Espace. + β v = 0. On dit aussi que les deux vecteurs sont

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Espace. + β v = 0. On dit aussi que les deux vecteurs sont"

Transcription

1 I Vecteurs dans l espace. II Notion de plan. III Coordonnées. IV Equations dans l espace. Espace. «Espace, frontière de l'infini vers lequel voyage notre vaisseau spatial. Sa mission: Explorer de nouveaux mondes étranges, découvrir de nouvelles vies, d'autres civilisations, et au mépris du danger, reculer l'impossible" Capt Kirk I Vecteurs dans l espace. On peut reprendre toutes les notions de seconde dans le plan, rien ne change. Définition : Un vecteur de l espace est la donnée d une direction, d un sens et d une norme. On note u = AB un tel vecteur. Le vecteur AA s écrit 0. On dit que deux vecteurs sont égaux s ils ont même direction, même sens et même norme. On utilise les mêmes règles de calcul qui sont : La relation de Chasles. La règle du parallélogramme. Multiplication par un scalaire (Attention : u = kv u = k v ) Définition : Deux vecteurs u et v sont colinéaires s il existe deux réels α et β α β ) tels que αu + β v = 0. On dit aussi que les deux vecteurs sont non tous nuls ((, ) (0,0) liés. Faire la différence entre «non tous nuls» et «tous deux non nuls» : si mes deux parents sont non tous nuls, il peut y en avoir un des deux nul (c est pas sympa) mais il en reste un au moins qui est non nul. Si mes deux parents sont tous non nuls, aucun des deux n est nul et ça c est cool. Il ne faut pas perdre de vue que s ils sont colinéaires et non nuls, alors ils ont même direction. Equivalence avec la définition de seconde : On avait vu que deux vecteurs étaient colinéaires s il existait k tel que u = kv ou s il existait l tel que v = l u. (S il n y a qu un sens, ça ne va pas car si v = 0 et si u est non nul, il n existe pas de réel k, et pourtant, par convention, le vecteur nul est colinéaire à tous les autres vecteurs.) Dans le sens Seconde implique première, pas de problème. Dans le sens Première implique Seconde, il suffit de déterminer qui de α ou de β est non nul On utilise la colinéarité pour l alignement de points (nota : deux points sont toujours alignés), pour définir une droite, passant par A et de vecteur directeur u, comme l ensemble des points M tels que AM = ku avec k R. 1

2 Définition : Deux vecteurs sont orthogonaux si leurs directions sont orthogonales, ou si l un des deux est nul. Remarque : Dans le plan, on avait la caractérisation par le produit scalaire, qui s étend sans problème à l espace, mais qui n est pas au programme de première. On voit donc que la notion de droite dans l espace est tributaire de la bonne tenue de la notion de vecteurs au passage à la dimension supérieure. ABCD est un tétraèdre. On note I et J les milieux respectifs de [AC] et [BD]. On défiit les points P,Q,R et S par AP = AB ; AQ = AD ; CR = CB ; CS = CD. 1. On considère G le barycentre du système pondéré {(A ;2),(B ;1),(C ;2),(D ;1)}. Montrer que G appartient aux trois droites. [règle d associativité] 2. Que dire du quadrilatère PQRS? II Plan dans l espace. Définition : On rappelle qu un plan est défini par trois points non-alignés de l espace. (astucieux) Je me promène sur la Terre. Pour aller de A à B, il me faut parcourir 14000km. Pour aller de B à C il me faut encore parcourir 14000km. Se peut-il qu il me faille encore 14000km pour revenir en A? On a une notion analogue à celle de la droite vue précédemment : Théorème (9.A) : Soient A,B et C trois points non alignés. Le plan (ABC) est l ensemble des points M de l espace pour lesquels il existe deux réelsα et β tels que AM = α AB + β AC. Démonstration : Pour une égalité d ensemble, il faut procéder par double inclusion : Il faut montrer que ( ABC) = M de l'espace pour lesquels il existeα R et β R / AM = α AB + β AC { } Nous appellerons E l ensemble de droite. - Montrons que ( ABC) E : Soit M un point de (ABC), alors, dans le repère ( A; AB, AC) du plan, le point M a des coordonnées (α, β ) et on a par définition : AM = α AB + β AC. Donc M E. - Montrons que E ( ABC) : soit M un point de E. Il existe deux réelsα et β tels que AM = α AB + β AC. On note P le point de la droite (AB) tel que AP = α AB. Par Chasles, on a alors PM = β AC. Donc P,M,A et C sont sur un même plan car deux 2

3 droites parallèles sont coplanaires. Or P,A et C sont déjà sur le plan (ABC). Donc M ( ABC). Définition : On dit que trois vecteurs u, v et w sont coplanaires si pour tous points O,A,B et C tels que OA = u, OB = v et OC = w, alors O,A,B et C sont coplanaires. Ainsi, deux vecteurs sont toujours coplanaires. Remarque : On étend ainsi la notion de vecteur liés du plan à l espace. Théorème (9.B) : Trois vecteurs u, v et w sont coplanaires si et seulement s il existe trois réels non tous nulsα, β et γ tels que αu + β v + γ w = 0. Non tous nuls : ( α, β, γ ) (0,0,0). III Coordonnées. Définition : Trois vecteurs non coplanaires de l espace forment ce que l on appelle une base de l espace. En se donnant en plus un point, on obtient un repère qui est dit orthogonal si les vecteurs sont orthogonaux deux à deux. Un repère est dit normé si les vecteurs de la base sont unitaires. Orthonormé (ou orthonormal) signifie orthogonal et normé. Définition : Soit ( O; i, j, k) un repère de l espace. A tout point M de l espace, on peut associer un triplets de réels (x,y,z) tels que OM = xi + y j + zk. Ce triplets s appelle les coordonnées de M, x en est l abscisse, y l ordonnée et z la côte (ou l altitude). Définition : Les coordonnées du vecteur u sont les coordonnées de l unique point M tel que OM = u. On écrit ces coordonnées en colonne afin, entre autre, de ne pas les confondre avec les coordonnées des points. (Les spécialistes du calcul matriciel savent bien qu il y a une autre raison ) Toutes les formules connues sur les coordonnées de vecteurs fonctionnent comme avant (excepté le déterminant). Déterminer les coordonnées du vecteur AB ainsi que le milieu du segment [AB] avec A(,-2,1) et B(-1,-1,0). Calculer les coordonnées du barycentre du système pondéré : {(A ;1),(B ;2),(C ;-4)} avec C(2,5,6). A(2,-1,), B(1,2,0), C(-2,1,2) et D(-1,-2,5). ABCD est-il un parallélogramme? Isobarycentre de ABCD? A(1,-2,), B(0,4,4) et C(4,-20,9). Ces trois points sont-ils alignés? Proposition : Soit a u b un vecteur de l espace dont les coordonnées sont exprimées c

4 dans un repère orthonormal, on a alors : u = a + b + c Démonstration : Deux fois Pythagore. Just do it. Le parallélogramme précédent est-il un rectangle? IV Equations dans l espace. 1. Equations de plans. Cherchons une équation du plan (ABC) avec A(2,-1,), B(1,2,0) et C(-1,-2,5) D après le théorème?.? Le plan (ABC) est l ensemble des points M de coordonnées (x,y,z) pour lesquels il existe α et β tels que AM = α AB + β AC. Traduit en termes de coordonnées, l équation donne : x 2 = α β x = α β + 2 y + 1 = α β y = α β 1 on obtient donc un système de trois équations avec z = α + 2β z = α + 2β + trois variables qui dépendent de deux paramètres (d où la dimension 2 du plan) c est ce que l on appelle un système d équations paramétrées de plan. (A correspond à α = β = 0, le point B correspond à (, ) α β =(1,0) et C à (, ) α β =(0,1)). Essayons d éliminer les paramètres : on obtient par exemple x+11y+10z=25. On vérifie bien que A, B et C soit sur le plan (i.e. que leurs coordonnées satisfassent l équation. C est ce que l on appelle une équation cartésienne du plan. Ici on a trois variables qui sont liées par une équation, donc la dimension est -1=2. Il s agit bien d un plan. 2. Equations de droites. Cherchons une équation de la droite passant par A(-1,1,2) et ayan pour vecteur directeur le 1 vecteur u. On sait qu il s agit de l ensemble des points M de coordonnées (x,y,z) pour 2 x + 1 = α x = α 1 lesquels il existe α tel que AM = αu, ce qui donne y 1 = α y = α + 1. z 2 2α = z = 2α + 2 Voici donc un système d équations paramétrées le la droite recherchée. Il n y a qu un seul paramètre, signe que l objet décrit est bien de dimension 1. Essayons là encore d éliminer les paramètres : On obtient deux équations : y = x + 4 qui sont des équations cartésiennes de la droite. Il s agit bien d une droite car z = 2x on a deux variables avec deux équations (non liées) d où la dimension -2=1. D (autre part, on remarque que ces deux équations sont des équations de plans. Le droite est donc vue comme intersection de deux plans.. Equations de sphères, de boules. 4

5 On étend sans difficulté les équations de cercles dans le plan pour obtenir une équation de sphère de centre Ω ( α, β, γ ) et de rayon r : Et celle de la boule associée : ( x α) + ( y β ) + ( z γ ) = r ( x α) + ( y β ) + ( z γ ) r Déterminer un encadrement de la côte des points d intersection de la sphère d équation x 2 +y 2 +z 2 =4 et de plan d équation x+y+z= 4. Equations de cylindres. Si le cylindre est d axe parallèle à (Oz) passant par Ω ( α, β,0), de rayon r, on a ( x ) ( y ) r α + β =. 5. Equations de cônes. Si l on considère un cône d axe (Oz), de sommet O tel que l angle des génératrices à l axe soit α. On a 2 2 HM x + y tanα = = ce qui donne z z x + y (tan α) z = 0 5

Repérage dans l espace

Repérage dans l espace Repérage dans l espace I) Coordonnées dans l espace 1) Définition Un repère (O;I,J,K) de l espace est défini par quatre points non coplanaires (n appartenant pas au même plan) : le point O est l origine,

Plus en détail

Géométrie analytique dans l espace

Géométrie analytique dans l espace Généralités Points coplanaires Quatre points de l espace sont dits coplanaires s ils appartiennent à un même plan (rappel : 3 points d un plan sont dits alignés s ils appartiennent à une même droite) Vecteurs

Plus en détail

TS Géométrie vectorielle dans l espace Cours. Les définitions et calculs sur les vecteurs du plan peuvent être prolongés à l espace

TS Géométrie vectorielle dans l espace Cours. Les définitions et calculs sur les vecteurs du plan peuvent être prolongés à l espace TS Géométrie vectorielle dans l espace Cours I. Vecteurs de l espace 1. Notion de vecteur dans l espace Les définitions et calculs sur les vecteurs du plan peuvent être prolongés à l espace Deux vecteurs

Plus en détail

l espace II) Addition des vecteurs de l espace 3 ème Maths et 3 ème sciences exp. AB DC ABCD est un parallélogramme.

l espace II) Addition des vecteurs de l espace 3 ème Maths et 3 ème sciences exp. AB DC ABCD est un parallélogramme. Prof : Boufares Amor Cours de géométrie dans l espace 3 ème Maths et 3 ème sciences exp. I) d un vecteur de l espace Soit A et B deux points distincts de l espace. On appelle vecteur de représentant (A,

Plus en détail

Terminale S Géométrie dans l espace

Terminale S Géométrie dans l espace Terminale S Géométrie dans l espace 1 Positions relatives de droites et de plans 1.1 Positions relatives de deux droites Deux droites de l espace sont : soit..................... elles sont alors soit...............

Plus en détail

DROITES, PLANS ET VECTEURS DE L ESPACE.

DROITES, PLANS ET VECTEURS DE L ESPACE. DROITES, PLANS ET VECTEURS DE L ESPACE. : la perspective cavalière Pour représenter un objet de l espace par une figure plane, on adopte un mode de représentation appelé «perspective cavalière» qui est

Plus en détail

Vecteurs de l espace

Vecteurs de l espace Vecteurs de l espace Définitions règles de calcul On étend à l espace la notion de vecteur définie dans le plan, ainsi que les opérations associées : somme de vecteurs multiplication par un réel Définition-

Plus en détail

M : Zribi. 4 ème Maths Cour. Produit scalaire dans l espace : Définition:

M : Zribi. 4 ème Maths Cour. Produit scalaire dans l espace : Définition: Produit scalaire dans l espace : Définition: Soit A, B et C trois points, le produit scalaire des vecteurs AB et AC est le réel défini par : AB AC = si AB = 0 ou AC = 0 AB AC = si AB 0 et AC 0 Conséquence

Plus en détail

Géométrie dans l espace

Géométrie dans l espace 1 Géométrie dans l espace Table des matières 1 Rappels sur les vecteurs 1.1 Définition................................. 1. Propriétés................................. Le produit scalaire dans l espace

Plus en détail

Géométrie dans l'espace

Géométrie dans l'espace Géométrie dans l'espace 1. Rappels de géométrie dans l'espace 1.1. Positions relatives de droites et plans 1.1.1. Position relative de deux plans Définition : On dit que deux plans sont strictement parallèles

Plus en détail

P R O D U I T S C A L A I R E.

P R O D U I T S C A L A I R E. ère S 00/005 Produit scalaire J TAUZIEDE P R O D U I T S C A L A I R E I- DEFINITION ET PREMIERES PROPRIETES ) Produit scalaire de deux vecteurs colinéaires Définition Soit u et v deux vecteurs colinéaires

Plus en détail

Exercices supplémentaires : Produit scalaire dans l espace

Exercices supplémentaires : Produit scalaire dans l espace Exercices supplémentaires : Produit scalaire dans l espace Dans tous les exercices, sauf quand cela est précisé, on considère un repère orthonormal de l espace ; ; ;. Partie A : Repère et vecteurs coplanaires

Plus en détail

Géométrie de l espace

Géométrie de l espace [http://mp.cpgedupuydelome.fr] édité le 4 septembre 06 Enoncés Géométrie de l espace Notions communes Exercice [ 087 ] [Correction] À quelle(s) condition(s) simple(s) l intersection de trois plans de l

Plus en détail

TS Géométrie vectorielle dans l espace Cours. Les définitions et calculs sur les vecteurs du plan peuvent être prolongés à l espace

TS Géométrie vectorielle dans l espace Cours. Les définitions et calculs sur les vecteurs du plan peuvent être prolongés à l espace TS Géométrie vectorielle dans l espace Cours I. Vecteurs de l espace 1. Notion de vecteur dans l espace Les définitions et calculs sur les vecteurs du plan peuvent être prolongés à l espace Deux vecteurs

Plus en détail

Barycentre. Table des matières

Barycentre. Table des matières 1 Barycentre Table des matières 1 Rappels sue les vecteurs 2 1.1 Définition................................. 2 1.2 Opérations sur les vecteurs....................... 2 1.2.1 Somme de deux vecteurs....................

Plus en détail

NOM : PRODUIT SCALAIRE 1ère S

NOM : PRODUIT SCALAIRE 1ère S Exercice 1 R D Q C Soit un carré ABCD. On construit un rectangle AP QR tel que : P et R sont sur les côtés [AB] et [AD] du carré ; AP = DR. Le problème a pour objet de montrer que les droites (CQ) et (P

Plus en détail

Première S2 Chapitre 22 : Repérage dans l'espace. page n

Première S2 Chapitre 22 : Repérage dans l'espace. page n Première S2 Chapitre 22 : Repérage dans l'espace. page n 1 La notion de vecteurs de l'espace est la même que celle dans le plan. D'ailleurs, à la naissance du calcul vectoriel, ces deux notions se confondent.

Plus en détail

Sujets de bac : Géométrie dans l espace 1

Sujets de bac : Géométrie dans l espace 1 Sujets de bac : Géométrie dans l espace Sujet n : La Réunion juin 23 On considère un cube d arête. Le nombre désigne un réel strictement positif. On considère le point de la demi-droite défini par. ) Déterminer

Plus en détail

Rappels et compléments sur les vecteurs Notion de barycentre

Rappels et compléments sur les vecteurs Notion de barycentre Rappels et compléments sur les vecteurs Notion de barycentre Christophe ROSSIGNOL Année scolaire 2010/2011 Table des matières 1 Rappels et compléments sur les vecteurs 3 1.1 Quelques rappels.............................................

Plus en détail

Aide : Vecteurs distance - colinéarité

Aide : Vecteurs distance - colinéarité Exercice : calculs de distances en repère orthonormal On donne les points A(- ;) B( ;) et C( ;-). Placer ces points dans un repère. ) Calculer les longueurs AB, BC et CA. En déduire la nature du triangle

Plus en détail

1 Équations cartésiennes, équations polaires d un ensemble de points

1 Équations cartésiennes, équations polaires d un ensemble de points Plans, cercles, droites et sphères Ce chapitre aborde les objets fondamentaux utilisés en géométrie : droites et cercles dans le plan, plans, droites et sphères dans l espace. Les objectifs du chapitre

Plus en détail

Sommaire. Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel

Sommaire. Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel Sommaire 1 Vecteurs Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel 2 Vecteurs colinéaires Définition Conséquences 3 Base du

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 01 Enoncés On demandait de résoudre trois questions

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

Géométrie, L3 623 Solutions, feuille de travaux dirigés 4 : Géométrie affine euclidienne

Géométrie, L3 623 Solutions, feuille de travaux dirigés 4 : Géométrie affine euclidienne Géométrie, L 6 Solutions, feuille de travaux dirigés 4 : Géométrie affine euclidienne Exercice (Distance entre deux droites). On donne les droites (D) = (A, u) et (D ) = (B, v) avec Calculer la distance

Plus en détail

NOM : GEOMETRIE DANS L ESPACE 1ère S

NOM : GEOMETRIE DANS L ESPACE 1ère S Exercice 1 On donne A(2 ; 1 ; 3), B(1 ; 2 ; 0), C( 2 ; 1 ; 2) et D( 1 ; 2 ; 5). 1) ABCD est-il un parallélogramme? Un rectangle? 2) Calculer les coordonnées de l isobarycentre du quadrilatère ABCD. Figure

Plus en détail

Fiche 1 Calcul vectoriel dans R 2 et R 3

Fiche 1 Calcul vectoriel dans R 2 et R 3 Université Paris, IUT de Saint-Denis Année universitaire 0-0 Licence Pro MDQ Géométrie Fiche Calcul vectoriel dans R et R Dans les exercices suivants, on suppose le plan muni d un repère orthonormal (O,,

Plus en détail

Seconde 4 Repérage dans le plan Vecteurs

Seconde 4 Repérage dans le plan Vecteurs Exercice 1 : repères du plan coordonnées de points et de vecteurs Quadrillage à maille carrée Lire les coordonnées dans le repère (O ; i ; j ) : a) des points A, B, C, D, E b) des vecteurs u et v Exercice

Plus en détail

Géométrie de l'espace

Géométrie de l'espace [http://mp.cpgedupuydelome.fr] édité le 3 novembre 07 Enoncés Géométrie de l'espace Notions communes Exercice 7 [ 0878 ] [Correction] Soient D et D deux droites distinctes sécantes de l'espace. Montrer

Plus en détail

On dit que M est l origine du vecteur et N son extrémité.

On dit que M est l origine du vecteur et N son extrémité. ❶ - Vecteurs I-- Définition d un vecteur Définition : Lorsqu on choisit deux points distincts M et N dans cet ordre, on définit : - une direction : celle des droites parallèles à (MN) ; - un sens : de

Plus en détail

Produit scalaire et géométrie analytique de l espace. Corrigés d exercices

Produit scalaire et géométrie analytique de l espace. Corrigés d exercices Produit scalaire et géométrie analytique de l espace Corrigés d exercices Les exercices du livre corrigés dans ce document sont les suivants : Page 319 : N 76, 77, 81 Page 35 : N 117 Page 30 : N 85, 86,

Plus en détail

Géométrie Chapitre 1 : Vecteurs et droites du plan

Géométrie Chapitre 1 : Vecteurs et droites du plan Géométrie Chapitre 1 : Vecteurs et droites du plan I- Rappels et compléments sur les vecteurs 1) Vecteurs égaux La translation qui transforme en est appelée la translation de vecteur. Le point s appelle

Plus en détail

Chapitre 4: Géométrie analytique dans l'espace

Chapitre 4: Géométrie analytique dans l'espace GEOMETRIE ANALYTIQUE DANS L'ESPACE 35 Chapitre 4: Géométrie analytique dans l'espace Prérequis: Géom. vectorielle dans V 3, géom. analytique dans le plan Requis pour: Algèbre linéaire, examen de maturité.

Plus en détail

Produit scalaire dans l espace

Produit scalaire dans l espace Chapitre G Produit scalaire dans l espace Contenus Capacités attendues Commentaires Produit scalaire Produit scalaire de deux vecteurs dans l espace : définition, propriétés. Vecteur normal à un plan.

Plus en détail

Première S 2 mai 2011

Première S 2 mai 2011 Première S mai 011 Exercices 11 1 Homothétie 1 Mathématiques Soit ABC un triangle, ( Γ ) son cercle circonscrit et O le centre de ( Γ ) Soit H le milieu de [BC] et D le point de ( Γ ) diamétralement opposé

Plus en détail

Terminale S Chapitre «Géométrie dans l espace» Page 1 sur 17

Terminale S Chapitre «Géométrie dans l espace» Page 1 sur 17 Terminale S Chapitre «Géométrie dans l espace» Page sur 7 Terminale S Chapitre «Géométrie dans l espace» Page sur 7 I) Produit scalaire Dans tout ce paragraphe, on travaillera dans un repère orthonormé

Plus en détail

Classe de première Du collège au lycée : Fiche de géométrie

Classe de première Du collège au lycée : Fiche de géométrie Classe de première Du collège au lycée : Fiche de géométrie Les outils collège : Tous les axiomes d Euclide, les résultats sur les angles ; les quadrilatères particuliers ; les triangles isocèles ; équilatéraux

Plus en détail

Vecteurs. Seconde. Eric Leduc 2014/2015. Lycée Jacquard. Vecteurs. Eric Leduc. Translations - Vecteurs associés. Opérations sur les vecteurs

Vecteurs. Seconde. Eric Leduc 2014/2015. Lycée Jacquard. Vecteurs. Eric Leduc. Translations - Vecteurs associés. Opérations sur les vecteurs - Seconde Lycée Jacquard 2014/2015 Rappel du plan - 1-2 3 4 5 Translation - Définition n o 1: Translation On considère deux points A et B du plan. On appelle translation qui transforme A en B la transformation

Plus en détail

Equations cartésiennes. Fiche(1)

Equations cartésiennes. Fiche(1) Fiche(1) Le tableau suivant indique, dans la case située ligne l et colonne c, l altitude (exprimée en centaines de mètres) au point dont l abscisse est c et l ordonnée l : par exemple, l altitude du point

Plus en détail

UNIVERSITÉ DE CERGY. U.F.R. Économie & Gestion. LICENCE d ÉCONOMIE et GESTION. Première année - Semestre 2 MATHÉMATIQUES

UNIVERSITÉ DE CERGY. U.F.R. Économie & Gestion. LICENCE d ÉCONOMIE et GESTION. Première année - Semestre 2 MATHÉMATIQUES Année 011-01 UNIVERSITÉ DE CERGY U.F.R. Économie & Gestion LICENCE d ÉCONOMIE et GESTION Première année - Semestre MATHÉMATIQUES MATH10 : Fonctions de plusieurs variables Enseignant responsable : C. Andrianasitera

Plus en détail

Mathématique et Mécanique de Base

Mathématique et Mécanique de Base Mathématique et Mécanique de Base Pauline GERUS - Leila LEFEVBRE - Violaine SEVREZ Licence 1 STAPS BMC 51 2009-2010 Définition Repère = zone de référence Etablit en fonction des objectifs On choisit une

Plus en détail

GEOMETRIE DANS L ESPACE

GEOMETRIE DANS L ESPACE re STI C8 : Géométrie dans l espace 6/7 GEOMETRIE DANS L ESPACE Table des matières I Volumes de l espace I. Cylindres............................................. I. Cônes...............................................

Plus en détail

Géométrie analytique

Géométrie analytique 8 décembre 2009 Théorème Dans( le plan muni d un repère orthonormal O; i, ) j, on considère une droite( passant par A et α de vecteur directeur u. β) Tout point M de cette droite est tel que : AM = t u,

Plus en détail

Colinéarité de vecteurs Équation cartésienne d une droite

Colinéarité de vecteurs Équation cartésienne d une droite Colinéarité de vecteurs Équation cartésienne d une droite Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur les vecteurs 3. Égalité de deux vecteurs.........................................

Plus en détail

CHAPITRE I GÉOMÉTRIE ANALYTIQUE DANS LE PLAN EXERCICES

CHAPITRE I GÉOMÉTRIE ANALYTIQUE DANS LE PLAN EXERCICES CHAPITRE I GÉOÉTRIE ANALYTIQUE DANS LE PLAN EXERCICES 1) Le plan étant muni d un repère ( O, i, j ) 4 u 6 et v Calculez les coordonnées de : 1 2,4 a) AB d) u + v b) 2 CA c) BC, on donne A( 5; 7,3), ( 9;0)

Plus en détail

I. Propriétés de géométrie analytique.

I. Propriétés de géométrie analytique. I. Propriétés de géométrie analytique. Activité 1 Dans un repère orthonormé (O ; I ; J), a. Distance entre deux points. Dans un repère orthonormée (O ; I ; J) on considère deux point A(2 ; 1) et B(5 ;

Plus en détail

Chapitre 1 : Équations de la droite dans le plan

Chapitre 1 : Équations de la droite dans le plan EQUATIONS DE LA DROITE DANS LE PLAN 1 Chapitre 1 : Équations de la droite dans le plan 1.1 Introduction Exercice d introduction : On considère l équation vectorielle: x = 3 3 + k. y 2 2 Représenter, dans

Plus en détail

* Addition de deux vecteurs : 1) La relation de Chasles : 2) La règle du parallélogramme :

* Addition de deux vecteurs : 1) La relation de Chasles : 2) La règle du parallélogramme : I Rappels- Les vecteurs I-1 Généralités : * tout couple de points (,B dans un plan, est associé un vecteur B Soit u un représentant de B, alors u = B Lorsque = B,alors u = 0 * La norme du vecteur B est

Plus en détail

et z B alors le vecteur AB a pour affixe le iy B. Alors par définition les coordonnées = x B, z B, z C et z D, z C = z B

et z B alors le vecteur AB a pour affixe le iy B. Alors par définition les coordonnées = x B, z B, z C et z D, z C = z B Chapitre 9 Nombres complexes et géométrie Dans tout ce chapitre on se place dans un repère orthonormal direct du plan complexe O ; i ; j. 1. Affixe d un vecteur Définitions et conséquences Définition :

Plus en détail

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment Chapitre : Géométrie plane 1 Calcul vectoriel 1.1 coordonnées d un vecteur dans un repère Définition 1. Soit #» u un vecteur du plan. Pour tout point O du plan, il existe un unique point M tel que OM #»

Plus en détail

Annales sur la géométrie dans l espace

Annales sur la géométrie dans l espace Annales sur la géométrie dans l espace Exercice I : France juin 200 Soient a un réel strictement positif et OABC un tétraèdre tel que : OAB, OAC et OBC sont des triangles rectangles en O, OA = OB = OC

Plus en détail

REPERAGE DANS LE PLAN

REPERAGE DANS LE PLAN 1 sur 12 REPERAGE DANS LE PLAN I. Repère du plan Trois points distincts deux à deux O, I et J du plan forment un repère, que l on peut noter (O, I, J). L origine O et les unités OI et OJ permettent de

Plus en détail

GÉOMÉTRIE DANS L ESPACE

GÉOMÉTRIE DANS L ESPACE GÉOMÉTRIE DANS L ESPACE On se place dans un repère orthonormal du plan ( O ; i, j, k ) I Équation de plan Exercice 1 : On considère le point A ( 0;1;4) et le vecteur n ( ;3; ) Déterminer une équation du

Plus en détail

Comme son lien avec la Physique le laisse supposer, les vecteurs permettent d'introduire la notion de mouvement dans la Géométrie.

Comme son lien avec la Physique le laisse supposer, les vecteurs permettent d'introduire la notion de mouvement dans la Géométrie. Les vecteurs Introduction : Les vecteurs sont fondamentaux : En Mathématiques : Le calcul vectoriel est un outil très puissant apparu à la fin du 19 ième siècle pour effectuer des démonstrations en Géométrie

Plus en détail

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan Produit scalaire de deux vecteurs de l espace 1 Rappels sur le produit scalaire de deux vecteurs du plan 1.1 Définition Soit u et v deux vecteurs du plan. Si u = 0 ou v = 0, alors u v = 0 (Attention! On

Plus en détail

Exercices sur les vecteurs

Exercices sur les vecteurs Exercices sur les vecteurs Exercice 1 : Associativité de la somme de trois vecteurs. On donne trois vecteurs u, v et w. Sur les deux figures suivantes tracer la somme u + v + w de deux manières : u + v

Plus en détail

() Compléments de géométrie 1 / 33

() Compléments de géométrie 1 / 33 Compléments de géométrie () Compléments de géométrie 1 / 33 1 Compléments de géométrie dans le plan complexe 2 Calcul barycentrique 3 Transformations du plan complexe () Compléments de géométrie 2 / 33

Plus en détail

2 nde S CALCULS VECTORIELS ET BARYCENTRE. Boubacar MANÉ boubacarmane.jimdo.com 14 janvier 2013

2 nde S CALCULS VECTORIELS ET BARYCENTRE. Boubacar MANÉ boubacarmane.jimdo.com 14 janvier 2013 2 nde S CALCULS VECTORIELS ET BARYCENTRE Boubacar MANÉ boubacarmane.jimdo.com boubacarmane2@gmail.com 14 janvier 201 Table des matières 1 Calculs vectoriels........................................ 2 1.1

Plus en détail

Résumé du cours. Droites et plans de l espace. Positions relatives P P P P

Résumé du cours. Droites et plans de l espace. Positions relatives P P P P Résumé du cours roites et plans de l espace ans l espace un plan est caractérisé par la donnée de trois points non alignés, deux droites sécantes ou strictement parallèles. Un plan passant par trois points

Plus en détail

Synthèse de cours PanaMaths (Terminale S) Produit scalaire dans l espace

Synthèse de cours PanaMaths (Terminale S) Produit scalaire dans l espace Synthèse de cours PanaMaths (Terminale S) Produit scalaire dans l espace Notes : dans cette synthèse de cours, on suppose connues les notions du programme de 1 ère S relatives au produit scalaire dans

Plus en détail

Exercices Géométrie plane

Exercices Géométrie plane I Notions élémentaires et compléments sur les vecteurs Savoir-faire 1 : Démontrer avec des vecteurs Exercice 1 ABCD et BDFE sont deux parallélogrammes. Le point K est défini par BK = CB. 1. Justifier les

Plus en détail

Chapitre 5 GE0 3. Produit Vectoriel

Chapitre 5 GE0 3. Produit Vectoriel Chapitre 5 GE Produit Vectoriel À la fin de ce td, vous devez être capable de : Savoir tracer une courbe paramétrée définie par des fonctions polynomiales. Établir le tableau des variations conjointes

Plus en détail

BARYCENTRE, PRODUIT SCALAIRE

BARYCENTRE, PRODUIT SCALAIRE 1 re STI Ch04 : Barycentre et produit scalaire 006/007 BARYCENTRE, PRODUIT SCALAIRE Table des matières I Barycentre 1 I.1 Barycentre de deux points pondérés.............................. 1 I. Caratérisations

Plus en détail

Vecteurs (I) 1 Notion de vecteur. Exercice 1. Sur le quadrillage ci-dessous, on a representé trois points A, B et C.

Vecteurs (I) 1 Notion de vecteur. Exercice 1. Sur le quadrillage ci-dessous, on a representé trois points A, B et C. Vecteurs (I) Exercice 1. Sur le quadrillage ci-dessous, on a representé trois points A, B et C. B A 1. Indiquez par une phrase le déplacement qu il convient d effectuer pour aller de A à B. 2. On effectue

Plus en détail

CHAPITRE 6 : PRODUIT SCALAIRE

CHAPITRE 6 : PRODUIT SCALAIRE CHPITRE 6 : PRODUIT SCLIRE I. Produit scalaire de deux vecteurs dans le plan 1. Généralités Définition : Soit u et v deux vecteurs du plan non nuls, et, B, C trois points du plan tels que Le produit scalaire

Plus en détail

Géométrie dans l' espace

Géométrie dans l' espace Exercice 1 Le repère ( A, AB, AD,AF ) formé sur le cube ABCDEFGH est orthonormé direct Calculer les produits vectoriels suivants AB AD, AB AC, AC BD et AC FH Dans tous les exercices qui suivent, l espace

Plus en détail

Géométrie analytique et vectorielle dans l espace, cours, terminale S. Géométrie vectorielle et analytique dans l espace, cours, terminale S

Géométrie analytique et vectorielle dans l espace, cours, terminale S. Géométrie vectorielle et analytique dans l espace, cours, terminale S Géométrie analytique et vectorielle dans l espace, cours, terminale S Géométrie vectorielle et analytique dans l espace, cours, terminale S F.Gaudon http://mathsfg.net.free.fr 27 mars 2013 1 Extension

Plus en détail

Exercices de géométrie analytique

Exercices de géométrie analytique Exercice 1 Exercices de géométrie analytique (1) Déterminer les coordonnées des vecteurs représentés dans la base ( i, j ) () Déterminer les coordonnées des vecteurs représentés dans la base ( j, i ) ()

Plus en détail

Notions de géométrie

Notions de géométrie IUT Orsay Mesures Physiques Notions de géométrie Cours du 1 er semestre A. Les systèmes de coordonnées dans le plan A-I. Coordonnées cartésiennes Le plan étant muni d un repère orthonormé ( O, i, j) nombres

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace I Modes de repérage dans l espace 1 I.A Coordonnées cartésiennes...................... 1 I.B Coordonnées cylindriques...................... 2 I.C Coordonnées sphériques.......................

Plus en détail

Géométrie dans l'espace

Géométrie dans l'espace M- SE - ST Géométrie dans l'espace Exercice Dans l'espace muni du repère orthonormé O, i, j, k, on considère les points : A; ; -, B; ; C; -; 0. - Calculer les coordonnées des vecteurs AB, AC AB AC. Les

Plus en détail

Barycentre. αg + βg = 0. On appelle isobarycentre le barycentre de la famille de points pondérés {(A ; k) ; (B ; k)} avec k 0.

Barycentre. αg + βg = 0. On appelle isobarycentre le barycentre de la famille de points pondérés {(A ; k) ; (B ; k)} avec k 0. Barycentre 1. Savoir 1.1. Barycentre de deux points 1.1.1. Définitions On appelle barycentre de deux points A et B affectés des coefficients a et b, tels que a b 0, l unique point défini par : α β = 0

Plus en détail

CHAPITRE 2 : Géométrie plane

CHAPITRE 2 : Géométrie plane CHAPITRE 2 : Géométrie plane 1 Egalité de deux vecteurs... 2 2 Somme de deux vecteurs... 3 2.1 Relation de Chasles... 3 2.2 Règle du parallélogramme... 3 3 Vecteurs dans un repère... 4 3.1 Coordonnées

Plus en détail

( ) ( BIG ) est : Produit scalaire et espace La droite ( OA ) avec A( 2; 4; et le plan P. Exercice 1 - qcm

( ) ( BIG ) est : Produit scalaire et espace La droite ( OA ) avec A( 2; 4; et le plan P. Exercice 1 - qcm ENSM cours pi Marc Bizet 0-04 Exercice - qcm Produit scalaire et espace ABCDEFGH est un cube d arête de longueur et on EF considère les milieux I et J des arêtes [ EH ] et [ ] La longueur BI 5 5 vaut BG

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Chapitre 11 Géométrie dans l espace Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 1ère partie Droites et plans Positions relatives de droites et de plans : intersection

Plus en détail

Seconde 2 DST2 vecteurs Sujet 1-9 février 2015

Seconde 2 DST2 vecteurs Sujet 1-9 février 2015 Seconde DST vecteurs Sujet 1-9 février 01 Exercice 1 : ( points) Soit ABCD un parallélogramme. I, J, K et L sont les milieux respectifs de [AB], [BC], [CD] et [DA]. Recopier et compléter les égalités suivantes

Plus en détail

Produit scalaire dans l'espace

Produit scalaire dans l'espace Produit scalaire dans l'espace Il y a de la géométrie dans l'espace au bac tous les ans. Dans tout ce chapitre, on se place dans un repère (O, ı, j, k ) orthonormal de l'espace. Introduction L'espace,

Plus en détail

Nom : VECTEURS 2nde. Exercice 1. ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure.

Nom : VECTEURS 2nde. Exercice 1. ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure. Exercice 1 ABCD est un parallélogramme de centre O. Donner l ensemble des égalités vectorielles possibles sur cette figure. Illustration D. Le Fur 1/?? Exercice 2 ABCD est un parallélogramme de centre

Plus en détail

GEOMETRIE PLANE. VECTEURS ET DROITES.

GEOMETRIE PLANE. VECTEURS ET DROITES. I. Les vecteurs : rappels et compléments. GEOMETRIE PLANE. VECTEURS ET DROITES. Propriétés et définitions à connaître : 1) Un vecteur AB est caractérisé par trois données : sa direction (celle de la droite

Plus en détail

2 nde Savoirs minimaux Enoncés Droites

2 nde Savoirs minimaux Enoncés Droites 2 nde Savoirs minimaux Enoncés Droites Le plan est muni d un repère O, I, J Exercice 9 p 186 Les points A 3 ; 2, B 0 ; 5, C 12 ; 47 et D 1 ; 3 appartiennent-ils à la droite d équation y 3x 11? Exercices

Plus en détail

Les définitions et opérations sur les vecteurs du plan se généralisent dans l espace

Les définitions et opérations sur les vecteurs du plan se généralisent dans l espace I. VECTEUR DE L ESPACE Les définitions et opérations sur les vecteurs du plan se généralisent dans l espace 1. VECTEURS CLINÉAIRES Dire que deu vecteurs non nuls u et v sont colinéaires signifie, qu ils

Plus en détail

Chapitre 9 : Géométrie vectorielle

Chapitre 9 : Géométrie vectorielle Chapitre 9 : Géométrie vectorielle I Notion de vecteur 1 Translation et vecteur Soit A et B deux points du plan La translation qui transforme A en B associe à tout point C du plan l unique point D tel

Plus en détail

Mathématiques Terminale C Calcul Vectoriel Résumé de cours

Mathématiques Terminale C Calcul Vectoriel Résumé de cours . arycentre I- arycentre de deux points pondérés I. 1. Définition 1: Soit (, ) et (, ) deux points pondérés tels que + 0, Il existe un point unique G tel que G G 0 ; le point G est appelé barycentre des

Plus en détail

PRODUIT SCALAIRE. I Produit scalaire. Définition ( voir animation ) Remarques ( voir animation ) Configurations fondamentales.

PRODUIT SCALAIRE. I Produit scalaire. Définition ( voir animation ) Remarques ( voir animation ) Configurations fondamentales. PRODUIT SCALAIRE I Produit scalaire Définition ( voir animation ) Soient et deux vecteurs du plan. On considère trois points O, A et tels que : OA = u et O =. On appelle produit scalaire du vecteur par

Plus en détail

Équations cartésiennes de plans et de droites

Équations cartésiennes de plans et de droites Chapitre 4 Équations cartésiennes de plans et de droites Sommaire 4.1 Équation cartésienne d un plan........................................... 25 4.1.1 Équation cartésienne d un plan........................................

Plus en détail

BAC BLANC DE MATHEMATIQUES Durée : 4 heures

BAC BLANC DE MATHEMATIQUES Durée : 4 heures Terminale S Jeudi 1 avril 2010 BAC BLANC DE MATHEMATIQUES Durée : 4 heures L usage de la calculatrice est autorisé. Le sujet comporte pages. Exercice 1 (6 points) : Pour les candidats n ayant pas suivi

Plus en détail

Pondichéry Avril 2010 Série S Exercice L espace est muni d un repère orthonormal Oi ;,, jk

Pondichéry Avril 2010 Série S Exercice L espace est muni d un repère orthonormal Oi ;,, jk Pondichéry Avril 21 Série S Exercice L espace est muni d un repère orthonormal Oi ;,, jk Pour chacune des propositions suivantes, indiquer si elle est vraie ou fausse et donner une démonstration de la

Plus en détail

CLASSE DE 2 NDE CHAPITRE : VECTEURS (Programme 2010)

CLASSE DE 2 NDE CHAPITRE : VECTEURS (Programme 2010) CLASSE DE 2 NDE CHAPITRE : VECTEURS (Programme 2010) Introduction : Figure 1 : Figure 1 bis : On a effectué une translation de vecteur u, c'est-à-dire un déplacement de la figure, sans la tourner ni la

Plus en détail

DROITES, PLANS ET VECTEURS DE L ESPACE.

DROITES, PLANS ET VECTEURS DE L ESPACE. DROITES, PLANS ET VECTEURS DE L ESPACE. I- Droites et plans de l espace : Rappels des règles de base Par deux points distincts de l espace, passe une unique droite. Par trois points non alignés passe un

Plus en détail

Geométrie dans l espace

Geométrie dans l espace Geométrie dans l espace Quelques règles Montrer qu une droite est perpendiculaire à un plan il faut montrer qu elle est orthogonale à deux droites sécantes de ce plan Une droite perpendiculaire à un plan

Plus en détail

Baccalauréat S Géométrie Index des exercices de géométrie de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Géométrie Index des exercices de géométrie de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Géométrie Index des exercices de géométrie de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie Application 1 Asie juin 2012 2 Centres étrangers

Plus en détail

Vecteurs, cours pour la classe de seconde

Vecteurs, cours pour la classe de seconde F.Gaudon 24 janvier 2010 Table des matières 1 Notions de translation et de vecteurs 2 2 Coordonnées de vecteurs 3 3 Somme de vecteurs 5 3.1 Relation de Chasles....................................... 5

Plus en détail

DES EXERCICES DE GÉOMÉTRIE

DES EXERCICES DE GÉOMÉTRIE DES EXERCICES DE GÉOMÉTRIE A.LES ÉNONCÉS Exercice I On considère deux réels a et b ainsi que les parties de l espace donnés par leurs équations dans un repère cartésien : { { x z a = 0 D : et D x + 2y

Plus en détail

Théorème de l angle inscrit. Cocyclicité. Applications

Théorème de l angle inscrit. Cocyclicité. Applications Théorème de l angle inscrit. Cocyclicité. Applications Introduction : On se place dans plan affine euclidien orienté. On suppose connu : - Angles orientés de vecteurs, relation de Chasles - Pour un triangle

Plus en détail

Les vecteurs du plan

Les vecteurs du plan Les vecteurs du plan Colinéarité Lycée du golfe de Saint Tropez Année 2015/2016 Première S ( Lycée du golfe de Saint Tropez) Vecteurs Année 2015/2016 1 / 13 1 Vecteurs colinéaires Définition et première

Plus en détail

Trigonométrie. I] Cercle trigonométrique et radians

Trigonométrie. I] Cercle trigonométrique et radians I] Cercle trigonométrique et radians Dans le plan muni d un repère orthonormé, on appelle cercle trigonométrique le cercle de centre O et de rayon 1 sur lequel on définit un sens de parcours appelé sens

Plus en détail

Géométrie dans l'espace

Géométrie dans l'espace Terminale S Ch.8 PARTIE Géométrie dans l'espace Ú La perspective cavalière C'est un ensemble de règles permettant de représenter un volume dans un plan; ce n'est pas ce que nous voyons dans la réalité.

Plus en détail

Université Pierre et Marie Curie-Paris 6 - Eléments de Mathématiques. Feuille d exercices n 4 : Calculus

Université Pierre et Marie Curie-Paris 6 - Eléments de Mathématiques. Feuille d exercices n 4 : Calculus Université Pierre et Marie Curie-Paris 6 - Eléments de Mathématiques Feuille d exercices n 4 : Calculus Dans ce qui suit, l espace euclidien de dimension 3 est rapporté à un repère orthonormé direct (O;

Plus en détail

Exercices sur le barycentre

Exercices sur le barycentre Exercices sur le barycentre Exercice 1 : ABCD est un quadrilatère quelconque, I le milieu de [AD] et J celui de [BC]. 1) Ecrire IJ comme la somme de AB et de deux autres vecteurs que l on précisera. 2)

Plus en détail

GEOMETRIE ANALYTIQUE DANS LE PLAN

GEOMETRIE ANALYTIQUE DANS LE PLAN WORKBOOK PCD -GEOMETRIE ANALYTIQUE DU PLAN 016 GEOMETRIE ANALYTIQUE DANS LE PLAN 1 Déterminer l'équation du cercle centré en C et de rayon r si : a) C (0; 0) et r = 1; b) C = (1; ) et r c) C (3; -4) et

Plus en détail