Corrigé du baccalauréat S Pondichéry 13 avril 2011

Dimension: px
Commencer à balayer dès la page:

Download "Corrigé du baccalauréat S Pondichéry 13 avril 2011"

Transcription

1 Corrigé du baccalauréat S Pondichéry avril EXERCICE Commun à tous ls candidats Parti I points. L ax ds ordonnés st asymptot à C au voisinag d ; la fonction étant décroissant sur ] ; + [, la limit quand x tnd vrs d f (x) st +.. D mêm la limit quand x tnd vrs+ d f (x) st.. On n put pas savoir. 4. Sur ] ; [ la fonction différnc st positiv, s annul n, puis st négativ : c st donc l troisièm tablau. Parti II. On a lim = t lim ln(x)=, d où par somm d limits x x x> lim f (x)=. x x> lim x + x = t x x> lim ln(x)=+, donc lim x + f (x)=+. x +. f somm d fonctions dérivabls sur ] ; + [ st dérivabl sur ct intrvall t : f (x)= x + x. Chacun ds trms st positif sur ] ; + [, donc la dérivé st positiv sur ct intrvall, donc la fonction st croissant d moins l infini à plus l infini.. On a d façon évidnt f ()=ln+ =. La fonction étant croissant sur ] ; + [, on a donc : f (x)< sur ] ; [ ; f ()=; f (x)> sur ] ; + [. 4. F somm d fonctions dérivabls sur ] ; + [ st dérivabl t sur ct intrvall : F (x)=ln x+ x x x = ln x+ x = f (x). F st donc un primitiv d f sur ] ; + [.. On vint d voir qu F (x) = f (x) t d après la qustion, f (x) > sur ] ; + [, donc F st croissant sur ct intrvall.

2 6. On a F ()= = t F ()=ln ln=,7. D autr part,6, donc < <. La fonction F st dérivabl donc continu sur [ ; ] : il xist donc un uniqu rélα [; ] tl qu F (α)=. 7. La calculatric donn : F (,9) +, t F (,) + =,6, donc :,9<α<,. Parti III. L ordonné d A st égal à ; il faut donc résoudr l équation : ln x+ = ln x = ln x = (par croissanc d la fonction xponntill) x=. On a donc A ( ; ).. P étant commun aux dux courbs son absciss vérifi : g (x)=h(x) = ln(x)+ f (x)=, d après la parti II. Or dans x ctt parti on a vu qu f s annul n t g ()=h()=. Donc l point commun aux dux courbs st l point P( ; ). [ ]. a. On a vu qu sur ;, f (x), c st-à-dir qu g (x) h(x) (la courb C h st au dssus d la courb C g ), donc A = [h(x) g (x)] dx= f (x) dx. b. On a vu qu un primitiv d f sur ] ; + [, donc n particulir sur [ ; ] st F (x)=x ln(x) ln(x). On a donc : A = [ F (x)] = F ()+F ( + ln( ) ln ( ) = ) = ( ln()) ( ln())=. 4. a. On a vu qu sur [ ; + [, h(x) g (x), donc puisqu t, l air B t st égal à : B t = ln t. t [h(x) g (x)]dx = t f (x)dx= F (t)+f ()= F (t)=tln(t) b. On a vu qu B t = ou ncor t ln(t) lnt = soit F (t)= équation qui a été résolu à la qustion 6 d la parti II t qui a pour solutionα,9. EXERCICE Candidats n ayant pas suivi l nsignmnt d spécialité Parti points Pondichéry avril

3 . a. Soit I l miliu d [BD]. [CI] médian du triangl équilatéral BCD st aussi hautur issu d C. Donc (CI) ou (A I) st prpndiculair à (BD). D mêm [AI] médian du triangl équilatéral ABD st aussi hautur, donc (AI) st prpndiculair à (BD). Or AA BD = AI BD + IA BD = +=. D mêm avc J miliu d [BC], on montr qu (AJ) st prpndiculair à (BC) t (AA ) (ou (JA )) st prpndiculair à (BC). Donc AA BC = AJ BC + JA BC = +=. b. La qustion précédnt a montré qu la droit (AA ) st prpndiculair à dux droits sécants du plan (BCD) : (BD) t (BC) : ll st donc prpndiculair à c plan. Cci démontr donc la propriété (P ). A B C D. On a G = bar. = (par associativité ds trois drnirs points) A A bar. t par propriété du barycntr G appartint à la droit (AA ). On démontr d la mêm façon qu G appartint aux trois autrs médians. Finalmnt ls quatr médians sont concourants n G. Parti II. On a OP = + + = +4+9=4. OQ = ( ) = 6+4+=. Donc la fac OPQ n st pas équilatéral t l tétraèdr n st pas régulir.. On traduit la propriété vctorill : P O+ P Q+ P R = = x = y = z x+ 4 x x = y+ y+ y = z z+ z = Donc P ( ; ; ).. On a M(x ; y ; z) (OQR) ax+ by+ cz+ d =. Puisqu O( ; ; ) (OQR) on a d =. = x = y = z Écrivons qu ls coordonnés d Q t d R vérifint l équation : { { Q(4 ; ; ) (OQR) 4a+ b c = 4a+ b c = R( ; ; ) (OQR) a+ b= 4a+ 6b = d où par somm 8b c= b= c puis n rmplaçant dans la duxièm 8 équation du départ : a= b= c c a= 8 6. On a donc M(x ; y ; z) (OQR) c 8 x+ c y+ cz = 8 Pondichéry avril

4 6 x+ y+ z = x+ y+ 6z= La droit (PP ) st la médian rlativ à la fac (OQR). Ctt droit a pour vctur dirctur : PP ( ; ; ) ou ( ; ; ) ou ncor ( ; ; ). Or un vctur normal au plan (OQR) st n ( ; ; 6) qui n st pas colinéair au vctur PP, c qui signifi qu la droit (PP ) n st pas prpndiculair au plan (OQR). Conclusion : la propriété (P ) d la parti n st pas vrai dans un tétraèdr qulconqu. EXERCICE points Candidats ayant suivi l nsignmnt d spécialité Parti A { z = (x y). Ls points d E ont ds coordonnés qui vérifint l systèm z = (x y) = x y = qui st l équation d la droit y = x dans l plan z =. { z = (x y) Ls points d E ont ds coordonnés qui vérifint l systèm x = z = ( y) qui st l équation d un parabol z= ( y) dans l plan x=. Parti B { z = x y. Ls points d E ont ds coordonnés qui vérifint l systèm z = z = x y = x= ou y = qui sont ls équations ds axs d coordonnés dans l plan horizontal z =. { z = x y. Ls points d E ont ds coordonnés qui vérifint l systèm z = x y = y = si x plan horizontal z =. x qui st l équation d un hyprbol dans l Parti C. Si M(x ; y ; z) E (avc (x ; y ; z) N ), alors z = (x y) = x y. Si son absciss st null, alors z = ( y) = y = y = y =. Finalmnt M( ; ;).. a. On a vu qu ls coordonnés d un point d E vérifint z = (x y) = x y ; n particulir (x y) = x y x + y x y = x y x + y x y = (). Soit d l pgcd d x t d y ; on a x = d x t y = d y avc x t y prmirs ntr ux. En rmplaçant dans l égalité () : d x + d y d x d y = x + y x y = (). Pondichéry 4 avril

5 b. L égalité précédnt s écrit : x y x = y x (y x )= y : ctt drnièr égalité montr qu x divis y, mais ls divisurs prmirs d y étant ls mêms qu cux d y, on n déduit qu x divis y. c. Comm x t y sont prmirs ntr ux la qustion précédnt montr qu x = soit n rmplaçant dans l égalité () : + y y =. d. On a donc un équation du scond dgré ; =9 4= : ls solutions sont donc + t qui n sont ni l un ni l autr ds naturls. Conclusion : l hypothès x st non nul st fauss t d après la qustion. l sul point commun aux dux surfacs st l origin. EXERCICE Commun à tous ls candidats points. On a donc p = p t p = p, donc p +p +p = p +p +p = 6p = p = 6. Il n résult qu p = p = 6 = t p = p = p = 6 =. Rmarqu : il n dvait pas êtr très difficil d voir qu ls probabilités étaint proportionnlls à l air ds scturs, donc à ds angls au cntr d 8 (dux angls droits), un angl d 6 t un angl d pour un total d 6. On a donc p = 8 6 =, p = 6 = t p = 6 6 = a. / / /6 / / /6 6 / / On obtint un total d au moins 8 points n dux lancrs à la 6, 8 t 9 branch. Donc Pondichéry avril /6

6 p (G )= = = 6. b. En déduir p(p). On a p(p)= p (G ) p (G )= = = 4 6 =.. Ls lancrs sont indépndants ; on a un schéma d Brnoulli d paramètrs n= 6 t d probabilité p =. ( ) 6 La probabilité d n gagnr aucun parti st, donc la probabilité d ( ) 6 gagnr au moins un parti st = = a. On a l tablau d loi d probabilité d X suivant : X p(x = x i ) 4 6 b. E(X )= = = = 8,7. Un jouur prd n moynn sur un grand nombr d partis 7 cntims par parti. L ju st défavorabl au jouur Pondichéry 6 avril

Baccalauréat S Métropole 20 juin 2013

Baccalauréat S Métropole 20 juin 2013 Baccalauréat S Métropol 0 juin 0 EXERCICE Commun à tous ls candidats 4 points Puisqu l choix d l arbr s fait au hasard dans l stock d la jardinri, on assimil ls proportions donnés à ds probabilités.. a.

Plus en détail

f n (x) = x n e x. T k

f n (x) = x n e x. T k EXERCICE 3 (7 points) Commun à tous ls candidats Pour tout ntir naturl n supériur ou égal à, on désign par f n la fonction défini sur R par : f n (x) = x n x. On not C n sa courb rprésntativ dans un rpèr

Plus en détail

BTS - groupement B - novembre 2008 - Nouvelle Calédonie

BTS - groupement B - novembre 2008 - Nouvelle Calédonie BTS - groupmnt B - novmbr 8 - Nouvll Calédoni Ercic Ls partis A, B t C sont indépndants. points Un ntrpris produit n grand séri ds véhiculs élctriqus équipés d battris au nicklcadmium. On s propos d étudir

Plus en détail

Baccalauréat S Pondichéry 13 avril 2011

Baccalauréat S Pondichéry 13 avril 2011 EXERCICE 0 points Commun à tous les candidats Partie I Sur le graphique ci-dessous, on a représenté dans un repère orthonormal, les courbes c et c 2 représentatives de deux fonctions f et f 2 définies

Plus en détail

Fonction logarithme exercices corrigés

Fonction logarithme exercices corrigés Trminal S Fonctions Logarithms Vrai-Fau Fonction ln, EPF 6 Equation, Franc 4 4 Dérivés t ln 4 5 Primitivs t ln 6 Calcul d limits 5 6 7 Résolution (in)équations 7 8 Avc ROC 8 9 Dérivation t ncadrmnt 9 Fonction+équation,

Plus en détail

Correction du bac blanc de mathématiques

Correction du bac blanc de mathématiques Corrction du bac blanc d mathématiqus Exrcic (commun à tous ls candidats, point) Rstitution organisé d connaissancs :. Démontrr par récurrnc l inégalité d Brnoulli : pour tout x >, pour n N, (+x) n +nx.

Plus en détail

Dans cette partie, ABCD est un tétraèdre régulier, c'est-à-dire un solide dont les quatre faces sont des triangles équilatéraux.

Dans cette partie, ABCD est un tétraèdre régulier, c'est-à-dire un solide dont les quatre faces sont des triangles équilatéraux. Pondichery Avril 2011 Série S Exercice Partie I Dans cette partie, ABCD est un tétraèdre régulier, c'est-à-dire un solide dont les quatre faces sont des triangles équilatéraux. A D B A C A' est le centre

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

Polynésie 2012 BAC S Correction

Polynésie 2012 BAC S Correction Polynési 1 BAC S Corrction 1 / 6 Exrcic 1 1. a. L point B appartint à la courb Γ donc f() c'st-à-dir a + b Par conséqunt a + b 1 t donc a + b L point C appartint à la courb Γ donc f(5) 5 c st-à-dir 5 +

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

Correction du baccalauréat S (obligatoire) Polynésie 10 juin 2011

Correction du baccalauréat S (obligatoire) Polynésie 10 juin 2011 Corrction du baccalauréat S (obligatoir Polynési 0 juin 0 Exrcic Commun à tous ls candidats points Méthod : L dssin suggèr d considérr la rotation d cntr A t d angl π Son écritur complx st : z z A = i

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

TS Bac blanc n 5 Mai 2016

TS Bac blanc n 5 Mai 2016 TS Bac blanc n 5 Mai 6 Ls raisonnmnts doivnt êtr justifiés t ls calculs détaillés. L barèm st indicatif. La calculatric st autorisé mais ls échangs ntr élèvs sont intrdits. Exrcic 5 pts Parti A : Conditionnmnt

Plus en détail

TES- Correction BAC Blanc Février Mathématiques

TES- Correction BAC Blanc Février Mathématiques TES- Corrction BAC Blanc Févrir 0 - Mathématiqus EXERCICE 5 points Commun à tous ls candidats Un ntrpris pint ds jouts. Pour cla, ll utilis dux machins M t M. La machin M pint un quart d la production.

Plus en détail

Baccalauréat S (obligatoire) Antilles-Guyane septembre 2010

Baccalauréat S (obligatoire) Antilles-Guyane septembre 2010 Baccalauréat S obligatoir) Antills-Guyan sptmbr 00 EXERCICE Commun à tous ls candidats 7 points PARIE A - Rstitution organisé ds connaissancs Soit > 0. Considérons la fonction [ p) ] =. En dérivant cs

Plus en détail

Exemples de questions de sujets d'oraux possibles. Session 2013.

Exemples de questions de sujets d'oraux possibles. Session 2013. Exmpls d qustions d sujts d'oraux possibls. Sssion 0. Complxs. Donnr la ou ls réponss justs. Soit A, B dux points d'affixs rspctivs : a= 5 i 5 t b = i 6 a. Soit n N;. Un argumnt d a n st n b. O appartint

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

Baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé

Baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé Baccalauréat S Antills-Guyan juin 05 Corrigé A. P. M. E. P. EXERCICE Commun à tous ls candidats 6 POINTS. On put calculr par xmpl ls ordonnés ds points d absciss d cs différnts courbs : f ()=ln =0< g 0,05

Plus en détail

Fonctions Numériques, fonctions usuelles.

Fonctions Numériques, fonctions usuelles. Fonctions Numériqus, fonctions usulls.. Fonction constant : Soit b un rél fié. Définition : La fonction constant st la fonction qui à tout rél associ l rél b. la fonction constant st donc la fonction f

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE PSI MATHEMATIQUES 1. n N, α n N.

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE PSI MATHEMATIQUES 1. n N, α n N. SESSION 7 CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE PSI MATHEMATIQUES I Ls suits α t β I. Etud d la suit α I.. α =, α = α =, α = α + =, α 3 = 3α = t α 4 = 4α 3 + = 9. α =, α =, α = α 3 =

Plus en détail

Baccalauréat S Polynésie juin 2012

Baccalauréat S Polynésie juin 2012 Baccalauréat S Polynési juin 1 EXERCICE 1 L plan st rapporté à un rpèr orthonormal On considèr ls points B 1 ; 1 t C 5 ; O ; i ; j. 5 t la droit D d équation y = x. On not f la fonction défini sur R dont

Plus en détail

Correction du devoir de vacances Les suites dans plusieurs situations

Correction du devoir de vacances Les suites dans plusieurs situations L.E.G.T.A. L Chsnoy TB2 21-211 D. Blottièr Mathématiqus Corrction du dvoir d vacancs Ls suits dans plusiurs situations Exrcic 1 : Un pas vrs ls fractals On considèr un carré F 1 d côté d longuur 1. Au

Plus en détail

Baccalauréat S Pondichéry 13 avril 2011

Baccalauréat S Pondichéry 13 avril 2011 Baccalauréat S Pondichéry 13 avril 2011 Le sujet est composé de 3 exercices indépendants. Le candidat doit traiter tous les exercices. EXERCICE 1 Commun à tous les candidats 10 points Partie I Sur le graphique

Plus en détail

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Les trois parties A, B et C sont indépendantes Une fabrique de desserts glacés

Plus en détail

Exercice 1 :(15 points)

Exercice 1 :(15 points) TE/pé TL Elémnts d corrction du D. n 2 du Vndrdi 2 0ctobr 2012 sans documnt, avc calculatric 1h1min Ercic 1 :(1 points) À l occasion d un fstival culturl, un agnc d voyags propos trois typs d transport

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

BACCALAURÉAT LIBANAIS - SG Énoncé

BACCALAURÉAT LIBANAIS - SG Énoncé CONSIGNES À SUIVRE PENDANT L EXAMEN. DURÉE : 4 heures Il y a 6 exercices obligatoires à résoudre. L exercice est noté sur points, l exercice sur points, l exercice 3 sur 3 points, l exercice 4 sur 3 points,

Plus en détail

Au rayon «image et son» d'un grand magasin, un téléviseur et un lecteur de DVD sont en promotion pendant une semaine.

Au rayon «image et son» d'un grand magasin, un téléviseur et un lecteur de DVD sont en promotion pendant une semaine. EXERCICE 5 points Commun tous ls candidats Au rayon «imag t son» d'un grand magasin, un télévisur t un lctur d DVD sont n promotion pndant un smain. Un prsonn s présnt : T st l'évènmnt : «la prsonn achèt

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. 1 ln 1+ = 1. x x. x x. et sh x = e

EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. 1 ln 1+ = 1. x x. x x. et sh x = e Ercic EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. Démontrr qu : lim + ln + =. En déduir la limit suivant : lim + + [On pourra, par mpl, posr X = ] Ercic On considèr du fonctions, notés ch t sh,

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points La maison Ecole d ' Baccalauréat blanc Classe de terminale ES Année scolaire 00-004 Copyright c 004 J.- M. Boucart GNU Free Documentation Licence On veillera à détailler et à rédiger clairement les raisonnements,

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Corrigé Bac ES Spécialité Maths Antilles Guyane 2011

Corrigé Bac ES Spécialité Maths Antilles Guyane 2011 Corrigé Bac ES Spécialité Maths Antilles Guyane 2011 Christian CYRILLE A quoi servent les mathématiques? : C est pour l honneur de l esprit humain? Jacobi 1 Exercice 1-5 points - Commun à tous les candidats

Plus en détail

Première L DS4 quartiles et diagrammes en boîtes 2009-2010

Première L DS4 quartiles et diagrammes en boîtes 2009-2010 Exrcic 1 : Répartition t disprsion ds salairs Soint ls salairs dans trois ntrpriss A, B t C : 1175 1400 1900 2600 2800 2100 1) Calculr dans chaqu cas l salair moyn t l salair médian 2) Qull st la part

Plus en détail

Métropole - Juin 2012 BAC S Correction

Métropole - Juin 2012 BAC S Correction Métropole - Juin 0 BAC S Correction / 7 Eercice. La courbe C est sous l ae des abscisses pour [-3 ;-]. Affirmation vraie. Sur [- ;], f () 0. Donc f est croissante sur cet intervalle. Affirmation vraie

Plus en détail

Cha h p a i p tr t e r e 2 Rep e r p é r s é en e t n a t t a i t on o n d e d s e f o f n o c n ti t on o s n log o i g qu q e u s e

Cha h p a i p tr t e r e 2 Rep e r p é r s é en e t n a t t a i t on o n d e d s e f o f n o c n ti t on o s n log o i g qu q e u s e Chapitr 2 Rprésntation ds fonctions logiqus 26..9 Ch 2 : Rprésntation ds fonctions logiqus Réalisation avc ds intrrupturs : a b +5 V Intrruptur a ouvrt (inactif) : a Intrruptur b frmé (actif) : b a Intrruptur

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Corrigé du baccalauréat S Pondichéry 17 avril 2015

Corrigé du baccalauréat S Pondichéry 17 avril 2015 Corrigé du baccalauréat S Pondichéry 17 avril 015 EXERCICE 1 Commun à tous les candidats Partie A points C 1 j - -1 O ı a 1 1 On sait que e x > 0 quel que soit le réel x, donc 1+e x > 1>0 Le dénominateur

Plus en détail

BACCALAURÉAT BLANC 2013

BACCALAURÉAT BLANC 2013 BACCALAURÉAT BLANC 203 Série S Corrigé Exercice. a) On traduit les données de l énoncé et on représente la situation par un arbre pondéré. PF ) = 2, PF 2) = 3, P F ) = 5 00 = 20, P F 2 ) =,5 00 = 3 3,5,

Plus en détail

Corrigé, bac S, mathématiques

Corrigé, bac S, mathématiques Corrigé, bac S, mathématiques jeudi juin 0 Eercice 4 points Le plan est muni d un repère orthonormé (O; ı ; j) On considère une fonction f dérivable sur l intervalle [ 3; ] On dispose des informations

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Soit f la fonction définie sur l intervalle [1,5 ; 6] par : f (x)=(5x )e x On note C la courbe représentative

Plus en détail

Corrigé du baccalauréat S Centres étrangers 15 juin 2009

Corrigé du baccalauréat S Centres étrangers 15 juin 2009 Durée : 4 heures Corrigé du baccalauréat S Centres étrangers 5 juin 9 EXERCICE 5 points Restitution organisée de connaissances : ) a Démontrer que pb)=pb A)+ p B A b Démontrer que, si les évènements A

Plus en détail

Guide de correction TD 6

Guide de correction TD 6 Guid d corrction TD 6 JL Monin nov 2004 Choix du point d polarisation 1- On décrit un montag mttur commun à résistanc d mttur découplé, c st à dir avc un condnsatur n parallèl sur R. La condition d un

Plus en détail

FONCTIONS EXPONENTIELLES EXERCICES CORRIGES

FONCTIONS EXPONENTIELLES EXERCICES CORRIGES Cours t rcics d mathématiqus FONCTIONS EPONENTIELLES EERCICES CORRIGES Ercic n Résoudr dans ls équations suivants + 7 9 4 4 6 + 6 + 7 ln( ln 8 9 ln Ercic n Détrminr ls racins du polynôm + P + 4 En déduir

Plus en détail

Corrigé de CCP PC 2008 Mathématiques 2

Corrigé de CCP PC 2008 Mathématiques 2 Corrigé d CCP PC 8 Mathématiqus PARTIE I (E s ) st un équation di érntill linéair d ordr dux, à co cints continus sur l intrvall ] [ l co cint d y" n ayant. qas d racin. D arès l théorèm d Cauchy Lischitz,

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Terminale ES Exercices sur les fonctions exponentielles Fiche 1 - Corrigés

Terminale ES Exercices sur les fonctions exponentielles Fiche 1 - Corrigés Trminal ES Exrcics sur ls fonctions xponntills Fich - Corrigés Exrcic : x+ x+ x = x+ ( x+)+ x = x+ x +x = x+ Exrcic : ) Résolvons l'inéuation x+ < x+. On sait u >, donc la fonction xponntill d bas st strictmnt

Plus en détail

Fonction exponentielle

Fonction exponentielle Chapitr 7 Fonction ponntill Sommair 7. Activités......................................................... 04 7.. Eponntill................................................... 04 7.. Qulqus propriétés d

Plus en détail

PRATIQUE DES FONCTIONS NUMÉRIQUES

PRATIQUE DES FONCTIONS NUMÉRIQUES UNIVERSITÉ DE CERGY U.F.R. Economie et Gestion Licence d Économie et Gestion L1 - S1 PRATIQUE DES FONCTIONS NUMÉRIQUES EXAMEN PREMIÈRE SESSION - Janvier 01 - heures Les exercices sont indépendants et peuvent

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble

Plus en détail

Le transistor bipolaire

Le transistor bipolaire L transistor bipolair L'objt d c documnt st d'apportr ls connaissancs t ls méthods nécssairs à la concption d'un étag amplificatur à bas d transistor. On s limitra à l'étud t à l'utilisation du transistor

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S

Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S Correction Devoir commun de mathématiques n o 1 Classes de 1 ère S Durée heures. Calculatrice autorisée. Exercice 1 : Une entreprise italienne de fabrication de scooters veut optimiser les bénéfices de

Plus en détail

Cours fonctions, expressions algébriques

Cours fonctions, expressions algébriques I. Expressions algébriques, équations a) Développement factorisation Développer Développer un produit, c est l écrire sous forme d une somme. Réduire une somme, c est l écrire avec le moins de termes possibles.

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

MATH Pratique des Fonctions Numériques. Livret d exercices III Chapitres 3 & 4 : Continuité - Dérivabilité

MATH Pratique des Fonctions Numériques. Livret d exercices III Chapitres 3 & 4 : Continuité - Dérivabilité UNIVERSITÉ DE CERGY Année 2012-2013 LICENCE d ÉCONOMIE et GESTION Première année - Semestre 1 MATH 101 - Pratique des Fonctions Numériques Livret d exercices III Chapitres 3 & 4 : Continuité - Dérivabilité

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

Mathématiques Bac Blanc TES du jeudi 28 mars 2013

Mathématiques Bac Blanc TES du jeudi 28 mars 2013 Mathématiqus Bac Blanc TES du judi 8 mars 03 (3 hurs) Ls calculatrics sont autorisés (mais aucun formulair prsonnl). La qualité d la rédaction, la clarté d la copi t la précision ds raisonnmnts ntrront

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 011 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Géométrie (barycentre et produit scalaire dans l espace)

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Géométrie (barycentre et produit scalaire dans l espace) Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Géométrie barycentre et produit scalaire dans l espace) Frédéric Demoulin 1 Dernière révision : 24 avril 2011 1. frederic.demoulin

Plus en détail

EXPONENTIELLE : ETUDES DE FONCTIONS. e 1

EXPONENTIELLE : ETUDES DE FONCTIONS. e 1 EXPONENTIELLE : ETUDES DE FONTIONS Pour chacun ds fonctions ci-dssous, détrminr : - l nsmbl d définition I d la fonction ; - ls limits d la fonction au borns d I ; - la dérivé t l sign d la dérivé ; -

Plus en détail

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité)

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité) BACCALAURÉAT BLANC DE MATHÉMATIQUES Terminales ES (Spécialité) Vendredi 7 février 0 8h - h coefficient : 7 Les calculatrices sont autorisées Le sujet est composé de exercices indépendants. Le candidat

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

BACCALAUREAT GENERAL

BACCALAUREAT GENERAL ACCALAUREAT GENERAL Session 2009 MATHÉMATIQUES - Série ES - Enseignement de Spécialité Liban EXERCICE 1 1) 2) C 3) C 4) A Explication 1. Chacun des logarithmes existe si et seulement si x > 4 et x > 2

Plus en détail

Corrigé du baccalauréat S Centres étrangers 16 juin 2011

Corrigé du baccalauréat S Centres étrangers 16 juin 2011 Corrigé du baccalauréat S Centres étrangers 6 juin EXERCICE Commun à tous les candidats 4 points. a. A O A A 4 A 6 A 5 A A On a a a a,5, puis a,75, a 4,65 a 5,6875 et a 6,6565 b. c. Puisque le point A

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

TS Bac blanc n 4 (corrigé) Avril 2016

TS Bac blanc n 4 (corrigé) Avril 2016 TS Bac blanc n (corrigé) Avril 06 Exercice (Pour les non spécialistes) Les parties sont indépendantes. Partie A ) Avec la calculatrice, PX 85 0, La probabilité qu un bocal soit mal rempli est 0,. ) Avec

Plus en détail

Géométrie dans l Espace

Géométrie dans l Espace Géométrie dans l Espace Année scolaire 006/007 Table des matières 1 Vecteurs de l Espace 1.1 Extension de la notion de vecteur à l Espace............................. 1. Calcul vectoriel dans l Espace......................................

Plus en détail

Première S Exercices valeur absolue 2010-2011

Première S Exercices valeur absolue 2010-2011 Première S Exercices valeur absolue 2010-2011 Exercice 1 : Résoudre dans Y, les inéquations suivantes : a) 2 < x + 1 < 3 b) 1 x 3 < 4 2 x 3 > 2 c) x + 4 3 Exercice 2 : On souhaite résoudre dans Y l équation

Plus en détail

Les polynômes du second degré

Les polynômes du second degré Les polynômes du second degré exercices corrigés 12 septembre 2013 Les polynômes du second degré Exercice 1 Exercice 2 Exercice 3 Les polynômes du second degré Exercice 1 Les polynômes du second degré

Plus en détail

Baccalauréat S Antilles-Guyane ჼ septembre 2011

Baccalauréat S Antilles-Guyane ჼ septembre 2011 Baccalauréat S Antilles-Guyane ჼ septembre 011 EXERCICE 1 Commun à tous les candidats ( point) On considère la fonction f définie ]0 ; + [ par : f (x) = x ln x 1. Partie A : Étude d une fonction 1. a.

Plus en détail

Baccalauréat S Métropole 21 juin 2011

Baccalauréat S Métropole 21 juin 2011 Baccalauréat S Métropole 1 juin 011 EXERCICE 1 Les deux parties A et B peuvent être traitées indépendamment. 4 points Les résultats seront donnés sous forme décimale en arrondissant à 10 4. Dans un pays,

Plus en détail

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I L sujt comport 8 pags numérotés d 2 à 9 Il faut choisir t réalisr sulmnt trois ds quatr xrcics proposés Parti A EXERCICE I Donnr ls réponss à ct xrcic dans l cadr prévu à la pag 3 On considèr la fonction

Plus en détail

VIII- Logarithmes, exponentielles, puissances

VIII- Logarithmes, exponentielles, puissances VIII- Logarithms, ponntills, puissancs A l origin, ls logarithms ont été conçus pour rmplacr ls multiplications par ds additions, d façon à facilitr ls calculs. On doit à J. Npr, dans ls annés 1600, la

Plus en détail

Baccalauréat ES Amérique du Nord 30 mai 2013

Baccalauréat ES Amérique du Nord 30 mai 2013 Baccalauréat ES Amérique du Nord 30 mai 03 EXERCICE 4 points Cet exercice est un questionnaire à choix multiples. Chaque question ci-après comporte quatre réponses possibles. Pour chacune de ces questions,

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Boubacar MANÉ. Série d exercices de Mathématiques : L Oasis Des Mathématiques. Étude de fonctions à variable réelle dansr : Énoncé des exercices

Boubacar MANÉ. Série d exercices de Mathématiques : L Oasis Des Mathématiques. Étude de fonctions à variable réelle dansr : Énoncé des exercices Séri d rcics d Mathématiqus : Étud d fonctions à variabl réll dansr : Énoncé ds rcics Ercic Soit la fonction numériqu f défini par : f )= 3+ 5 +. a) Détrminr l nsmbl d définition D f t ls its au borns.

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mathématiques Lycee Gustave Eiffel PTSI 02/03 Chapitre 3 Fonctions usuelles 3.1 Théorème de la bijection Une fonction dérivable sur un intervalle I, strictement monotone déþnit une bijection.

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Baccalauréat ES/L Métropole 12 septembre 2014 Corrigé

Baccalauréat ES/L Métropole 12 septembre 2014 Corrigé Baccalauréat ES/L Métropole 12 septembre 2014 orrigé A. P. M. E. P. Exercice 1 6 points ommun à tous les candidats Avant de réaliser une opération marketing en début de saison, un revendeur de piscines

Plus en détail

M13/5/MATME/SP2/FRE/TZ0/XX. Mathématiques niveau MOYEN épreuve 2. Numéro de session du candidat 0 0. Vendredi 10 mai 2013 (matin)

M13/5/MATME/SP2/FRE/TZ0/XX. Mathématiques niveau MOYEN épreuve 2. Numéro de session du candidat 0 0. Vendredi 10 mai 2013 (matin) 137308 Mathématiques niveau MOYEN épreuve Vendredi 10 mai 013 (matin) 1 heure 30 minutes Numéro de session du candidat 0 0 Code de l examen 1 3 7 3 0 8 Instructions destinées aux candidats Écrivez votre

Plus en détail

Exercices corrigés sur la dérivation dans R

Exercices corrigés sur la dérivation dans R Exercices corrigés sur la dérivation dans R Exercice : déterminer le nombre dérivé d une fonction Soit f la fonction définie sur R par f(x) = x +x.. En utilisant la définition du nombre dérivé, montrer

Plus en détail

Correction du baccalauréat S Polynésie 10 juin 2010

Correction du baccalauréat S Polynésie 10 juin 2010 Correction du baccalauréat S Polynésie 0 juin 00 Exercice Commun à tous les candidats. Le plan complexe est rapporté à un repère orthonormal direct O, u, ) v. 5 points Prérequis Partie A - Restitution

Plus en détail

Corrigé Pondichéry 1999

Corrigé Pondichéry 1999 Corrigé Pondichéry 999 EXERCICE. = 8 = i ). D'où les solutions de l'équation : z = + i et z = z = i. a. De manière immédiate : z = z = b. Soit θ la mesure principale de arg z : cos θ = Par suite arg z

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

Correction Baccalauréat S Amérique du Nord Mai 2008 http ://www.maths-express.com

Correction Baccalauréat S Amérique du Nord Mai 2008 http ://www.maths-express.com Correction Baccalauréat S Amérique du Nord Mai 28 http ://www.maths-express.com Exercice. Voir la figure finale à la fin de l exercice! 2. (a) Le cercle Γ est l ensemble des points M du plan tels que AM

Plus en détail

Fonctions affines. 2 Signe d une fonction affine 18 2.1 activité... 19 2.2 corrigé activité... 20

Fonctions affines. 2 Signe d une fonction affine 18 2.1 activité... 19 2.2 corrigé activité... 20 Fonctions affines Table des matières 1 généralités : (images, formule, variations, tableau de valeurs, courbe, équations, inéquations) 2 1.1 activité............................................... 3 1.2

Plus en détail

Fonctions hyperboliques et applications réciproques

Fonctions hyperboliques et applications réciproques Chapitre III Fonctions hyperboliques et applications réciproques A Fonctions hyperboliques directes A. Sinus hyperbolique et cosinus hyperbolique On va définir de nouvelles fonctions inspirées notamment

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de Terminale ES 2 Table des matières 1 Équations de droites. Second degré 7 1.1 Équation de droite.................................. 7 1.2 Polynôme du second degré..............................

Plus en détail

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Corrigé

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Corrigé Baccalauréat S Nouvelle-Calédonie 17 novembre 014 Corrigé A. P. M. E. P. Exercice 1 Commun à tous les candidats Une fabrique de desserts glacés dispose d une chaîne automatisée pour remplir des cônes de

Plus en détail

Cours de mathématiques Terminale S Enseignement obligatoire. Jean-Paul Widehem 2009-2010 Lycée Roland Garros

Cours de mathématiques Terminale S Enseignement obligatoire. Jean-Paul Widehem 2009-2010 Lycée Roland Garros Cours de mathématiques Terminale S Enseignement obligatoire Jean-Paul Widehem 2009-2010 Lycée Roland Garros Table des matières partie 1. Récurrence et suites 1 Chapitre 1. Raisonnement par récurrence

Plus en détail

La fonction carré Cours

La fonction carré Cours La fonction carré Cours CHAPITRE 1 : Définition CHAPITRE 2 : Sens de variation CHAPITRE 3 : Parité et symétrie CHAPITRE 4 : Représentation graphique CHAPITRE 5 : Equation du type CHAPITRE 6 : Inéquation

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S Lycée Municipal d Adultes de la ville de Paris Mardi avril 014 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 4 HEURES Les calculatrices sont AUTRISÉES obligatoire Coefficient : 7 Le

Plus en détail