correspond à un câbe etensibe d'éancement / queconque soumis à son poids propre combiné éventueement à une autre charge distribuée de type. emarque : si e câbe est éancé et que 'on peut considérer que son aongement est négigeabe, on se retrouve dans e cas ( 5). y A D VB q B a ongueur du câbe après mise en pace n'étant pus a même que a ongueur initiae, e cacu se compique. Comme pour e cas, es équations s'obtiennent en écrivant 'équiibre d'un tronçon de câbe de ongueur infinitésimae, qui subit cette fois un certain aongement proportionne à 'effort qui y règne. Cette démarche conduit au équations ci-dessous, dans esquees est a coordonnée courante e ong du câbe avant déformation, a réaction d'appui horizontae, a réaction verticae à 'appui gauche, N() 'effort dans e câbe, et A respectivement a ongueur totae du câbe et sa section avant mise en pace et q a charge par mètre courant e ong du câbe. Équations impicites en et : EA D EA q q arcsinhyp q arcsinhyp q q ( ) ( ) [] []

26 34 Cacuer une structure : de a théorie à 'eempe Si es appuis sont au même niveau, ces équations deviennent : q q q et sinhyp q EA e cacu numérique de et permet aors 'utiisation des epressions suivantes : y( ) N( ) EA ( ) EA q ² q q arcsinhyp q ( ) ( ) q arcsinhyp [4] ( q) [5] [3] Mode de résoution dans un cas de conception ou d'epertise :,, q, E et A sont connus. a résoution numérique du système d'équations [], [] et [3 ou 4] fournit a vaeur de, et (en posant y( ) D ou encore ( )). 'équation [5] donne aors directement N() et N man(). Mode de résoution pour 'approche pragmatique : a ongueur du câbe est connue, ainsi que, q, E et A. es équations [] et [] permettent de cacuer es réactions et. es équations [3] et [4] donnent a géométrie et a [5] 'effort dans e câbe (maima en ).

27 Chapitre 3. es câbes CAS 4 : CÂBE INEXTENSIBE SOUMIS À DES CAGES PONCTUEES Comme e montre e récapituatif en page 333, cette situation correspond à un câbe inetensibe d'éancement / queconque soumis à des charges ponctuees grandes par rapport au poids propre du câbe, qu'on suppose négigeabe. es propos de cette page sont égaement vaabes si es charges ponctuees sont combinées à une charge de type. emarque : 'etensibiité peut être prise en compte de manière indirecte, comme iustré dans 'eempe 5 du. e théorème d'anaogie avec a poutre (.7) prend ici toute son importance. Mode de résoution dans un cas de conception ou d'epertise : sont connus :,, D, es charges Q,, Q n ainsi que eur position horizontae,,, n. a première étape consiste à déterminer es 3 réactions d'appui inconnues. es deu premières équations correspondent à 'équiibre vertica et à 'équiibre des coupes par rapport au point A. Si es appuis ne sont pas au même niveau, 'équiibre des coupes par rapport à 'autre appui B fournit a troisième équation. S'is sont au même niveau, a troisième équation s'obtient en faisant 'équiibre des coupes par rapport au point e pus bas du câbe, dont a position s'obtient faciement grâce au théorème d'anaogie avec a poutre (voir eempe 5, ). Ensuite, ce même théorème permet de déterminer a forme du câbe et en particuier chaque hauteur i, de même que a ongueur totae du câbe. Finaement, 'effort en toute section du câbe est déterminé à partir de sa projection horizontae connue et égae à. En particuier, 'effort maima dans e câbe s'obtient à 'un des appuis. VB A D i B Q n Q Q i i n n

Intégration visuelle des installations de branchement aux bâtiments résidentiels. Guide des bonnes pratiques

Intégration visuelle des installations de branchement aux bâtiments résidentiels. Guide des bonnes pratiques Intégration visuee des instaations de branchement aux bâtiments résidenties Guide des bonnes pratiques Guide des bonnes pratiques Légende s techniques PRINCIPAUX SYMBOLES UTILISÉS RECOMMANDÉ ACCEPTabe

Plus en détail

Master Actuariat-Finance Master Actuariat-Prévoyance Sociale. Prof ABDELKADER SALMI 2012

Master Actuariat-Finance Master Actuariat-Prévoyance Sociale. Prof ABDELKADER SALMI 2012 Master Actuariat-Finance Master Actuariat-Prévoyance Sociae Prof ABDELKADER SALMI 2012 Actuaire L étymoogie du mot "actuaire" est atine (comptabe, rédacteur des ivres de comptes acta), ce terme n'apparaît

Plus en détail

MÉCANIQUE DES STRUCTURES

MÉCANIQUE DES STRUCTURES SCIENCES SUP Aide-mémoire IUT Licence Master MÉCANIQUE DES STRUCTURES Résistance des matériaux Arnaud Deapace Fabrice Gatuingt Frédéric Ragueneau AIDE-MÉMOIRE MÉCANIQUE DES STRUCTURES Résistance des matériaux

Plus en détail

Conception et réalisation d une sectorisation

Conception et réalisation d une sectorisation Conception et réaisation d une sectorisation OBJECTIF : mise en pace d un outi cohérent permettant de mesurer es voumes transitant dans e système de manière fiabe Une attention particuière doit être portée

Plus en détail

Lexmark Print Management

Lexmark Print Management Lexmark Print Management Optimisez impression en réseau et accès à vos informations avec une soution fexibe. Impression des documents sûre et pratique Fexibe. Libérez es travaux d impression à partir de

Plus en détail

La nouvelle carrière du personnel judiciaire

La nouvelle carrière du personnel judiciaire La nouvee carrière du personne judiciaire 1 2 Avant-propos Cher ecteur, La manière dont es cours et tribunaux sont administrés est en peine évoution. Une poitique moderne du personne est donc d une extrême

Plus en détail

à des commissions d enquête

à des commissions d enquête Protocoe sur a nomination de juges à des commissions d enquête Adopté par e Consei canadien de a magistrature août 2010 Sa Majesté a Reine du chef du Canada, 2010 Numéro du cataogue : JU14-21/2010 ISBN

Plus en détail

Rapport intermédiaire de la direction sur le rendement du fonds

Rapport intermédiaire de la direction sur le rendement du fonds Fonds immobiier canadien CIBC Rapport intermédiaire de a direction sur e rendement du fonds pour a période cose e 30 juin 2015 Tous es chiffres sont en doars canadiens, sauf indication contraire Le présent

Plus en détail

Plate-forme de solutions logicielles Lexmark

Plate-forme de solutions logicielles Lexmark Lexmark Soutions Patform Pate-forme de soutions ogiciees Lexmark La pate-forme de soutions Lexmark est a gamme d appications créée par Lexmark pour proposer des soutions ogiciees efficaces, économiques

Plus en détail

Manuel d'utilisation de Wapam

Manuel d'utilisation de Wapam Manue de 'utiisateur de Wapam Tabe des matières 1Wapam, une recherche de motifs par automates pondérés...3 2Tutorie : un exempe simpe d'utiisation...3 Utiisation avec Rdisk...3 Utiisation sans Rdisk...6

Plus en détail

Guide des applications Lexmark ESF

Guide des applications Lexmark ESF Guide des appications Lexmark ESF Aidez vos cients à tirer peinement profit du potentie de eurs équipements Lexmark. Les appications Lexmark ont été conçues pour aider es entreprises à capturer et gérer

Plus en détail

Guide d utilisation 3173 3246

Guide d utilisation 3173 3246 MO1007-FB Guide d utiisation 3173 3246 Féicitations pour e choix de cette montre CASIO. Appications Les capteurs de cette montre mesurent a direction, a pression barométrique, a température et atitude.

Plus en détail

NCH Software Pixillion - Convertisseur de fichiers image

NCH Software Pixillion - Convertisseur de fichiers image NCH Software Pixiion - Convertisseur de fichiers image Ce manue a été créé pour être utiisé avec Pixiion - Convertisseur de fichiers image Version 2.xx NCH Software Support technique Si vous rencontrez

Plus en détail

Vétérinaires : quelles perspectives d activité en 2010?

Vétérinaires : quelles perspectives d activité en 2010? Vétérinaires : quees perspectives d activité en 2010? Edito Arnaud Duet Docteur Vétérinaire Président d Ergone Ergone, nouvee association pour es vétérinaires qui partagent envie d entreprendre, a vouu

Plus en détail

TSP 6500/7000 SÉRIE. Spécifications Chariots tridirectionnels à nacelle élevable

TSP 6500/7000 SÉRIE. Spécifications Chariots tridirectionnels à nacelle élevable C TSP 6500/7000 SÉRIE Chariots tridirectionnes à nacee éevabe C Série TSP 6500 / 7000 Chariots tridirectionnes à nacee éevabe Aée disponibe min. Jeux fonctionnes Fourches non téescopiques 4.33a 4.33 Longueur

Plus en détail

Structures dynamiques Listes chaînées

Structures dynamiques Listes chaînées TC Informatique Structures de données abstraites PC N 4 30 Novembre 2000 François Siion Structures dynamiques Listes chaînées http://w3.edu.poytechnique.fr/informatique Représenter un ensembe d'ééments

Plus en détail

De la caractérisation à l identification des langues

De la caractérisation à l identification des langues De a caractérisation à identification des angues Séection de conférences données ors de a 1 ère journée d étude sur identification automatique des angues, Lyon, 19 janvier 1999 avec e soutien de Association

Plus en détail

PRIMOPIERRE. Société Civile de Placement Immobilier

PRIMOPIERRE. Société Civile de Placement Immobilier PRIMOPIERRE Société Civie de Pacement Immobiier Primonia REIM Septembre 2011 IDENTIFICATION DES RISQUES LIÉS À L INVESTISSEMENT DANS UNE SCPI Facteurs de risques Avant d effectuer un investissement en

Plus en détail

CONSEIL GENERAL DE SEINE ET MARNE

CONSEIL GENERAL DE SEINE ET MARNE 2/03 1 CONSEIL GENERAL DE SEINE ET MARNE Séance du 20 Novembre 2009 Commission n 2 Administration Générae et Personne Commission n 7 Finances DIRECTION DES RESSOURCES HUMAINES RAPPORT DU PRESIDENT DU CONSEIL

Plus en détail

Contacts électriques AE 08.01. Contact électrique sec à aimant Type 821 1) Seuil d'alarme inductif Type 831 Relais amplificateur Bloc relais

Contacts électriques AE 08.01. Contact électrique sec à aimant Type 821 1) Seuil d'alarme inductif Type 831 Relais amplificateur Bloc relais AE 08.0 Accessoires Contacts éectriques Conformité Contact éectrique sec à aimant Type 8 ) Seui d'aarme inductif Type 8 Reais ampificateur Boc reais Utiisation Les contacts éectriques permettent d'ouvrir

Plus en détail

Rapport intermédiaire de la direction sur le rendement du fonds

Rapport intermédiaire de la direction sur le rendement du fonds Fonds commun d actions US Impéria Rapport intermédiaire de a direction sur e rendement du fonds pour a période cose e 30 juin 2015 Tous es chiffres sont en doars canadiens, sauf indication contraire Le

Plus en détail

Comment s installer aux Canaries

Comment s installer aux Canaries Comment s instaer aux Canaries Aide institutionnee Le gouvernement des Canaries soutient activement es investissements réaisés dans es secteurs stratégiques canariens. Pour ce faire, e département de Investir

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Analyse et Conception. 4. Cas d Utilisation et la phase de l acquisition des besoins

Analyse et Conception. 4. Cas d Utilisation et la phase de l acquisition des besoins Anayse et Conception 4. Cas d Utiisation et a phase de acquisition des besoins Petko Vatchev Université de Montréa Septembre 2003 2 Sommaire Cas d Utiisation? Structure d CdU Techniques UML Mise en œuvre

Plus en détail

l EXCLUSION, INCLUSION m

l EXCLUSION, INCLUSION m EXCLUSION, INCLUSION m education permanente CULTURE ÉDUCATION PERMANENTE «I y a eu une invention de accessibiité comme nouvee forme sociae révéatrice d une conception du traitement de atérité dans notre

Plus en détail

Mesure de facteur de bruit sur analyseur de réseaux vectoriel corrigée en Paramètres-S. Frédéric Molina

Mesure de facteur de bruit sur analyseur de réseaux vectoriel corrigée en Paramètres-S. Frédéric Molina esure de facteur de bruit sur anayseur de réseaux vectorie corrigée en Paramètres-S Frédéric oina Agenda Rappe : qu est-ce que e facteur de bruit d un composant? éthodes et setup de mesure Etapes de caibrage

Plus en détail

UNICEF/92-5221/Toutounji

UNICEF/92-5221/Toutounji UNICEF/92-5221/Toutounji Pourquoi i est important de communiquer et d utiiser es informations sur L aaitement materne Un bébé nourri au sein est moins souvent maade et mieux nourri qu un bébé à qui on

Plus en détail

2 juillet 2014-18h00 Mairie de Saint-Priest

2 juillet 2014-18h00 Mairie de Saint-Priest Compte-rendu de a réunion pubique d information dans e cadre de a concertation sur e Pan de Prévention des Risques Technoogiques de Saint-Priest (CREALIS et SDSP) 2 juiet 2014-18h00 Mairie de Saint-Priest

Plus en détail

Guide d utilisation 5117

Guide d utilisation 5117 MO0912-FA Guide d utiisation 5117 Famiiarisation Féicitations pour achat de cette montre CASIO. Pour tirer e meieur parti de votre achat, veuiez ire attentivement cette notice. Exposez a montre à une umière

Plus en détail

Automobile et aéronautique

Automobile et aéronautique Soutions et systèmes de marquage et de codage Automobie et aéronautique Nous avons conscience des difficutés particuières auxquees vous devez faire face sur vos ignes de production Dans 'industrie automobie

Plus en détail

DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE

DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE Revue Construction étallique Référence DÉVERSEENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYÉTRIQUE SOUISE À DES OENTS D EXTRÉITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE par Y. GALÉA 1 1. INTRODUCTION Que ce

Plus en détail

4 RESEAUX LOCAUX : ETHERNET, TOKEN-RING,...

4 RESEAUX LOCAUX : ETHERNET, TOKEN-RING,... hapitre 4 1 RESEAUX LOAUX : ETHERNET, TOKEN-RING,... Ethernet : buts - non buts 2 uts réseau mutipoint sans priorité avec coisions faibe coût Non-buts contrôe d erreur fu dupex sécurité priorité déterminisme

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Problèmes sur le chapitre 5

Problèmes sur le chapitre 5 Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire

Plus en détail

Une introduction à l analyse discriminante avec SPSS pour Windows

Une introduction à l analyse discriminante avec SPSS pour Windows Une introduction à anayse discriminante avec SPSS pour Windows Dominique DESBOIS INRA-ESR Nancy et SCEES 5 rue de Vaugirard, 7573 Paris Cedex 5. Fax : +33 49 55 85 00 Mé :desbois@jouy.inra.fr RÉSUMÉ :

Plus en détail

Le Conseil général, acteur de l insertion

Le Conseil général, acteur de l insertion Le Consei généra, acteur de insertion éditoria Le Consei généra est e chef de fie des poitiques de soidarités dans e Va d Oise. A ce titre, i est notamment responsabe du revenu de soidarité active (RSA)

Plus en détail

Nouveaux modules encastrables Visio Line, Design, très performants et vraiment économiques

Nouveaux modules encastrables Visio Line, Design, très performants et vraiment économiques Nouveaux modues encastrabes Visio Line, Design, très performants et vraiment économiques Queque soit votre projet - Restaurant d Entreprise ou d Université, Restauration commerciae, vente à emporter,

Plus en détail

Rejoignez le. No 1 mondial. de la franchise *! Créez votre entreprise en Franchise avec SUBWAY. www.subwayfrance.fr

Rejoignez le. No 1 mondial. de la franchise *! Créez votre entreprise en Franchise avec SUBWAY. www.subwayfrance.fr Rejoignez e No 1 mondia de a franchise *! Créez votre entreprise en Franchise avec SUBWAY www.subwayfrance.fr *SUBWAY est e numéro 1 mondia de a restauration, en nombre de restaurants. 2015 Doctor s Associates

Plus en détail

La transformation du centre informatique. Les enjeux économiques, écologiques et métiers des centres informatiques

La transformation du centre informatique. Les enjeux économiques, écologiques et métiers des centres informatiques La transformation du centre informatique Les enjeux économiques, écoogiques et métiers des centres informatiques IBM & Schneider Eectric - La transformation du centre informatique Savez-vous que? La mise

Plus en détail

Master1 CCS. Université Paul Sabatier. Toulouse III. TPs RdM.6 + VBA. Michel SUDRE

Master1 CCS. Université Paul Sabatier. Toulouse III. TPs RdM.6 + VBA. Michel SUDRE Université Paul Sabatier Master1 CCS Toulouse III TPs RdM.6 + VBA Michel SUDRE Déc 2008 TP N 1 Poutre Fleion-Tranchant On considère 2 poutres droites identiques de longueur L dont la est un de hauteur

Plus en détail

Votre guide d utilisation

Votre guide d utilisation Réaisez et éditez en igne vos certificats et ordres d assurance Votre guide d utiisation Ce nouve outi vous permet, sur vos contrats Cargo Feet ou Transfeet : de saisir et de transmettre à Covéa Feet,

Plus en détail

Guide d utilisation 4738

Guide d utilisation 4738 MO0612-FA Guide d utiisation 4738 Famiiarisation Féicitations pour achat de cette montre CASIO. Pour tirer e meieur parti de votre montre, isez attentivement ce manue. Avertissement! Les fonctions de mesure

Plus en détail

Jacques Lévy, professeur à l'universités de Reims et à l'institut d'études politiques de Paris, fellow au Wissenschaftskolleg zu Berlin

Jacques Lévy, professeur à l'universités de Reims et à l'institut d'études politiques de Paris, fellow au Wissenschaftskolleg zu Berlin e point sur La cartographie, enjeu contemporain Jacques Lévy, professeur à 'Universités de Reims et à 'Institut d'études poitiques de Paris, feow au Wissenschaftskoeg zu Berin De ce vieux Mercator, à quoi

Plus en détail

Aspects de l ergonomie des interfaces. Utilisabilité

Aspects de l ergonomie des interfaces. Utilisabilité Aspects de ergonomie des interfaces. Utiisabiité René PATESSON CREATIC Centre de Recherches en Ergonomie Appiquée aux Technoogies de Information et de a Communication ULB-SISH (Section Informatique et

Plus en détail

UIDE DU DOCTORANT Pôle de recherchee t d enseignement supérieur 2011-2012

UIDE DU DOCTORANT Pôle de recherchee t d enseignement supérieur 2011-2012 Pôe de recherche et UIDE DU DOCTORANT d enseignement supérieur 2011-2012 L ÉDITO DU PRÉSIDENT Doctorants, vous êtes engagés dans a préparation d une thèse au sein de une des six écoes doctoraes du Pôe

Plus en détail

Sécurité Lexmark pour les imprimantes et MFP compatibles avec les solutions

Sécurité Lexmark pour les imprimantes et MFP compatibles avec les solutions Sécurité Lexmark pour es imprimantes et MFP compatibes avec es soutions Améioration de a sécurité de vos documents et vos données d entreprise En terme de sécurité, votre organisation doit être assurée

Plus en détail

CI/SfB (29) Et6. Janvier 2007. Dispositifs d Attente pour Béton Armé Pour l Industrie de la Construction

CI/SfB (29) Et6. Janvier 2007. Dispositifs d Attente pour Béton Armé Pour l Industrie de la Construction CI/SfB (29) Et6 Janvier 2007 Dispositifs d Attente pour Béton Armé Pour Industrie de a Construction 2 La société Ancon conçoit et réaise des produits en acier de grande fiaiité pour industrie de a construction.

Plus en détail

Préparation au financement climatique

Préparation au financement climatique Programme des Nations Unies pour e déveoppement A servicio de as personas y as naciones Préparation au financement cimatique Un cadre pour comprendre ce que signifie être «prêt» à utiiser e financement

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

1. INTRODUCTION On voit apparaître depuis quelques années des codes de calcul de tenue à la mer des navires par la méthode des singularités utilisant

1. INTRODUCTION On voit apparaître depuis quelques années des codes de calcul de tenue à la mer des navires par la méthode des singularités utilisant . INTRODUCTION On voit apparaître depuis queques années des codes de cacu de tenue à a mer des navires par a méthode des singuarités utiisant a fonction de Green de diffraction-radiation avec vitesse d

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

clés Les chiffres du commerce Étude réalisée par la Chambre de commerce et d industrie de l Essonne avril 2012 n Repères

clés Les chiffres du commerce Étude réalisée par la Chambre de commerce et d industrie de l Essonne avril 2012 n Repères cés Les chiffres du commerce 0 Étude réaisée par a Chambre de commerce et d industrie de Essonne n Repères n Urbanisme commercia n évoution n bian démographique n consommation des ménages n commerce de

Plus en détail

Une grille pour évaluer la qualité de vos données et choisir votre outil de D Q M

Une grille pour évaluer la qualité de vos données et choisir votre outil de D Q M DOSSIER BASES DE DONNEES PAR VIRGINIE GOASDOU~ (EDF R&D), SYLVAINE NUGIER (EDF R&D), BRIGITTE LABOISSE (AID) ET DOMINIQUE DUQUENNOY (AID) Une grie pour évauer a quaité de vos données et choisir votre outi

Plus en détail

Stratégie pour le développement durable: lignes directrices et plan d action 2008 2011

Stratégie pour le développement durable: lignes directrices et plan d action 2008 2011 Consei fédéra suisse Stratégie pour e déveoppement durabe: ignes directrices et pan d action 2008 2011 Rapport du 16 avri 2008 Impressum Consei fédéra suisse Stratégie pour e déveoppement durabe: ignes

Plus en détail

La gestion de la relation client au sein de la PME. Contenu de la présentation. Le CRM outil pour les PME? SOGID SA

La gestion de la relation client au sein de la PME. Contenu de la présentation. Le CRM outil pour les PME? SOGID SA La gestion de a reation cient au sein de a PME Laurent Warichet 2006 SOGID. Tous droits réservés Le CRM outi pour es PME? Contenu de a présentation Qu est-ce que e CRM? Pourquoi a gestion cient? CRM :

Plus en détail

Gamme Everio 2012. www.jvc.net/everio-2012s/ www.jvc.eu

Gamme Everio 2012. www.jvc.net/everio-2012s/ www.jvc.eu Gamme Everio 2012 www.jvc.net/everio-2012s/ www.jvc.eu www.jvc-asia.com www.jvc-me.com Restez en contact Everio vous permet désormais de rester en contact avec votre entourage, qu i se trouve à côté de

Plus en détail

Le recours à l Aide complémentaire santé : les enseignements d une expérimentation sociale à Lille

Le recours à l Aide complémentaire santé : les enseignements d une expérimentation sociale à Lille Document de travai Working paper Le recours à Aide compémentaire santé : es enseignements d une expérimentation sociae à Lie Sophie Guthmuer (LEDa-LEGOS, Université Paris-Dauphine) Forence Jusot (LEDa-LEGOS,

Plus en détail

Guide d utilisation 4732 4733

Guide d utilisation 4732 4733 MO0605-FA Guide d utiisation 4732 4733 Famiiarisation Féicitations pour achat de cette montre CASIO. Pour tirer e meieur parti de votre montre, isez attentivement ce manue. Avertissement! Les fonctions

Plus en détail

SOMMAIRE. Vous souhaitez embaucher dans votre entreprise un ou plusieurs apprenti(e)s. INFOS APPRENTISSAGE 04. 06.

SOMMAIRE. Vous souhaitez embaucher dans votre entreprise un ou plusieurs apprenti(e)s. INFOS APPRENTISSAGE 04. 06. SOMMAIRE INFOS APPRENTISSAGE 04. 06. 07. L APPRENTISSAGE INDUSTRIEL LE PARCOURS DE L APPRENTISSAGE INDUSTRIEL LES MÉTIERS ET DIPLÔMES PRÉPARÉS DANS LES CENTRES DE FORMATION DE LA BRANCHE EN ÎLE-DE-FRANCE

Plus en détail

Face au deuil, Vous n êtes pas seul(e) Ce guide vous est proposé par la Caf de Meurthe-et-Moselle et les Associations Deuil Espoir et Favec.

Face au deuil, Vous n êtes pas seul(e) Ce guide vous est proposé par la Caf de Meurthe-et-Moselle et les Associations Deuil Espoir et Favec. Face au deui, Vous n êtes pas seu(e) Ce guide vous est proposé par a Caf de Meurthe-et-Mosee et es Associations Deui Espoir et Favec. 1 Edition 2011 ÉDITO Soutenir et accompagner Soutenir a fonction parentae

Plus en détail

Informations techniques. Transmetteurs et communication VEGAMET 381 VEGAMET 391 VEGAMET 624 VEGAMET 625 VEGASCAN 693

Informations techniques. Transmetteurs et communication VEGAMET 381 VEGAMET 391 VEGAMET 624 VEGAMET 625 VEGASCAN 693 Informations techniques Transmetteurs et communication VEGAMET 8 VEGAMET 9 VEGAMET 64 VEGAMET 65 VEGASCAN 69 Sommaire Sommaire Description du produit.....................................................................................

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

TOPECAL Bâtiment Industriel, s.a.r.l.

TOPECAL Bâtiment Industriel, s.a.r.l. COUVERTURE METALLIQUE AUTOPORTANTE Les couvertures métalliques autoportantes TOPECAL représentent un système tout à fait nouveau dans le groupe des couvertures traditionnelles existantes. La couverture

Plus en détail

Bouclier sanitaire : choisir entre égalité et équité?

Bouclier sanitaire : choisir entre égalité et équité? Document de travai Working paper Boucier sanitaire : choisir entre égaité et équité? Une anayse à partir du modèe ARAMMIS Thierry Debrand (Irdes) Christine Sorasith (Irdes) DT n 32 Juin 2010 Reproduction

Plus en détail

NOTRE MISSION NOTRE APPROCHE NOTRE ÉQUIPE NOTRE MARCHÉ. Confiance. Professionnalisme. Confidentialité

NOTRE MISSION NOTRE APPROCHE NOTRE ÉQUIPE NOTRE MARCHÉ. Confiance. Professionnalisme. Confidentialité www.cobus.net NOTRE MISSION Fournir à nos cients des soutions appropriées, sécurisées et bénéfiques Mettre en pace des soutions restant rentabes sur e ong terme et faciitant ensembe du processus de gestion

Plus en détail

LE GÉNIE PARASISMIQUE

LE GÉNIE PARASISMIQUE LE GÉNIE PARASISMIQUE Concevoir et construire un bâtiment pour qu il résiste aux séismes 1 Présentation de l intervenant Activité : Implantation : B.E.T. structures : Ingénierie générale du bâtiment. Siège

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES ours et eercices de mathématiques LIMITES EXERIES ORRIGES M UAZ, http://mathscyrreer Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) ) 4 ( ) Déterminer la ite éventuelle

Plus en détail

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE L'objectif de ce tutorial est de décrire les différentes étapes dans CASTOR Concept / FEM permettant d'effectuer l'analyse statique d'une

Plus en détail

Voyez la réponse à cette question dans ce chapitre. www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof

Voyez la réponse à cette question dans ce chapitre. www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof Une échelle est appuyée sur un mur. S il n y a que la friction statique avec le sol, quel est l angle minimum possible entre le sol et l échelle pour que l échelle ne glisse pas et tombe au sol? www.hometownroofingcontractors.com/blog/9-reasons-diy-rednecks-should-never-fix-their-own-roof

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

WIRELESS SYSTEM QLX-D USER GUIDE. Le Guide de l Utilisateur. 2014 Shure Incorporated 27A22351 (Rev. 1)

WIRELESS SYSTEM QLX-D USER GUIDE. Le Guide de l Utilisateur. 2014 Shure Incorporated 27A22351 (Rev. 1) WRELESS SYSTEM QLX-D USER GUDE Le Guide de Utiisateur 2014 Shure ncorporated 27A22351 (Rev. 1) CONSGNES DE SÉCURTÉ MPORTANTES 1. LRE ces consignes. 2. CONSERVER ces consignes. 3. OBSERVER tous es avertissements.

Plus en détail

Développement du leadership :

Développement du leadership : Livre banc Déveoppement du eadership : es tendances de demain Auteur : Nick Petrie Version : décembre 2011 TABLE DES MATIÈRES 3 3 5 6 7 10 29 30 32 À propos de 'auteur Experts consutés dans e cadre de

Plus en détail

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout

Plus en détail

ANNEXE J POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS SELON UN CHARGEMENT CYCLIQUE ET STATIQUE

ANNEXE J POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS SELON UN CHARGEMENT CYCLIQUE ET STATIQUE 562 ANNEXE J POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS SELON UN CHARGEMENT CYCLIQUE ET STATIQUE 563 TABLE DES MATIÈRES ANNEXE J... 562 POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS

Plus en détail

Notre gamme de chaudières pour fioul et gaz Technologie à condensation Technologie basse température Boilers Accessoires.

Notre gamme de chaudières pour fioul et gaz Technologie à condensation Technologie basse température Boilers Accessoires. Venir nous voir De près Notre gae de chaudières pour fiou et gaz De oin Technoogie à condensation Technoogie basse température Boiers Accessoires Interca Wärmetechnik GmbH A Seeenkamp 0 2791 Lage Aemagne

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Fête & Buvette Un équilibre à trouver. A l attention des maires, présidents d associations, responsables de débit de boissons temporaires, bénévoles

Fête & Buvette Un équilibre à trouver. A l attention des maires, présidents d associations, responsables de débit de boissons temporaires, bénévoles Fête & Buvette Un équiibre à trouver A attention des maires, présidents d associations, responsabes de débit de boissons temporaires, bénévoes Edition : Février 2011 Nous sommes ensembe responsabes! La

Plus en détail

Chapitre 2 Les ondes progressives périodiques

Chapitre 2 Les ondes progressives périodiques DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................

Plus en détail

Cours de résistance des matériaux

Cours de résistance des matériaux ENSM-SE RDM - CPMI 2011-2012 1 Cycle Préparatoire Médecin-Ingénieur 2011-2012 Cours de résistance des matériau Pierre Badel Ecole des Mines Saint Etienne Première notions de mécanique des solides déformables

Plus en détail

Si on reparlait de la distribution du crédit sur les lieux de vente...

Si on reparlait de la distribution du crédit sur les lieux de vente... Buetin de 'UFC-QUE CHOSR de 'ÀN Association sans but ucratif, régie par a oi de 1901 et agréée pour ester en Justice affiiée à a Fédération Nationae d'ufc-que Choisir affiiée à 'Union Régionae Rhône-Apes

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

La conception et les spécifications peuvent être modifiées sans préavis.

La conception et les spécifications peuvent être modifiées sans préavis. La conception et es spécifications peuvent être modifiées sans préavis. LTD KXTDA30_FR_200_v.indd 2 3/2/0 3:3:0 PM Système PBX IP hybride KX-TDA30 LTD KXTDA30_FR_200_v.indd 3 3/2/0 3:3:02 PM TABLE DES

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

C 230-... Eco CHAUDIÈRES GAZ AU SOL À CONDENSATION

C 230-... Eco CHAUDIÈRES GAZ AU SOL À CONDENSATION C 2-... Eco CHAUDIÈRES GAZ AU SO À CODESATIO C 2-85 à 21 Eco : de 18 à 2 kw pour chauffage centra à eau chaude et production d ecs par préparateur indépendant Chauffage seu, eau chaude sanitaire par préparateur

Plus en détail

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g. PHYSQ 130: Hooke 1 LOI DE HOOKE: CAS DU RESSORT 1 Introduction La loi de Hooke est fondamentale dans l étude du mouvement oscillatoire. Elle est utilisée, entre autres, dans les théories décrivant les

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

DISQUE DUR. Figure 1 Disque dur ouvert

DISQUE DUR. Figure 1 Disque dur ouvert DISQUE DUR Le sujet est composé de 8 pages et d une feuille format A3 de dessins de détails, la réponse à toutes les questions sera rédigée sur les feuilles de réponses jointes au sujet. Toutes les questions

Plus en détail

Système PBX IP hybride

Système PBX IP hybride Système PBX IP hybride KX-TDA30 La conception et es spécifications peuvent être modifiées sans préavis. FrenchPan_NEW MASTER_FA.indd -3 /6/09 9:0:0 AM Pour a mise en pace d un environnement de communications

Plus en détail

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS David Ryckelynck Centre des Matériaux, Mines ParisTech David.Ryckelynck@mines-paristech.fr Bibliographie : Stabilité et mécanique non linéaire,

Plus en détail

Analyse statique d une pièce

Analyse statique d une pièce Analyse statique d une pièce Contrainte de Von Mises sur une chape taillée dans la masse 1 Comportement d un dynamomètre On considère le dynamomètre de forme globalement circulaire, excepté les bossages

Plus en détail

Passez au gaz et faites des économies dès aujourd hui gasnetworks.ie

Passez au gaz et faites des économies dès aujourd hui gasnetworks.ie Le gaz nature, a soution a moins chère et a pus rapide pour votre entreprise Passez au gaz et faites des économies dès aujourd hui gasnetworks.ie Les avantages financiers du changement au gaz nature Seon

Plus en détail

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU) 0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail