Rapport Technique No. GIDE Soyons un peu logiques! par. Jean-Marc BERNARD GIDE GIDE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Rapport Technique No. GIDE-01-2013. Soyons un peu logiques! par. Jean-Marc BERNARD GIDE GIDE"

Transcription

1 Rapport Technique No Soyons un peu logiques! par Jean-Marc BERNARD 17 rue La Noue Bras de Fer Nantes, France 28 février 2014

2 Soyons un peu logiques! Jean-Marc BERNARD 28 février 2014 Résumé Dans ce texte, nous étudions un cas réel de Trade-off (méthode CBC) soumis par un de nos clients, dans lequel les prohibitions envisagées initialement ont des conséquences logiques inattendues : elles conduisent à interdire certaines modalités des attributs. Nous donnons quelques pistes pour une analyse logique générale des prohibitions dans ce contexte. Le contexte Dans les études de marché, les méthodes de Trade-off sont couramment utilisées pour mesurer l importance relative de divers attributs caractérisant des produits existants ou futurs, et l importance relative des modalités de ces attributs. Une méthode particulière l analyse CBC (i.e. Choice Based Conjoint analysis) consiste à présenter à chaque répondant une série de planches, e.g. 10 planches. Chaque planche est composée de plusieurs produits, e.g. 3 produits, parmi lesquels le répondant doit choisir son produit préféré. Les produits sont eux-même définis en termes d attributs, chacun pouvant prendre plusieurs valeurs parmi un ensemble de modalités. Prenons l exemple de 3 attributs, A, B et C, ayant respectivement 4, 5, et 3 modalités, A = {a1,a2,a3,a4} B = {b1,b2,b3,b4,b5} C = {c1, c2, c3} Un produit possible pourra être par exemple, i.e. tel que A = a1, B = b3 et C = c2. p1 = a1b3c2, Prohibitions entre modalités S il n y a aucune incompatibilité entre les modalités des attributs, alors on pourra construire 60 = produits possibles, dans cet exemple. Mais il arrive souvent que certaines combinaisons soient impossibles logiquement, pratiquement ou économiquement. On définit alors une liste de prohibitions, i.e. des combinaisons de modalités qui ne doivent pas survenir dans les produits présentés. Par exemple, dire que a4b2 est prohibé signifie qu aucun produit ne peut être tel que A = a4 et B = b2 simultanément. Une façon simple, mais fastidieuse, de spécifier les prohibitions consisterait à lister tous les produits prohibés, par exemple a4b2c1, a4b2c2, a4b2c3. Mais il est en général plus efficace et plus compact d indiquer une liste de combinaisons prohibées, ici a4b2. De même 1

3 a1b3c1, a2b3c1, a3b3c1, a4b3c1 peut s abréger en b3c1. Mais cette spécification doit être réalisée avec certaines précautions, sans lesquelles des conséquences inattendues peuvent subvenir. C est précisemment l objet de ce texte. Un exemple réel Je reprend un cas réel que nous avons eu à traiter récemment en le simplifiant. Il y a trois attributs initiaux I, J et K, avec 7, 5 et 6 modalités respectivement. A un certain stade, les prohibitions suivantes avaient été envisagées, chacune étant exprimée sur une paire d attributs : Numéro Attributs Combinaisons concernés prohibées (P1) I*J i7j[23] (P2) I*K i[123456]k6 (P3) i7k[12345] (P4) J*K j[23]k[12345] (P5) j[145]k6 où j[23] désigne J = j2 ou J = j3 ; autrement dit la prohibition i7j[23] équivaut à prohiber tous les produits contenant soit i7j2, soit i7j3. Une particularité de cet exemple est que chaque prohibition qui fait intervenir l attribut I porte soit sur i7, soit sur i[123456] i.e. l ensemble des modalités autres que i7. Un phénomène analogue se produit pour J et K. Ainsi, en effectuant un recodage binaire de chaque attribut initial, a1 = i7 et a2 = i[123456], b1 = j[23] et b2 = j[145], et c1 = k6 et c2 = k[12345], les prohibitions précédentes peuvent se ré-écrire plus simplement en fonction des attributs binaires A, B et C : Numéro Attributs Combinaisons concernés prohibées (P1) A*B a1b1 (P2) A*C a2c1 (P3) a1c2 (P4) B*C b1c2 (P5) b2c1 C est une spécificité de cet exemple que toutes les prohibitions peuvent se ré-exprimer en termes d attributs binaires. De ce fait, son analyse en est simplifiée, mais la démarche générale présentée par la suite pourrait s appliquer à n importe quel autre cas, à n importe quelle liste de prohibitions. Gare aux prohibitions Il ne sera sans doute pas évident à chacun, de prime abord, que ces cinq prohibitions prises conjointement aboutissent en fait à dire que a1 est prohibé, ainsi que b1, et ainsi que c1. En 2

4 conséquence, des 8 combinaisons a priori possibles de A, B et C, seule a2b2c2 se révèle en fait valide. Un peu de logique formelle nous permettra de nous en rendre compte. Pour celà, je précise d abord quatre règles de logique qui sont nécessaires pour la suite : (R1) x = x = (R2) (x et y) = z x = (z ou y) (R3) (x = y) et (y = z) = x = z (R4) x ou x Ici x, y et z désignent des expressions logiques qui peuvent être vraies ou fausses, = se lit égal ou est, se lit faux, et se lit non- et désigne la négation (contraire) d une expression. Le symbole = se lit implique et exprime qu une expression en implique une autre. Enfin, le symbole se lit équivaut à et indique que deux énoncés sont équivalents 1. De façon plus intuitive, ces règles peuvent s interpréter comme suit : La règle (R1) est une version du raisonnement par l absurde : si, à partir d une expression x, on aboutit (= ) à quelque chose de faux ( ), alors x est lui-même faux (x = ). La règle (R2) permet une réécriture des implications ; nous l utiliserons avec z =. La règle (R3) exprime la transitivité des implications. Enfin (R4) est une simple règle de simplification. En quoi ces règles peuvent-elles nous servir ici? Il suffit d assimiler une modalité-composée, e.g. a1c2, à une expression logique, a1 et c2, et de définir sa prohibition par : a1c2 =. Chaque prohibition devient alors un enoncé logique, une liste de prohibitions devient une conjonction ( et ) d énoncés logiques, et toutes les règles de la logique peuvent alors s appliquer. Le choix de règles que nous venons de définir conduit à ce que toutes les prohibitions peuvent être exprimées en termes d implication entre modalités. Ainsi, à l aide du jeu restreint de règles ci-avant, la prohibition (P3) portant sur a1c2 peut en effet s écrire : a1c2 = a1c2 = par (R1) a1 = ( ou c2) par (R2) a1 = c1 par (R4) en utilisant le fait que, pour un attribut binaire, e.g. C = {c1,c2}, c2 = c1 et c1 = c2. Intuitivement, dire que a1c2 est prohibé signifie qu on ne peut avoir simultanément a1 et c2, et donc que si on a a1 alors on a nécessairement le contraire de c2, c est-à-dire c1. De même, la prohibition (P5), b2c1 = peut se ré-écrire c1 = b1, et la prohibition (P1), a1b1 = se ré-écrit b1 = a1. En mettant bout-à-bout les trois implications obtenues, et à l aide de (R3), on aboutit à : a1 = c1 = b1 = a1, et donc à a1 = a1 ou bien encore, en utilisant à nouveau les règles (R2) et (R3), à a1 = soit a1 =, ce qui signifie que a1 est prohibé. Puisque la prohibition (P2), a2c1 = peut s écrire c1 = a1, on obtient c1 = a1 =, d où par (R3), c1 = et c1 est donc lui aussi prohibé. Enfin (P4), b1c2 = donne b1 = c1 d où b1 = et b1 est prohibé également. 1 On peut vérifier la validité de chaque règle à l aide de tables de vérité ; on utilise pour celà les tables de vérité associées aux opérateurs de base : négation, et, ou (inclusif), implication =. Par exemple, pour la règle (R1), x peut avoir les valeurs V(rai) ou F(aux); l énoncé x = vaut alors respectivement soit F soit V; et l énoncé x = vaut alors respectivement soit F soit V. Ainsi, quelle que soit la valeur de vérité de x, V ou F, les deux énoncés x = et x = ont la même valeur de vérité, F ou V respectivement ; ils sont donc logiquement équivalents. 3

5 Vision alternative Tout ce qui vient d être dit peut alternativement, et de façon équivalente, être exprimé sous une forme proche des tables de vérité de la logique. Pour chacune des 8 combinaisons des attributs, A, B et C, possibles, on a indiqué laquelle ou lesquelles des prohibitions P1-P5 la prohibait ( x ) ou non ( ). Les deux dernières colonnes indiquent les combinaisons prohibées lorsque P1, P3 et P5 (resp. P1-P5) sont considérées conjointement. Attributs Prohibitions Conjointement A B C P1 P2 P3 P4 P5 P1,P3,P5 P1-P5 a1b1 a2c1 a1c2 b1c2 b2c1 a1 b1 c1 x x x a1 b1 c2 x x x x x a1 b2 c1 x x x a1 b2 c2 x x x a2 b1 c1 x x a2 b1 c2 x x a2 b2 c1 x x x x a2 b2 c2 On y lit en particulier que c est la conjonction des prohibitions (P1), (P3) et (P5) qui conduit à prohiber a1. En effet, la prise en compte conjointe de ces trois prohibitions, conduit à prohiber (entre autres) les 4 premières combinaisons de A, B, et C de ce tableau, soit toutes celles qui contiennent la modalité a1. Et on retrouve bien évidemment la conclusion générale précédente, à savoir que seule la combinaison a2b2c2 reste valide lorsque les cinq prohibitions sont intégrées. Conclusions Aucune des prohibitions spécifiées P1-P5 n interdit à elle-seule la modalité a1. Comme on vient de le voir, la prohibition de a1 se fait indirectement par la prise en considération conjointe de P1, P3 et P5. De même, la modalité b1 se trouve interdite par la conjonction de P1, P2 et P4, et la modalité c1 par la conjonction de P1, P2 et P5. C est pour cette raison la multiplicité des prohibitions initiales à prendre simultanément en compte, que les prohibitions induites sont difficilement identifiables de prime abord. Dans le cas précis de cet exemple, au vu des conséquences imprévues des prohibitions initiales, le client a été conduit à finalement réduire la liste des prohibitions à appliquer pour pouvoir mettre en oeuvre le trade-off. En conclusion, la prise en compte conjointe de plusieurs contraintes peut avoir des répercussions dont on ne se rend pas forcément compte à première vue. Il peut être nécessaire de procéder à une analyse fine et complète des implications logiques de ces contraintes, telle qu elle a été esquissée ici. Sur un exemple, nous avons montré comment on pouvait explorer toutes les conséquences d un conjonction de prohibitions. La première approche nous semble plus intuitive, dans la mesure où elle met en avant le fait que toute prohibition ou liste de prohibitions peut s exprimer par une conjonction d implications logiques, chacune facilement interprétable. La seconde approche, basée sur les tables de vérités, assure une prise en compte exhaustive des contraintes et ce de façon simple, et a l avantage d être facilement automatisable. Précisons qu un outil logiciel de permet de générer automatiquement le tableau ci-avant à partir de la liste des prohibitions. 4

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

Vidéo partie 1. Logique Vidéo partie 2. Raisonnements Exercices Logique, ensembles, raisonnements

Vidéo partie 1. Logique Vidéo partie 2. Raisonnements Exercices Logique, ensembles, raisonnements Exo7 Logique et raisonnements Vidéo partie 1. Logique Vidéo partie 2. Raisonnements Exercices Logique, ensembles, raisonnements Quelques motivations Il est important d avoir un langage rigoureux. La langue

Plus en détail

VI- Des transistors aux portes logiques. Conception de circuits

VI- Des transistors aux portes logiques. Conception de circuits 1 VI- Des transistors aux portes logiques. Conception de circuits Nous savons que l ordinateur traite uniquement des instructions écrites en binaire avec des 0 et des 1. Nous savons aussi qu il est formé

Plus en détail

2.4 Représentation graphique, tableau de Karnaugh

2.4 Représentation graphique, tableau de Karnaugh 2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables

Plus en détail

L enseignement de l algorithmique au Lycée

L enseignement de l algorithmique au Lycée L enseignement de l algorithmique au Lycée Sisteron 12 novembre 2009 Fernand Didier didier@irem.univ-mrs.fr Approche naïve C est une méthode, une façon systématique de procéder, pour faire quelque chose

Plus en détail

Leçon 1: les entiers

Leçon 1: les entiers Leçon 1: les entiers L ensemble N des entiers naturels Compter, dresser des listes, classer et comparer des objets interviennent dans de multiples activités humaines. Les nombres entiers naturels sont

Plus en détail

Algèbre de Boole. Chapitre. 2.1 Notions théoriques

Algèbre de Boole. Chapitre. 2.1 Notions théoriques Chapitre 2 Algèbre de Boole G oerge Boole (1815-1864), mathématicien autodidacte anglais, a développé une algèbre permettant de manipuler les propositions logiques au moyen d équations mathématiques où

Plus en détail

Factorisation Factoriser en utilisant un facteur commun Fiche méthode

Factorisation Factoriser en utilisant un facteur commun Fiche méthode Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en

Plus en détail

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010 N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES 1 Les énoncés La plupart des phrases que l on rencontre dans un livre

Plus en détail

Corrigé de l examen partiel du 19 novembre 2011

Corrigé de l examen partiel du 19 novembre 2011 Université Paris Diderot Langage Mathématique (LM1) Département Sciences Exactes 2011-2012 Corrigé de l examen partiel du 19 novembre 2011 Durée : 3 heures Exercice 1 Dans les expressions suivantes, les

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Algèbre de Boole - Fonctions Booléennes

Algèbre de Boole - Fonctions Booléennes Architecture des ordinateurs Licence Informatique - Université de Provence Jean-Marc Talbot Algèbre de Boole - Fonctions Booléennes jtalbot@cmi.univ-mrs.fr L3 Informatique - Université de Provence () Architecture

Plus en détail

NOTES DE COURS LA MÉTHODE DES ARBRES POUR LE CALCUL DES PROPOSITIONS

NOTES DE COURS LA MÉTHODE DES ARBRES POUR LE CALCUL DES PROPOSITIONS NOTES DE COURS L MÉTHODE DES RRES POUR LE CLCUL DES PROPOSITIONS JOSEPH VIDL-ROSSET TLE DES MTIÈRES 1. L essentiel sur la méthode des arbres 1 1.1. Méthode sémantique ou syntaxique? 1 1.2. Le comment et

Plus en détail

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01 Eo7 Dérivée d une fonction Vidéo partie. Définition Vidéo partie. Calculs Vidéo partie 3. Etremum local, théorème de Rolle Vidéo partie 4. Théorème des accroissements finis Eercices Fonctions dérivables

Plus en détail

STAT0162-1 Analyse statistique de données qualitatives et quantitatives en sciences sociales. Transparents Philippe Lambert

STAT0162-1 Analyse statistique de données qualitatives et quantitatives en sciences sociales. Transparents Philippe Lambert STAT0162-1 Analyse statistique de données qualitatives et quantitatives en sciences sociales Transparents Philippe Lambert http : //www.statsoc.ulg.ac.be/quali.html Institut des Sciences Humaines et Sociales

Plus en détail

BASES DU RAISONNEMENT

BASES DU RAISONNEMENT BASES DU RAISONNEMENT P. Pansu 10 septembre 2006 Rappel du programme officiel Logique, différents types de raisonnement. Ensembles, éléments. Fonctions et applications. Produit, puissances. Union, intersection,

Plus en détail

Problèmes de Mathématiques Filtres et ultrafiltres

Problèmes de Mathématiques Filtres et ultrafiltres Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire

Plus en détail

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Roxane Duroux 1 Cadre de l étude Cette étude s inscrit dans le cadre de recherche de doses pour des essais cliniques

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Dans cette cinquième séance, nous continuons l exploration des algorithmes de type Programmation Dynamique.

Plus en détail

Test de sélection du 4 juin 2013

Test de sélection du 4 juin 2013 Test de sélection du 4 juin 2013 Vous étiez 270 candidat-e-s à ce test de sélection, et 62 d entre vous (23%) participeront au stage olympique de Montpellier, du 19 au 29 août 2013, dont 12 filles : la

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Représentation des nombres entiers et réels. en binaire en mémoire

Représentation des nombres entiers et réels. en binaire en mémoire L3 Mag1 Phys. fond., cours C 15-16 Rep. des nbs. en binaire 25-09-05 23 :06 :02 page 1 1 Nombres entiers 1.1 Représentation binaire Représentation des nombres entiers et réels Tout entier positif n peut

Plus en détail

Présentation du logiciel Xcas

Présentation du logiciel Xcas Présentation du logiciel Xcas Xcas est un logiciel très complet qui permet d effectuer : Du calcul numérique, valeur exactes ou approchées ; Du calcul formel, du plus simple, développer factoriser jusqu

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Chapitre 2 : Représentation des nombres en machine

Chapitre 2 : Représentation des nombres en machine Chapitre 2 : Représentation des nombres en machine Introduction La mémoire des ordinateurs est constituée d une multitude de petits circuits électroniques qui ne peuvent être que dans deux états : sous

Plus en détail

CAC, DAX ou DJ : lequel choisir?

CAC, DAX ou DJ : lequel choisir? CAC, DAX ou DJ : lequel choisir? 1. Pourquoi cette question Tout trader «travaillant 1» sur les indices s est, à un moment ou un autre, posé cette question : «je sais que la tendance est bien haussière

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

Construction d un site WEB

Construction d un site WEB Construction d un site WEB 1 Logique binaire 1: Les systèmes de numération Un ordinateur est un appareil électronique. Deux tensions sont majoritairement présentes dans ses circuits électroniques : 0V

Plus en détail

Université Bordeaux 1 Master d informatique UE Bases de Données Sujet et correction de l examen du 27 mai 2004 8h00 9h30 (sans documents)

Université Bordeaux 1 Master d informatique UE Bases de Données Sujet et correction de l examen du 27 mai 2004 8h00 9h30 (sans documents) Numéro d anonymat: 1 Université Bordeaux 1 Master d informatique UE Bases de Données Sujet et correction de l examen du 27 mai 2004 8h00 9h30 (sans documents) Sauf mention contraire en caractères gras,

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Inégalités. c a + b 3 2,

Inégalités. c a + b 3 2, DOMAINE : Géométrie AUTEUR : Margaret BILU NIVEAU : Avancé STAGE : Montpellier 03 CONTENU : Eercices Inégalités - Quelques inégalités secondaires, mais utiles - Proposition. (Inégalité de Nesbitt) Soient

Plus en détail

La revalorisation des droits à la retraite avant leur liquidation différences entre les régimes de base et les régimes complémentaires

La revalorisation des droits à la retraite avant leur liquidation différences entre les régimes de base et les régimes complémentaires CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 11 février 2015 à 9 h 30 «La revalorisation des pensions et des droits à la retraite : problématique et résultats de projection» Document N 5 Document

Plus en détail

Programme du Math1. Chapitre 1. 22/09/2013 بالتوفيق. Math1 L1 Semestre 1 SM ST. Bibliographie: 1. Notions de Logique. 2. Ensembles

Programme du Math1. Chapitre 1. 22/09/2013 بالتوفيق. Math1 L1 Semestre 1 SM ST. Bibliographie: 1. Notions de Logique. 2. Ensembles /09/013 Programme du Math1 Université des Sciences et de la Technologie Houari Boumediene Faculté de Mathématiques Math1 L1 Semestre 1 SM ST Dr M ZIDANI-BOUMEDIEN 1 Ensembles, Relations, Applications Structures

Plus en détail

Fonctions logiques élémentaires

Fonctions logiques élémentaires Fonctions logiques élémentaires II. Systèmes binaires et algèbre de oole ctuellement, alors que les ordinateurs analogiques sont encore du domaine de la recherche, les informations traitées par les systèmes

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre 1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deux modes de représentation des sous-espaces vectoriels Il existe deux modes

Plus en détail

Tel que mentionné à la section 9.5, les probabilités utilisées dans les arbres de décision sont des probabilités conditionnelles.

Tel que mentionné à la section 9.5, les probabilités utilisées dans les arbres de décision sont des probabilités conditionnelles. 9A Probabilités conditionnelles et théorème de Bayes Probabilités conditionnelles Tel que mentionné à la section 9.5, les probabilités utilisées dans les arbres de décision sont des probabilités conditionnelles.

Plus en détail

1 Diverses actualisation

1 Diverses actualisation durée : 2 heures Nom de l enseignant : M. Chassagnon NB : documents et calculatrices autorisées Les exercices, sont à faire sur le sujet d examen. Il est demandé de répondre aux questions oui/non type

Plus en détail

Logigrille - Logigramme

Logigrille - Logigramme LOGIGRILLE - LOGIGRAMME Fichier.pdf du cours en vidéo du même nom Logigrille - Logigramme Niveau difficile Ce cours propose des techniques de résolution des logigrilles de niveau difficile. 1 L idée générale

Plus en détail

Cours/TD n 3bis : les boucles

Cours/TD n 3bis : les boucles Cours/TD n 3bis : les boucles Découpons le problème Nous avons plusieurs utilisations des boucles C est précisément ce qui rend difficile leur création. Vu la difficulté, nous allons séparer les différentes

Plus en détail

Théorie de l information : historique

Théorie de l information : historique Théorie de l information : historique Développée dans les années quarante par Claude Shannon. Objectif : maximiser la quantité d information pouvant être transmise par un canal de communication imparfait.

Plus en détail

Circuits séquentiels. Chapitre 6. 6.1 Circuits séquentiels

Circuits séquentiels. Chapitre 6. 6.1 Circuits séquentiels Chapitre 6 Circuits séquentiels Plusieurs circuits utilisés dans la vie courante ont besoin de mémoire. Ce chapitre présente les méthodes de base de stockage d information. Les circuits combinatoires présentés

Plus en détail

Devoir surveillé n 1 : correction

Devoir surveillé n 1 : correction E1A-E1B 013-01 Devoir surveillé n 1 : correction Samedi 8 septembre Durée : 3 heures. La calculatrice est interdite. On attachera une grande importance à la qualité de la rédaction. Les questions du début

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

Exos corrigés darithmétique...classe : TS-Spé. Prof. MOWGLI Ahmed. Année scolaire 2015-2016

Exos corrigés darithmétique...classe : TS-Spé. Prof. MOWGLI Ahmed. Année scolaire 2015-2016 Exos corrigés darithmétique...classe : TS-Spé Prof. MOWGLI Ahmed Année scolaire 2015-2016 1 Pour des cours particuliers par petits groupes de 3 ou 4 élèves en maths et/ou physique-chimie, veuillez me contacter.

Plus en détail

CONDITIONS NÉCESSAIRES ET DÉPENDANCE EXISTENTIELLE

CONDITIONS NÉCESSAIRES ET DÉPENDANCE EXISTENTIELLE CONDITIONS NÉCESSAIRES ET DÉPENDANCE EXISTENTIELLE Introduction Le concept de condition nécessaire est largement utilisé en philosophie, quelquefois explicitement pour définir d autres concepts importants.

Plus en détail

Équations et inéquations du 1 er degré

Équations et inéquations du 1 er degré Équations et inéquations du 1 er degré I. Équation 1/ Vocabulaire (rappels) Un équation se présente sous la forme d'une égalité constituée de nombres, de lettres et de symboles mathématiques. Par exemple

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

Exemple. Il ne faudra pas confondre (101) 2 et (101) 10 Si a 0,a 1, a 2,, a n sont n+1 chiffres de 0 à 1, le

Exemple. Il ne faudra pas confondre (101) 2 et (101) 10 Si a 0,a 1, a 2,, a n sont n+1 chiffres de 0 à 1, le Chapitre I - arithmé La base décimale Quand on représente un nombre entier, positif, on utilise généralement la base 10. Cela signifie que, de la droite vers la gauche, chaque nombre indiqué compte 10

Plus en détail

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits Architecture des ordinateurs TD1 - Portes logiques et premiers circuits 1 Rappel : un peu de logique Exercice 1.1 Remplir la table de vérité suivante : a b a + b ab a + b ab a b 0 0 0 1 1 0 1 1 Exercice

Plus en détail

Base : une axiomatique

Base : une axiomatique Autour des groupes de réflexions Master 2 Mathématiques fondamentales Cours : Michel Broué Université Paris VII Denis Diderot TD : Vincent Beck Année 2005 2006 Base : une axiomatique a) D après (i), on

Plus en détail

Second degré : Résumé de cours et méthodes

Second degré : Résumé de cours et méthodes Second degré : Résumé de cours et méthodes 1 Définitions : DÉFINITIN n appelle trinôme du second degré toute fonction f définie sur R par f () = a + b + c (a,b et c réels avec a 0). Remarque : Par abus

Plus en détail

Analyse de la variance à deux facteurs

Analyse de la variance à deux facteurs 1 1 IRMA, Université Louis Pasteur Strasbourg, France Master 1 Psychologie du développement 06-10-2008 Contexte Nous nous proposons d analyser l influence du temps et de trois espèces ligneuses d arbre

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

Électronique Numérique

Électronique Numérique Électronique Numérique Séance 6 Logique combinatoire Pr. Khalid ASSALAOU Plan Circuits logiques combinatoires de base Conception de circuits logiques combinatoires Propriété universelle du NON-ET et NON-OU

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite) Modèles de Markov et bases de données. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite) Modèles de Markov et bases de données. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite) Modèles de Markov et bases de données Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance vocale

Plus en détail

Extrait de cours maths 3e. Multiples et diviseurs

Extrait de cours maths 3e. Multiples et diviseurs Extrait de cours maths 3e I) Multiples et diviseurs Multiples et diviseurs Un multiple d'un nombre est un produit dont un des facteurs est ce nombre. Un diviseur du produit est un facteur de ce produit.

Plus en détail

Licence de Sciences et Technologies. Fiche de cours 1 - Nombres réels.

Licence de Sciences et Technologies. Fiche de cours 1 - Nombres réels. Licence de Sciences et Technologies EM21 - Analyse Fiche de cours 1 - Nombres réels. On connaît les ensembles suivants, tous munis d une addition, d une multiplication, et d une relation d ordre compatibles

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

CHAP 2 TABLE DE VÉRITÉ - ALGÈBRE DE BOOLE

CHAP 2 TABLE DE VÉRITÉ - ALGÈBRE DE BOOLE 22 CHAP 2 TABLE DE VÉRITÉ - ALGÈBRE DE BOOLE rappel du chap. : -on emploie un système binaire limité à 2 états, -problème: étant donné une relation entrée/sortie binaire, faire le design du hardware qui

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

=FONCTION(DONNEE1;DONNEE2;DONNEE3;.)

=FONCTION(DONNEE1;DONNEE2;DONNEE3;.) EXCEL 2010 Page 1/9 Les formules 03 EXCEL LES FONCTIONS Pour toutes les formules, on va utiliser ce que l'on appelle des «fonctions». Ce sont des mots écrits en majuscule dans les formules et qui sont

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Introduction a la recherche d information Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département

Plus en détail

UNIVERSITE PAUL SABATIER 2008/2009. Le déterminant d une matrice carrée à deux lignes et colonnes A = définition le nombre réel (ou complexe)

UNIVERSITE PAUL SABATIER 2008/2009. Le déterminant d une matrice carrée à deux lignes et colonnes A = définition le nombre réel (ou complexe) UNIVERSITE PAUL SABATIER 2008/2009 YjY L1 - PCP - DETERMINANTS (COURS-EXERCICES) YjY 1 Déterminant, définition, propriètés Le déterminant d une matrice carrée à deux lignes et colonnes A = définition le

Plus en détail

Numération. On sait que dans 342 381, le chiffre 4 ne vaut pas 4 mais 40 000... Ainsi :

Numération. On sait que dans 342 381, le chiffre 4 ne vaut pas 4 mais 40 000... Ainsi : Numération Numération. 1 Les systèmes de numération 1.1 Le système décimal. 1.1.1 Les chiffres. Le système décimal est le système d écriture des nombres que nous utilisons habituellement dans la vie courante.

Plus en détail

Evaluer des élèves de Seconde par compétences en Sciences Physiques

Evaluer des élèves de Seconde par compétences en Sciences Physiques Evaluer des élèves de Seconde par compétences en Sciences Physiques Introduction Depuis quelques années, le terme de «compétences» s installe peu à peu dans notre quotidien ; aussi bien dans la vie de

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

INFO-F-302 Informatique Fondamentale Exercices - Modélisation en SAT

INFO-F-302 Informatique Fondamentale Exercices - Modélisation en SAT INFO-F-302 Informatique Fondamentale Exercices - Modélisation en SAT Prof. Emmanuel Filiot Exercice 1 Modélisation autour des mots Dans ce problème, on va travailler sur les mots, vus de manière générale

Plus en détail

I. Qu est-ce qu une probabilité?

I. Qu est-ce qu une probabilité? I. Qu est-ce qu une probabilité? 1. Première approche : Une probabilité en mathématique est un chiffre compris entre 0 et 1. Ce chiffre représente une évaluation du caractère probable d un événement. Si

Plus en détail

À propos des limites inductives filtrantes et du théorème de Lazard sur les modules plats

À propos des limites inductives filtrantes et du théorème de Lazard sur les modules plats 1 À propos des limites inductives filtrantes et du théorème de Lazard sur les modules plats Cette note est écrite comme une section 7 du chapitre VIII du livre Algèbre Commutative. Méthodes Constructives.

Plus en détail

Probabilités. Chapitre 2 : Le modèle probabiliste - Indépendance d évènements. Julian Tugaut. 15 janvier 2015

Probabilités. Chapitre 2 : Le modèle probabiliste - Indépendance d évènements. Julian Tugaut. 15 janvier 2015 Indépendance de deux évènements Chapitre 2 : Le modèle probabiliste - Indépendance d évènements 15 janvier 2015 Sommaire 1 Indépendance de deux évènements 2 Indépendance de deux évènements Approche intuitive

Plus en détail

Ajout de cartes vitales dans ADAGIO

Ajout de cartes vitales dans ADAGIO Ajout de cartes vitales dans ADAGIO La prise en compte des cartes Vitale nécessite un paramétrage au niveau d ADAGIO. Ce paramétrage n est pas exhaustif, car il est complété au fur et à mesure des intégrations.

Plus en détail

MATHÉMATIQUES ET ENVIRONNEMENT INFORMATIQUE. Michèle GANDIT Christiane SERRET Bernard PARISSE (*)

MATHÉMATIQUES ET ENVIRONNEMENT INFORMATIQUE. Michèle GANDIT Christiane SERRET Bernard PARISSE (*) MATHÉMATIQUES ET ENVIRONNEMENT INFORMATIQUE Michèle GANDIT Christiane SERRET Bernard PARISSE (*) Ces deux ateliers avaient pour objectif d amener les participants à une réflexion sur l utilisation, dans

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Théorie des Langages Formels Chapitre 5 : Automates minimaux

Théorie des Langages Formels Chapitre 5 : Automates minimaux Théorie des Langages Formels Chapitre 5 : Automates minimaux Florence Levé Florence.Leve@u-picardie.fr Année 2015-2016 1/29 Introduction Les algorithmes vus précédemment peuvent mener à des automates relativement

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015. Corrigé des exercices de mise à niveau en Mathématiques

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015. Corrigé des exercices de mise à niveau en Mathématiques UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2014 2015 L1 Économie Cours de M. Desgraupes Corrigé des exercices de mise à niveau en Mathématiques Séance 01 : Calcul algébrique

Plus en détail

Gé nié Logiciél Livré Blanc

Gé nié Logiciél Livré Blanc Gé nié Logiciél Livré Blanc Version 0.2 26 Octobre 2011 Xavier Blanc Xavier.Blanc@labri.fr Partie I : Les Bases Sans donner des définitions trop rigoureuses, il faut bien commencer ce livre par énoncer

Plus en détail

OPÉRATIONS SUR LES FRACTIONS

OPÉRATIONS SUR LES FRACTIONS OPÉRATIONS SUR LES FRACTIONS Sommaire 1. Composantes d'une fraction... 1. Fractions équivalentes... 1. Simplification d'une fraction... 4. Règle d'addition et soustraction de fractions... 5. Règle de multiplication

Plus en détail

Éléments de logique et de théorie des ensembles

Éléments de logique et de théorie des ensembles 1 Éléments de logique et de théorie des ensembles Pour les exemples et exercices traités dans ce chapitre les ensembles usuels de nombres entiers, rationnels réels et complexes sont supposés connus, au

Plus en détail

Projet Prép. Préguidance Cours du professeur G. De Meur 2005. Système de numération : les principes de groupement et de position

Projet Prép. Préguidance Cours du professeur G. De Meur 2005. Système de numération : les principes de groupement et de position Ecriture formelle Système de numération : les principes de groupement et de position Ce qu est un système de numération Sur le plan de la REPRESENTATION des nombres, on s est vite rendu compte de la difficulté

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Guillaume SOLDERA (B guillaume.soldera@serli.fr) SERLI Informatique Bull OW2 Consortium. Comparatif Choco/Drools dans le cadre du projet JASMINe

Guillaume SOLDERA (B guillaume.soldera@serli.fr) SERLI Informatique Bull OW2 Consortium. Comparatif Choco/Drools dans le cadre du projet JASMINe Guillaume SOLDERA (B guillaume.soldera@serli.fr) SERLI Informatique Bull OW2 Consortium dans le cadre du projet JASMINe Avril 2008 Table des matières 1 Introduction 3 1.1 Rappel sur JASMINe.......................................

Plus en détail

Introduction à Windows Workflow Foundation

Introduction à Windows Workflow Foundation Introduction à Windows Workflow Foundation Version 1.1 Auteur : Mathieu HOLLEBECQ Co-auteur : James RAVAILLE http://blogs.dotnet-france.com/jamesr 2 Introduction à Windows Workflow Foundation [07/01/2009]

Plus en détail

Théorie des ensembles

Théorie des ensembles Théorie des ensembles Cours de licence d informatique Saint-Etienne 2002/2003 Bruno Deschamps 2 Contents 1 Eléments de théorie des ensembles 3 1.1 Introduction au calcul propositionnel..................

Plus en détail

Le raisonnement par récurrence

Le raisonnement par récurrence Le raisonnement par récurrence Nous notons N l ensemble des entiers naturels : N = {0,,, } Nous dirons naturel au lieu de entier naturel Le principe du raisonnement par récurrence Soit A une partie de

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

Un tout petit peu d homotopie

Un tout petit peu d homotopie Vincent Beck On note I = [ 0, 1 ]. Un tout petit peu d homotopie 0.1 Homotopie Définition 1 Applications homotopes. Soient X, Y deux espaces topologiques et f, g : X Y deux applications continues. On dit

Plus en détail

Bissectrices. Daniel Perrin

Bissectrices. Daniel Perrin Bissectrices Daniel Perrin Introduction Le but de ce texte est d essayer de donner une référence fiable sur la question des bissectrices, pour traiter notamment l exposé de CAPES intitulé Droites remarquables

Plus en détail

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot SOMMES ET PRODUITS 1 Techniques de calcul 1.1 Le symbole Notation 1.1 Soient m et n deux entiers naturels. Alors { a m + a m+1 + + a + a n si m n, a = 0 sinon. On peut aussi noter m n =m a ou encore m,n

Plus en détail

Programmation, partiel: sémantique d un tableur

Programmation, partiel: sémantique d un tableur Programmation, partiel: sémantique d un tableur Recommandations. Votre copie (papier ou électronique) devra être lisible et bien structurée. La note tiendra compte autant du fond que de la présentation.

Plus en détail

Cours d algebre pour la licence et le Capes

Cours d algebre pour la licence et le Capes Cours d algebre pour la licence et le Capes Jean-Étienne ROMBALDI 6 juillet 007 ii Table des matières Avant-propos Notation v vii 1 Éléments de logique et de théorie des ensembles 1 11 Quelques notions

Plus en détail

équations du second degré.

équations du second degré. COURS DE MATHEMATIQUES Fichier.pdf du cours en vidéo du même nom Les équations du second degré Factorisation Ce cours porte exclusivement sur la notion de factorisation relative aux équations du second

Plus en détail

Une relation R sur E est transitive si x, y, z E, (xry et yrz) xrz. Question 1.1 Est-ce-qu une relation alternée est toujours antisymétrique?

Une relation R sur E est transitive si x, y, z E, (xry et yrz) xrz. Question 1.1 Est-ce-qu une relation alternée est toujours antisymétrique? Domaine Sciences et Technologies Licence d informatique Automates et circuits 2ième Devoir Surveillé Durée : 2 heures Année 2012-13 Aucun document autorisé Calculatrice interdite Nous vous recommandons

Plus en détail

DU BINAIRE AU MICROPROCESSEUR - D ANGELIS LOGIQUE COMBINATOIRE. SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 07

DU BINAIRE AU MICROPROCESSEUR - D ANGELIS LOGIQUE COMBINATOIRE. SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 07 DU BINAIRE AU MICROPROCESSEUR - D ANGELIS 43 SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 7 Le rôle de la logique combinatoire est de faciliter la simplification des circuits électriques. La simplification

Plus en détail

2012/2013 Le codage en informatique

2012/2013 Le codage en informatique 2012/2013 Le codage en informatique Stéphane Fossé/ Marc Gyr Lycée Felix Faure Beauvais 2012/2013 INTRODUCTION Les appareils numériques que nous utilisons tous les jours ont tous un point commun : 2 chiffres

Plus en détail