Optimisation. 1 Petite taxinomie des problèmes d optimisation 2

Dimension: px
Commencer à balayer dès la page:

Download "Optimisation. 1 Petite taxinomie des problèmes d optimisation 2"

Transcription

1 Table des matières Optimisation 1 Petite taxinomie des problèmes d optimisation 2 2 Optimisation sans contraintes Optimisation sans contrainte unidimensionnelle Une approche sans dérivées : la section en proportion du nombre d or Une approche avec dérivées : la méthode de Newton Optimisation sans contrainte multidimensionnelle En utilisant la première dérivée seulement : Méthode du gradient En utilisant les 1ère et 2ème dérivées : Méthode de Newton multidimensionnelle En n utilisant que la première dérivée (bis!) : Les méthodes quasi-newton Critères d arrêt Optimisation avec contraintes Optimisation avec contraintes : l approche lagrangienne Rappel des conditions d optimalité sous contraintes Optimisation vs solution d équations nonlinéaires 10 5 Fonctions pré-programmées en Matlab Minimisation sans contraintes Minimisation sous contraintes

2 1 Petite taxinomie des problèmes d optimisation Espace des variables continu ou discret : Optimisation continue Optimisation discrète, en nombres entiers (e.g. blocs d actions), en nombres binaires (e.g. pour modéliser des contraintes logiques) Dimension de l espace des variables : fini (optimisation habituelle) infini (contrôle optimal ; analyse fonctionnelle (la variable est une fonction)) Optimisation déterministe vs stochastique Note : l optimisation dynamique est une technique, pas un type de problème. Optimisation sans contrainte, avec contraintes Optimisation (continue, dimensions finies, avec contraintes) : linéaire : quadratique : nonlinéaire : Fonction-objectifs différentiables au moins une fois nondifférentiables Optimisation locale vs globale (et convexe vs nonconvexe). À ne pas confondre avec algorithme à convergence globale, i.e. convergeant de n importe où (globalement) à une solution (quelle soit locale ou globale) 2

3 2 Optimisation sans contraintes L approche itérative fondamentale, qui se retrouve partout et sous toutes sortes de formes par après, est la suivante : 1. Trouver un point initial : 2. Trouver une direction de descente : 3. Trouver une longueur de pas : 4. Mettre à jour le point actuel : 5. Recommencer en Optimisation sans contrainte unidimensionnelle En anglais, linesearch Une approche sans dérivées : la section en proportion du nombre d or En anglais, Golden Section Search. Problème : trouver le minimum de f(x). Encadrement en minimisation : trois points sont nécessaires. Évaluer la fonction à un quatrième point, et remplacer de façon à toujours encadrer le minimum. Où placer le quatrième point? 3

4 Réponse : la convergence la plus rapide pour ce genre d approche est obtenue par le nombre d or ou section dorée : placer le nouveau point à la ème partie du point central vers le point extérieur le plus éloigné. Notes : 1. Si à l origine les points ne sont pas placés selon les proportions du nombre d or, il y a rapidement convergence vers ces proportions, avec les itérations. 2. Il existe d autres méthodes, e.g. Brent s parabolic interpolation, mieux mais plus compliquée, voir Press et al. ou autres. 4

5 2.1.2 Une approche avec dérivées : la méthode de Newton Problème : trouver le minimum de f(x), sachant que f (x) et f (x) sont disponibles. Faire une approximation quadratique de f, et choisir son minimum comme prochain point. Strictement équivalent à résoudre f (x) = 0 avec une Newton pour équation nonlinéaire. Remarques : 1. La méthode de Newton fonctionne souvent, et très vite (convergence quadratique). Mais il n y a aucune garantie qu elle fonctionne, sauf si elle est commencée assez proche d une solution (voir références) 2. Trick of the trade : Il n est souvent pas nécessaire de résoudre une recherche linéaire avec beaucoup de précision. 5

6 2.2 Optimisation sans contrainte multidimensionnelle En utilisant la première dérivée seulement : Méthode du gradient L approche de la pente la plus raide ( steepest descent ), ou méthode du gradient, constitue le point de référence. Puisque le gradient de f(x) donne la direction d ascension la plus raide, on fera des pas du type : Avantages : très facile à implanter n exige pas de calcul du hessien Désavantage : moins rapide que la méthode de Newton (zigzags) En utilisant les 1ère et 2ème dérivées : Méthode de Newton multidimensionnelle Faire une approximation quadratique de f, et choisir son minimum comme prochain point : 6

7 Avantages : facile à implanter très efficace. Désavantage : hessien calculé à chaque itération En n utilisant que la première dérivée (bis!) : Les méthodes quasi-newton Même sans hessien, on peut souvent obtenir une convergence rapide, en utilisant une approche de Newton avec une approximation de l inverse du hessien. L une des meilleures approximations est attribuée à Broyden-Fletcher- Goldfarb-Shanno (BFGS) : où G k+1 = G k + ( 1 + qt k G ) kq k pk p t k qk t p k p t k q k p k = x k+1 x k q k = f(x k+1 ) f(x k ) p kq t k G k + G k q k p k t q t k p k Désavantages : peu par rapport à la méthode de Newton, sauf si le hessien varie fortement d un point à l autre. 2.3 Critères d arrêt Comme dans le cas des systèmes d équations nonlinéaires, on utilise souvent plus d un critère d arrêt. Habituellement, on trouvera Un critère sur le déplacement : si x (k+1) x (k) est très petit, c est qu on ne progresse plus beaucoup. Un critère sur la progression de l objectif : si f(x (k+1) ) f(x (k) ) est très petit, on peut être presque arrivé à un point minimum ou maximum. On peut aussi mesurer la norme du gradient. Un critère bête et dur, sur le temps de calcul ou le nombre d itération. Comme toujours, rien ne vaut une bonne connaissance de la fonction sous-jacente, quand il faut décider de critères d arrêt. 7

8 3 Optimisation avec contraintes La littérature sur l optimisation sous contrainte est gigantesque : ce sont des problèmes à la fois importants et difficiles. Nous effleurons à peine la surface, juste assez pour résoudre analytiquement les cas simples, et comprendre un petit peu ce qui se passe quand on utilise des fonctions pré-programmées. 3.1 Optimisation avec contraintes : l approche lagrangienne L approche lagrangienne consiste fondamentalement à 1. écrire les conditions nécessaires d optimalité 2. résoudre ces équations, en utilisant au mieux la structure lagrangienne sous-jacente. L approche lagrangienne travaille donc dans l espace R n+m+p pour un problème à n variables, m contraintes d égalité et p contraintes d inégalités. Les inéquations présentes dans les conditions d optimalité sont habituellement gérées par une approche de contrainte active : grosso modo, on ne s occupe pas des contraintes inactives jusqu à ce qu on s y frappe le nez. La convergence globale des algorithmes est habituellement assurée, à une solution des conditions nécessaires d optimalité. Attention : convergence globale veut dire que de n importe quel point de départ, on saura trouver une solution, c est-à-dire un minimum local. À savoir si ce minimum local est aussi un minimum global, cela dépend du problème et non de l algorithme. C est l approche privilégiée par Matlab (et plusieurs autres) pour ses fonctions pré-programmées. 3.2 Rappel des conditions d optimalité sous contraintes Dans les copies de Luenberger que je vous ai passées, vous êtes responsables du théorème de la section 10.3 (mais pas de la preuve, ni de la condition 8

9 de regular point ; et des conditions de Kuhn-Tucker dans la section 10.8 (encore une fois, mais pas de la preuve, ni de la condition de regular point, ni du restant de la section 10.8) 9

10 4 Optimisation vs solution d équations nonlinéaires Question : Puisque l optimisation de fonctions se réduit à la résolution de systèmes d équations nonlinéaires (i.e. rendre le gradient de la fonction égal à zéro), pourquoi est-il bien plus difficile de résoudre un système nonlinéaire général h(x) = 0 que de minimiser une fonction f(x)??? Réponse : Le système d équations f(x) = 0 est très spécial! Il satisfait une condition d intégrabilité. (Par exemple, le jacobien de f(x) est symétrique) L existence implicite de f fait qu on s attaque à une classe beaucoup plus restreinte de problèmes que pour un système h(x) = 0 général. 10

11 5 Fonctions pré-programmées en Matlab 5.1 Minimisation sans contraintes fminsearch : Approche Nelder-Meade Simplex modifiée. N utilise pas de gradients, ni analytiques ni numériques. fminunc : Divers algorithmes sous un même nom : Version large-scale, avec gradient, hessien optionnel : approche de région de confiance, avec un preconditioned conjugate gradient (pcg) dans les sous-problèmes. Version medium-scale, gradient et hessien optionnels : approche quasi- Newton BFGS. Dans les deux cas, la recherche linéaire est faite par une approche d interpolation cubique, ou mixte quadratique-cubique, au choix. 5.2 Minimisation sous contraintes fmincon : Une approche lagrangienne (résolution des conditions nécessaires d optimalité). Les versions medium-scale et large-scale sont calquées assez fortement sur fsolve. Il existe plusieurs autres fonctions spécialisées, linprog, quadprog, des moindres-carrés, etc. 11

PARTIE I MÉTHODES STANDARDS EN OPTIMISATION DÉPARTEMENT GÉNIE MATHÉMATIQUE ET MODÉLISATION 4ÈME ANNÉE, 2012-2013. Aude RONDEPIERRE & Pierre WEISS

PARTIE I MÉTHODES STANDARDS EN OPTIMISATION DÉPARTEMENT GÉNIE MATHÉMATIQUE ET MODÉLISATION 4ÈME ANNÉE, 2012-2013. Aude RONDEPIERRE & Pierre WEISS DÉPARTEMENT GÉNIE MATHÉMATIQUE ET MODÉLISATION 4ÈME ANNÉE, 2012-2013. PARTIE I MÉTHODES STANDARDS EN OPTIMISATION NON LINÉAIRE DÉTERMINISTE Aude RONDEPIERRE & Pierre WEISS Table des matières 1 Introduction

Plus en détail

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7 Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques Elec 2311 : S7 1 Plan du cours Qu est-ce l optimisation? Comment l optimisation s intègre dans la conception?

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers p. 1/83 Optimisation en nombres entiers Michel Bierlaire michel.bierlaire@epfl.ch EPFL - Laboratoire Transport et Mobilité - ENAC Optimisation en nombres entiers p. 2/83

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

Équations non linéaires

Équations non linéaires Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

II. OPTIMISATION SANS CONTRAINTE. min f(x) avec x ε R n

II. OPTIMISATION SANS CONTRAINTE. min f(x) avec x ε R n min f(x) avec x ε R n Méthodes de recherche unidimensionnelle Méthodes du gradient Méthodes des directions conjuguées Méthode de Newton et méthode de Levenberg-Marquardt Méthodes quasi-newton Méthodes

Plus en détail

Introduction à l Optimisation Numérique

Introduction à l Optimisation Numérique DÉPARTEMENT STPI 3ÈME ANNÉE MIC Introduction à l Optimisation Numérique Frédéric de Gournay & Aude Rondepierre Table des matières Introduction 5 Rappels de topologie dans R n 7 0.1 Ouverts et fermés de

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

COURS OPTIMISATION. Cours à l ISFA, en M1SAF. Ionel Sorin CIUPERCA

COURS OPTIMISATION. Cours à l ISFA, en M1SAF. Ionel Sorin CIUPERCA COURS OPTIMISATION Cours à l ISFA, en M1SAF Ionel Sorin CIUPERCA 1 Table des matières 1 Introduction 4 1.1 Motivation.................................... 4 1.2 Le problème général d optimisation......................

Plus en détail

Feuille n 2 : Contrôle du flux de commandes

Feuille n 2 : Contrôle du flux de commandes Logiciels Scientifiques (Statistiques) Licence 2 Mathématiques Générales Feuille n 2 : Contrôle du flux de commandes Exercice 1. Vente de voiture Mathieu décide de s acheter une voiture neuve qui coûte

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

TD 3 : Problème géométrique dual et méthode des moindres carrés

TD 3 : Problème géométrique dual et méthode des moindres carrés Semestre, ENSIIE Optimisation mathématique 4 mars 04 TD 3 : Problème géométrique dual et méthode des moindres carrés lionel.rieg@ensiie.fr Exercice On considère le programme géométrique suivant : min x>0,y>0

Plus en détail

Méthodes avancées en décision

Méthodes avancées en décision Méthodes avancées en décision Support vector machines - Chapitre 2 - Principes MRE et MRS Principe MRE. Il s agit de minimiser la fonctionnelle de risque 1 P e (d) = y d(x;w, b) p(x, y) dxdy. 2 La densité

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h

Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h Télécom Physique Strasbourg Master IRIV Optimisation et programmation mathématique Professeur Michel de Mathelin Cours intégré : 20 h Programme du cours d optimisation Introduction Chapitre I: Rappels

Plus en détail

Contents. Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5

Contents. Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5 Contents Systèmes d'équations non linéaires 2 1. Dichotomie 2 2. Point xe 3 3. Méthodes de Newton et et de la sécante 5 1 Systèmes d'équations non linéaires On considère un intervalle I R (borné ou non)

Plus en détail

Cours 2 6 octobre. 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée

Cours 2 6 octobre. 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée Introduction aux modèles graphiques 2010/2011 Cours 2 6 octobre Enseignant: Francis Bach Scribe: Nicolas Cheifetz, Issam El Alaoui 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée Soit

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Pour un socle de la licence de MATHEMATIQUES

Pour un socle de la licence de MATHEMATIQUES Pour un socle de la licence de MATHEMATIQUES Société Mathématique de France Société de Mathématiques Appliquées et Industrielles Société Française de Statistique Contexte général Afin d éviter de trop

Plus en détail

Methodes d Optimisation Assimilation de données Méthode du gradient conjugué

Methodes d Optimisation Assimilation de données Méthode du gradient conjugué Methodes d Optimisation Assimilation de données Méthode du gradient conjugué BIZZARI Romain MUSCAT Laurent VAUBOURG Audrey 3HY MSN 24 Octobre 2014 Sommaire Introduction 3 1 Explication de la méthode 4

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 Motivation et objectif du cours

Plus en détail

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés ENSEIRB-MATMECA PG-113 014 TP6: Optimisation au sens des moindres carrés Le but de ce TP est d implémenter une technique de recalage d images qui utilise une méthode vue en cours d analyse numérique :

Plus en détail

en sciences de l ingénieur

en sciences de l ingénieur Systèmes Automatisés Optimisation en sciences de l ingénieur présente les principales méthodes exactes d optimisation statique et dynamique. Parmi les méthodes décrites figurent : - la programmation linéaire

Plus en détail

Régression logistique

Régression logistique Régression logistique Gilles Gasso. INSA Rouen -Département ASI Laboratoire LITIS Régression logistique p. 1 Introduction Objectifs Le classifieur de Bayes est basé sur la comparaison des probabilités

Plus en détail

Support Vector Machines

Support Vector Machines Support Vector Machines Séparateurs à vaste marge Arnaud Revel revel.arnaud@gmail.com Plan 1 Introduction 2 Formalisation 3 Utilisation des noyaux 4 Cas multi-classes 5 Applications des SVM 6 Bibliographie

Plus en détail

Problème combinatoire sur le réseau de transport de gaz. Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS

Problème combinatoire sur le réseau de transport de gaz. Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS Problème combinatoire sur le réseau de transport de gaz Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS Au programme Présentation du problème Un problème d optimisation

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien TRAVAUX DIRIGÉS DE l UE MNBif Informatique 3A MÉTHODES NUMÉRIQUES DE BASE 2015-2016, Automne N. Débit & J. Bastien Document compilé le 13 novembre 2015 Liste des Travaux Dirigés Avant-propos iii Travaux

Plus en détail

Etude et illustration de méthodes itératives d optimisation non linéaire

Etude et illustration de méthodes itératives d optimisation non linéaire Ecole Polytechnique Fédérale de Lausanne Faculté Sciences de Base Chaire de Recherche Opérationnelle Sud Est Projet de master 2005-2006 Etude et illustration de méthodes itératives d optimisation non linéaire

Plus en détail

Recherche Opérationnelle Mercredi 06 Novembre 2013 - Contrôle Terminal - Session 1

Recherche Opérationnelle Mercredi 06 Novembre 2013 - Contrôle Terminal - Session 1 Master 2 LT, MPM, MIR Pôle Lamartine - ULCO Recherche Opérationnelle Mercredi 06 Novembre 2013 - Contrôle Terminal - Session 1 Durée de l épreuve : 2h00 Documents interdits. Calculatrice autorisée Exercice

Plus en détail

Méthodes numériques d optimisation

Méthodes numériques d optimisation Méthodes numériques d optimisation Marie Postel 1 Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie, Paris 6 Version septembre 015 1. marie.postel@upmc.fr, http ://www.ljll.math.upmc.fr/postel

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

RO04/TI07 - Optimisation non-linéaire

RO04/TI07 - Optimisation non-linéaire RO04/TI07 - Optimisation non-linéaire Stéphane Mottelet Université de Technologie de Compiègne Printemps 2003 Sommaire I Motivations et notions fondamentales 7 I1 Motivations 8 I11 Formulation générale

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Econométrie. février 2008. Boutin, Rathelot

Econométrie. février 2008. Boutin, Rathelot 5ème séance Xavier Boutin Roland Rathelot Supélec février 2008 Plan Variables binaires La question y = β 0 + β 1 x 1 +...β k x k + u Que se passe-t-il lorsque y est une variable {0, 1} et non plus une

Plus en détail

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Résume du cours de Mécanique Analytique

Résume du cours de Mécanique Analytique Résume du cours de Mécanique Analytique jean-eloi.lombard@epfl.ch 22 janvier 2009 Table des matières 1 Équations de Lagrange 1 1.1 Calcul des variations....................... 3 1.2 Principe de moindre

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

INTRODUCTION : EDP ET FINANCE.

INTRODUCTION : EDP ET FINANCE. INTRODUCTION : EDP ET FINANCE. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) EDP et finance. 1 / 16 PLAN DU COURS 1 MODÈLE ET ÉQUATION DE BLACK SCHOLES 2 QUELQUES EXTENSIONS A. Popier

Plus en détail

RO04/TI07 - Optimisation non-linéaire

RO04/TI07 - Optimisation non-linéaire RO04/TI07 - Optimisation non-linéaire Stéphane Mottelet Université de Technologie de Compiègne Printemps 2003 I Motivations et notions fondamentales 4 I1 Motivations 5 I2 Formes quadratiques 13 I3 Rappels

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

Optimisation non linéaire sans contraintes

Optimisation non linéaire sans contraintes Optimisation non linéaire sans contraintes Recherche opérationnelle GC-SIE Variations sur Newton 1 Variations sur Newton Convergence de la méthode de la plus forte pente Résolution d une équation non linéaire

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Apprentissage par méthodes à noyaux en reconnaissance d images

Apprentissage par méthodes à noyaux en reconnaissance d images Apprentissage par méthodes à noyaux en reconnaissance d images Alberto Bietti Table des matières Introduction 2 1 Apprentissage par méthodes à noyaux 2 1.1 Position du problème et motivation..........................

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I ÉLÉMENTS D OPTIMISATION Complément au cours et au livre de MTH 1101 - CALCUL I CHARLES AUDET DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Hiver 2011 1 Introduction

Plus en détail

SPLEX Statistiques pour la classification et fouille de données en

SPLEX Statistiques pour la classification et fouille de données en SPLEX Statistiques pour la classification et fouille de données en génomique Classification Linéaire Binaire CLB Pierre-Henri WUILLEMIN DEcision, Système Intelligent et Recherche opérationnelle LIP6 pierre-henri.wuillemin@lip6.fr

Plus en détail

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010 27 octobre 2010 Outline 1 Définitions Le modèle de diffusion de Black-Scholes Portefeuille auto-finançant Objectif de BS 2 Portefeuille auto-finançant et formule de Black-Scholes Formulation mathématique

Plus en détail

INTRODUCTION A L OPTIMISATION

INTRODUCTION A L OPTIMISATION INTRODUCTION A L OPTIMISATION Les domaines d application L optimisation est essentiellement un outil d aide à la décision au sein de l entreprise, mais aussi pour des individus. Le terme optimal est souvent

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Équations et inéquations du 1 er degré

Équations et inéquations du 1 er degré Équations et inéquations du 1 er degré I. Équation 1/ Vocabulaire (rappels) Un équation se présente sous la forme d'une égalité constituée de nombres, de lettres et de symboles mathématiques. Par exemple

Plus en détail

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale.

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Aix Marseille Université. Algorithmes Stochastiques. M MIS. Fabienne Castell... Chapitre : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Le but de ce chapitre

Plus en détail

1 - INTERPOLATION. J-P. Croisille. Semestre S7, master de mathématiques M1, année 2008/2009. Université Paul Verlaine-Metz

1 - INTERPOLATION. J-P. Croisille. Semestre S7, master de mathématiques M1, année 2008/2009. Université Paul Verlaine-Metz 1 - INTERPOLATION J-P. Croisille Université Paul Verlaine-Metz Semestre S7, master de mathématiques M1, année 2008/2009 1- INTRODUCTION Théorie de l interpolation: approximation de f(x) par une fonction

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Introduction Pré-requis : Etude de fonctions dérivées logarithmes et exponentielles continuité Plan du cours 1. Intégrales 2. Primitives 1. Intégrales A. Aire sous la courbe Méthode des rectangles : Pour

Plus en détail

Problème de contrôle optimal pour une chaîne de Markov

Problème de contrôle optimal pour une chaîne de Markov Problème de contrôle optimal pour une chaîne de Markov cours ENSTA MA206 Il s agit de résoudre un problème d arrêt optimal pour une chaîne de Markov à temps discret. Soit X n une chaîne de Markov à valeurs

Plus en détail

f continue en x 0 lim Remarque On dit que f est continue sur un intervalle a; bœ si f est continue en tout point x 0 de a; bœ. sont continues sur R.

f continue en x 0 lim Remarque On dit que f est continue sur un intervalle a; bœ si f est continue en tout point x 0 de a; bœ. sont continues sur R. CHAPITRE I Fonctions d une variable réelle. Limites Soit f une fonction définie sur R : et soit R. f W R! R 7! f./ Définition. Limite finie en un point) On dit que f admet ` pour ite lorsque tend vers

Plus en détail

Introduction à l optimisation

Introduction à l optimisation Chapitre 1 Introduction à l optimisation 1.1 Problématique 1.1.1 Cadre Un problème d optimisation consiste, étant donnée une fonction f : S R, àtrouver: 1) son minimum v (resp. son maximum) dans S 2) un

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

Equation de la chaleur sous contrainte

Equation de la chaleur sous contrainte Equation de la chaleur sous contrainte Proposé par Aline Lefebvre-Lepot aline.lefebvre@polytechnique.edu On cherche à résoudre l équation de la chaleur dans un domaine Ω en imposant une contrainte sur

Plus en détail

Modèle de Heston. Pricing d options européennes et calibration. G. BLANCHET, M. ELACHECHE, E. JEANGIRARD, K. SALEH Tuteur : Adel Ben Haj Yedder

Modèle de Heston. Pricing d options européennes et calibration. G. BLANCHET, M. ELACHECHE, E. JEANGIRARD, K. SALEH Tuteur : Adel Ben Haj Yedder Modèle de Heston Pricing d options européennes et calibration G. BLANCHET, M. ELACHECHE, E. JEANGIRARD, K. SALEH Tuteur : Adel Ben Haj Yedder Projet de département IMI En partenariat avec Natexis 21 juin

Plus en détail

Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce

Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce Année 2007-2008 Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce B. Monsuez Projet informatique «Voyageur de commerce» Résolution

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Module Optimisation et contrôle. Projet sur les réseaux de distribution d eau

Module Optimisation et contrôle. Projet sur les réseaux de distribution d eau Module Optimisation et contrôle Projet sur les réseaux de distribution d eau Pierre Carpentier pierre.carpentier@ensta-paristech.fr Année 204/205 Site du cours : cermics.enpc.fr/ jpc/optimisation.html

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Des contraintes peuvent exister limitant le choix des valeurs des variables.

Des contraintes peuvent exister limitant le choix des valeurs des variables. Introduction Objet de la programmation mathématique, construction d'un modèle mathématique, problème général de programmation mathématique et classification, algorithme de résolution en programmation mathématique

Plus en détail

Master MIMSE - Année 2. Optimisation Quadratique Optimisation quadratique sans contraintes DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Master MIMSE - Année 2. Optimisation Quadratique Optimisation quadratique sans contraintes DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- 1 Master MIMSE - Année 2 Optimisation Quadratique Optimisation quadratique sans contraintes 2 Optimisation quadratique Fonction quadratique = polynôme de degré 2, On veut Intérêt? min f(x) s.c. g k (x)

Plus en détail

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples, Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très

Plus en détail

Master MIMSE - Année 2. Optimisation Stochastique Gestion des stocks stochastique DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Master MIMSE - Année 2. Optimisation Stochastique Gestion des stocks stochastique DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- 1 Master MIMSE - Année 2 Optimisation Stochastique Gestion des stocks stochastique 2 Incertitudes dans le modèle Le modèle de base : contraintes de satisfaction des demandes Tx h avec Tk T x représentant

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Maitine.Bergounioux@labomath.univ-orleans.fr Plan 1. Un peu de

Plus en détail

Notes du cours MTH1101 Calcul I Partie III: Optimisation

Notes du cours MTH1101 Calcul I Partie III: Optimisation Notes du cours MTH1101 Calcul I Partie III: Optimisation Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2016 Table des matières 1 Optimisation

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Suites et Convergence

Suites et Convergence Suites et Convergence Une suite c est se donner une valeur (sans ambigüité) pour chaque N sauf peutêtre les premiers n. Donc une suite est une fonction : I R où I = N: = N. Notation : On note ( ) I R pour

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Fausto Errico Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2012 Table des matières

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail

5 Méthodes algorithmiques

5 Méthodes algorithmiques Cours 5 5 Méthodes algorithmiques Le calcul effectif des lois a posteriori peut s avérer extrêmement difficile. En particulier, la prédictive nécessite des calculs d intégrales parfois multiples qui peuvent

Plus en détail

4. Programmation en nombres entiers

4. Programmation en nombres entiers IFT575 Modèles de recherche opérationnelle (RO). Programmation en nombres entiers b. Séparation et évaluation progressive c. Plans de coupes Résolution de modèles entiers Programmation en nombres entiers

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Quelques perspectives pour la programmation mathématique en commande robuste

Quelques perspectives pour la programmation mathématique en commande robuste Quelques perspectives pour la programmation mathématique en commande robuste P. Apkarian, D. Arzelier, D. Henrion, D. Peaucelle UPS - CERT - LAAS-CNRS Contexte de la commande robuste 2 Théorie de la complexité

Plus en détail

SEMESTRE S1. Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Outils mathématiques Discipline B :

SEMESTRE S1. Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Outils mathématiques Discipline B : SEMESTRE S Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Discipline B : 0 0 Biologie Biologie Chimie Chimie Géologie Géologie Informatique Informatique Physique

Plus en détail

Dual decomposition methods and parallel computing

Dual decomposition methods and parallel computing Dual decomposition methods and parallel computing Jonas Koko LIMOS UMR 6158 Université Blaise Pascal - CNRS Dijon 29/06/2015 Jonas Koko (LIMOS) Dual decomposition methods Dijon 29/06/2015 1 / 18 Plan 1

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail