STATISTIQUES A UNE VARIABLE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "STATISTIQUES A UNE VARIABLE"

Transcription

1 Cours et exercces de mathématques ) Itroducto et vocabulare STATISTIQUES A UNE VARIABLE La statstque est la scece qu cosste à réur des doées chffrées, à les aalyser, à les commeter et à les crtquer Ue étude statstque s effectue sur u esemble appelé Populato, dot les élémets sot appelés Idvdus, et cosste à observer et étuder u même aspect sur chaque dvdu, appelé Caractère. O dstgue deux types de caractère : - Les caractères qualtatfs : Ce sot les caractères dot les valeurs e sot pas des ombres (professo, couleur des yeux) - Les caractères quattatfs : Ce sot les caractères qu preet des valeurs umérques - Le caractère quattatf est dscret s les valeurs du caractère sot solées (ex : ombre d efats). Ces valeurs sot appelées modaltés - Le caractère est cotu s les valeurs du caractère sot regroupées e tervalles, appelés Classes (ex : Talle [ 70 ; 75[ ) La «largeur» de chaque tervalle s appelle l ampltude ) Effectfs et fréqueces O appelle effectf d ue valeur (respectvemet d ue classe, respectvemet d ue modalté) le ombre d dvdus possédat le caractère de cette valeur (respectvemet d ue classe, respectvemet d ue modalté) O appelle fréquece d ue valeur (respectvemet d ue classe, respectvemet d ue modalté) le quotet de l effectf de cette valeur par l effectf total de la populato Les fréqueces sot des ombres comprs etre 0 et, souvet exprmées e pourcetage effectf de la valeur fréquece 00 effectf total pour obter u pourcetage Effectfs et fréqueces cumulé(e)s crossat(e)s et/ou décrossat(e)s Das le cas d'ue varable quattatve, o peut ordoer les dfféretes valeurs de la varable das l'ordre crossat ou décrossat. O peut as détermer "Quel effectf ou quelle fréquece de la populato a ue valeur du caractère au plus égale ou au mos égale à." Ce sot les otos d'effectfs cumulés crossats ou décrossats, ou de fréqueces cumulées crossates ou décrossates 3) Les représetatos graphques O peut vsualser la sére statstque par le bas d autres moyes, otammet : Séres statstques à caractère qualtatfs O utlse souvet les des dagrammes à secteurs : Dagramme e secteurs crculares 9 as 0,0% 5 as,5% Les ares des secteurs sot proportoelles aux effectfs ou aux fréqueces Les agles des secteurs sot proportoels aux effectfs ou aux fréqueces selo le tableau de proportoalté : 8 as 7,5% as 3,5% Effectf total 30 Effectf de la valeur Agle du secteur (Atteto! pour u dagramme sem-crculare, l'effectf total correspod à u agle de 80 ) 7 as 37,5% Page /8

2 Cours et exercces de mathématques Séres statstques à caractère quattatfs O utlse prcpalemet deux types de représetatos : Pour les caractères dscrets, o peut utlser les dagrammes "e bâtos". As apparaît la dscotuté etre valeurs de la varable ; 5 4 Effectfs 3 0 Notes Pour les caractères cotus, regroupés e tervalles, o peut utlser u "hstogramme". Das les deux types de représetato graphque, le caractère est porté e abscsses et l'effectf ou la fréquece sot portés e ordoée. Sgalos u cas partculer : Hstogramme à classe d'ampltudes égales S les ampltudes des classes e sot pas égales et alors ce sot les ares des rectagles qu dovet être proportoelles aux effectfs des classes. Sur l'axe des abscsses, o représete les classes. O e dot pas représeter des classes d'ampltudes dfféretes avec ue base detque. S l'ampltude est double, la base dot être double. O se ramèe à la plus pette ampltude appelée ampltude élémetare. E pratque, pour la costructo de ces rectagles o procède de la maère suvate : O cherche la classe d'ampltude élémetare (ou o e chost ue s l y e a pluseurs) pus o chost la hauteur du rectagle. Cette hauteur sert de base pour les hauteurs suvates. Pus, pour les autres classes, la largeur du rectagle vaut l'ampltude de la classe (proportoellemet à l'ampltude de la classe chose pour so ampltude élémetare) et la hauteur du rectagle vaut: ampltude élémetare Effectf de la classe ampltude de la classe 4) Etude des séres statstques à ue varable Caractères de répartto La vue d'u tableau ou d'u graphque e permet pas forcémet de coaître suffsammet des doées pour pouvor e aalyser les réparttos, d'autat que la cosultato de tableaux peut s'avérer très logue. O cherche alors à résumer celle-c par ue caractérstque de tedace cetrale, c'est à dre par u seul ombre desté à caractérser l'esemble d'ue faço objectve et mpersoelle. 4-) La moyee arthmétque La moyee arthmétque d'ue sére de valeurs d'ue varable statstque est égale à la somme de ces valeurs dvsée par leur ombre. O la ote x U élève qu a eu comme otes 4,5,7,9 et a ue moyee égale à : x 7, 4 5 Icovéet Le calcul peut s'avérer très lourd lors de l'éumérato d'u grad ombre de doées. Page /8

3 Cours et exercces de mathématques 4-) La moyee podérée S, das ue classe, 4 élèves ot obteu la ote 8, 3 élèves ot obteu la ote 0 et 5 élèves ot obteu la ote O e va pas calculer x, mas o va effectuer x De maère géérale : Défto : S pour ue populato doée, o a p valeurs du caractère x,x,...,x p d'effectfs respectfs,,..., p alors la x + x p x p moyee de cette sére statstque est doée par x ) Cas d'ue varable cotue Pour calculer la moyee d'ue sére statstque à caractère cotu, o remplace chaque classe par so mleu, avec la part d'approxmato que cela comporte. 4-4) Proprété de la moyee Proprété Sot deux séres statstques S et S d'effectfs totaux respectfs N et N et de moyees respectves x et x Alors la moyee de la sére S obteue e regroupat S et S est doée par : N x + N x x N + N Das ue classe de élèves, l y a 4 flles et 8 garços. Lors d'u devor, les 4 flles obteet 3,875 de moyee et 4 3, ,083 les 8 garços 3,0833. La moyee de la classe est doc x 3, Défto : O dt que S et S sot des sous-séres statstques (ou séres statstques extrates) de S. Proprété Sot S ue sére statstque, de valeurs du caractère otées x affectées des coeffcets ou effectfs, et de moyee x Sot a et b deux réels quelcoques Alors la sére S', de valeurs du caractère ax b affectées des mêmes coeffcets ou effectfs, a pour moyee a x + b + Das ue classe, 4 élèves ot obteu la ote 8, 3 élèves ot obteu la ote 0 et 5 élèves ot obteu la ote. La moyee est doc x S l'esegat décde de trasformer les otes sur 40, et de les augmeter de u pot (sur 40), la moyee de la ouvelle sére statstque sera x + 4-5) Le mode ou la valeur modale Défto: Le mode ou valeur modale est la valeur du carcatère que la varable statstque pred le plus fréquemmet. S les doées sot groupées e classes, o parle plutôt de classe modale p Page 3/8

4 Cours et exercces de mathématques 5) Médaes et quartles Défto: La médae d'ue sére statstque est la valeur du caractère qu partage l effectf total e deux partes égales, c est à dre telle qu'l y at autat d'observatos ayat ue valeur supéreure ou égale à la médae que d'observatos ayat ue valeur féreure ou égale à la médae U groupe d'élève a obteu les otes suvates :,7,8,9 et 0. Leur moyee est doc x 0 5 Cette moyee 'est pas très représetatve de la répartto des otes, car tous les élèves sauf u, ot ue ote strctemet féreure à 0. La ote médae est égale à 8 : Il y a autat d'élèves qu ot 8 ou plus que d'élèves qu ot 8 ou mos. Cas où le ombre d'observatos est par : S le groupe obtet,3,4,4,8,8,0,0. Là ecore x 3, 5 'est pas très représetatf La ote médae est égale, par coveto, à la moyee arthmétque des 4 ème et 5 ème otes, sot.il y a autat d'élèves qu ot plus de que d'élèves qu ot mos de. Alors, s est mpar, p+ alors la médae correspod à la p+ ème valeur. S est par, p et la médae correspod alors à la moyee arthmétque etre la p ème et la p+ ème ème valeur Cas d'ue varable cotue S le caractère est cotu, o va détermer la valeur du caractère correspodat à la fréquece cumulée 50% (ou à l'effectf cumulé de ), e utlsat le tableau ou l'hstogramme des effectfs ou fréqueces cumulé(e)s et e effectuat ue terpolato léare Les quartles, décles et cetles Défto : Les quartles sot les valeurs du caractère qu partaget l'effectf total e 4 partes égales. Plus précsémet : Le quartle Q est la plus pette valeur du caractère pour laquelle 5 % des valeurs de la sére statstque lu sot féreures ou égales. De même, le quartle sére statstque lu sot féreures ou égales Il y a doc tros quartles, le ème quartle correspodat à la médae Q 3 est la plus pette valeur du caractère pour laquelle 75 % des valeurs de la Là ecore, le procédé de calcul des quartles est dfféret selo qu'l s'agt de varables dscrètes e ombre par ou mpar ou de varables cotu. Défto : Les décles et les cetles sot les valeurs du caractère qu partaget l'effectf total e respectvemet 0 et 00 partes égales. Plus précsémet : Le décle est la plus pette valeur du caractère pour laquelle 0 % des valeurs de la sére statstque lu sot féreures D D 9 ou égales. O déft de même le décle. O remarque que le 5 ème décle est égal à la médae et que le 50 ème cetle est égal à la médae Page 4/8

5 Cours et exercces de mathématques ) Dagrammes e boîte Af de représeter dfféretes caractérstques d'ue sére statstque, o a recours, etres autres, aux représetatos dtes "dagrammes e boîte" ou "dagrammes à moustaches" ou "dagrammes à pattes". Cosdéros la sére statstque suvate : Valeur du Caractère Effectf 3 O vérfe faclemet que Me50 ; Q 45 et Q 3 0 D'autre part, la plus pette valeur de cette sére est 30, et la plus grade, O peut représeter graphquemet ces résultats de la maère suvate : Plus pette Valeur 30 Q 45 Q 3 0 Me50 Plus grade Valeur ) Caractères de dsperso Itervalles terquartle L tervalle terquartle est ue caractérstque de dsperso smple. Par défto, l est égal à Q 3 -Q. Il représete la zoe cetrale compreat 50% des élémets, et est ue mesure de dsperso qu élme l fluece des valeurs extrêmes. Q3 Q O utlse égalemet le dem-terquartle (Q), ecore appelé dévato partelle : Q Ef, pour comparer la dsperso de deux séres dot les élémets sot mesurés avec des utés dfféretes, ou dot l ordre de gradeur est pas le même, o emploe le rapport de l terquartle à la médae, appelé terquartle relatf, Q3 Q Q déf par 3 Q Q Q Me Me Ecart absolu moye (ou écart arthmétque) Il est égal à la moyee arthmétque des dfféreces (e valeur absolue) exstat etre les dvers élémets et leur moyee. Cosdéros ue sute de salares horares : 55,58,,3,5,9,7,77, Leur moyee est de x 7 9 Les écarts des dvers salares et de leur moyee sot doc : Page 5/8

6 Cours et exercces de mathématques Il est be évdet que la somme algébrque des écarts à la moyee sera ulle (compte teu de leurs sges) das tous les cas et e fourra, par sute, aucu resegemet sur la dsperso. Auss addtoe-t-o les valeurs absolues, l écart moye, ou écart arthmétque, e a état égal, e déftve à Le calcul de l écart moye, quoque doat ue vue assez fdèle de la dsperso, est peu employé, car l se trouve complqué par l terveto des valeurs absolues, peu compatbles avec les calculs algébrques D où l dée de cosdérer o plus les valeurs absolues des dfféreces, mas leurs carrés, toujours postfs, et dot la somme, par coséquet, e peut s auler. Varace et écart-type Déftos: La varace V d'ue sére est la moyee arthmétque des carrés des écarts à la moyee. V ( x x) L'écart-type d'ue sére est la moyee quadratque des écarts à la moyee, autremet dt, c'est la race carrée de la varace. O utlse souvet le symbole "sgma muscule" σ σ ( x x) V Méthode de calcul - Théorème de KOENIG Nous veos de calculer des écarts-types e ous référat à la défto. Cepedat, ce calcul rsque de dever laboreux s la moyee 'est pas u ombre eter : o a à trater des "écarts à la moyee" o eters avec d'évtables arrods, d'où des calculs lourds et forcémet peu précs. Pour alléger ces calculs, o se sert du théorème suvat: Théorème de KOENIG: S la populato est formée de groupes de dvdus, chaque groupe correspodat à ue valeur x, et s, alors x V () x Autremet dt, la varace est égale à la moyee des carrés mos le carré de la moyee. Ce résultat smplfe cosdérablemet les calculs écessares pour obter la varace et l'écart-type. Le tableau suvat ous doe les otes obteues par deux élèves à 4 cotrôles coeffcetés : Notes de l élève A Notes de l élève B Coeffcets La moyee de l'élève A est de x A La varace de l'élève A est : V A x A 8 8 d'où σ A VA Calculer l'écart type de l'élève B. Quel est l'élève le plus réguler, c'est à dre celu qu a le plus pett écart type? Page /8

7 Cours et exercces de mathématques 8) Expérece aléatore, smulatos Défto : O appelle expérece aléatore toute expérece réalsée suvat u protocole expérmetal précs et reproductble à l detque, dot les résultats sot lés au hasard, mas dot o peut dresser la lste des résultats possbles. Exemples : ) Jet d'u dé. L'esemble des résultats possbles est {;;3;4;5;} ) Jet d'ue pèce L'esemble des résultats possbles est {PILE;FACE} Défto : O appelle évéemet toute parte de l'esemble des résultats d'ue expérece aléatore. Jet d'u dé. L'évéemet "obter u ombre par" est le sous-esemble {;4;} Défto : O appelle fréquece d'apparto d u évéemet le rapport etre le ombre de réalsatos de cet évéemet et le ombre de répéttos de l expérece aléatore. S, au cours de 0 lacer de dès, le uméro 5 apparaît 3 fos, alors la fréquece d apparto de l évéemet «le 3 apparaît» est 0 3 Proprétés : La fréquece d'u évéemet est la somme des fréqueces des valeurs costtuat cet évéemet. Exemples : Jet d'u dé. L'esemble des résultats possbles est {;;3;4;5;. Les fréqueces de chacue de ces valeurs sot doées par Nombre Fréquece La fréquece l'évéemet "obter u ombre par" est égale à Smulato Défto : Smuler ue expérece aléatore, c'est remplacer cette expérece par ue autre, plus rapde et plus facle à exécuter, à codto que les fréqueces d apparto de tous les évéemets possbles soet detques pour les deux expéreces L structo RANDOM de la calculatrce Les calculatrces possèdet ue structo permettat de smuler le trage aléatore d u ombre décmal apparteat à l tervalle [0 ;[ grâce à l structo Rad ou Ra# CASIO Meu MATH+PRB ou OPTN+PRB Istructo Ra # TI Meu MATH+PRB Istructo Rad O peut rétérer ces trages e pressat pluseurs fos sur la touche ENTER (ou EXE) La derère décmale est u 0, qu est doc pas affché Commet exploter ces doées? ère explotato : Pour chaque décmal revoyé, s l est strctemet féreur à 0,5 o assoce PILE, s l est supéreur ou égal à 0,5 o assoce FACE. Cette smulato applquée à la capture c-dessus doerat Face PILE FACE Page 7/8

8 Cours et exercces de mathématques Fréquece 0, 5 doc 0% 4 0,8 doc 80% 5 ème explotato : O explote chacue des décmales du ombre revoyé avec la coveto : S la décmale est strctemet féreure à 5, o assoce PILE S la décmale est supéreure ou égale à 5, o assoce FACE Cette smulato applquée à la capture c-dessus doerat Face PILE FACE Fréquece 3 0,47 49 doc evro 47 % 0,53 doc evro 53 % 49 3 ème explotato : O explote chacue des décmales du ombre revoyé avec la coveto : S la décmale est pare, o assoce PILE S la décmale est mpare, o assoce FACE Cette smulato applquée à la capture c-dessus doerat Face PILE FACE Fréquece 0,53 49 doc evro 53 % 3 0,47 doc evro 47 % 49 L structo INT de la calculatrce Les calculatrces possèdet ue structo permettat de calculer la parte etère d u ombre décmal CASIO Meu MATH+NUM ou OPTN+NUM Istructo It TI Meu MATH+NUM Istructo It Exemples : It (3,4)3 et It (,999999) ATTENTION Il s agt be de la trocature et o pas d u arrod E repreat la smulato précédete : Nombre décmal 0 ( ombre décmal) It ( 0 ( ombre décmal) ) 0, , , , ,48789, , , , , Proprété : Il est possble d'obter ue sute de ombres eters comprs etre a et a + b e utlsat par exemple l'structo INT(b RAN#) + a Istructo Le résultat est alors : comprs etre 0 et [ [ RAN# comprs etre 0 et [ [ INT( RAN#) + comprs etre et 7 [ [ INT( RAN#) parte etère Page 8/8

Statistique. 3 ème Maths Mai 2010 A. LAATAOUI. I. Introduction :

Statistique. 3 ème Maths Mai 2010 A. LAATAOUI. I. Introduction : Statstque 3 ème Maths Ma 00 A LAATAOUI I Itroducto : La statstque est ue scece ayat pour objet l étude des phéomèes socau surtout ceu doat leu à des varatos ou ceu e pouvat être suffsammet maîtrsés que

Plus en détail

I. Moyenne, variance et écart-type d une série statistique

I. Moyenne, variance et écart-type d une série statistique I Moyee, varace et écart-type d ue sére statstque Sére statstque dscrète : Eemple d ue sére statstque dscrète : Preos le cas d ue classe de élèves qu réalset u devor oté sur 5 La sére statstque dscrète

Plus en détail

Chapitre III : Les caractéristiques de dispersion

Chapitre III : Les caractéristiques de dispersion Chaptre III : Les caractérstques de dsperso Les caractérstques de tedace cetrale e sot pas toujours suffsates pour caractérser ue sére statstque, car séres peuvet avor Mo= Me = x alors qu elles sot dstrbuées

Plus en détail

Cours (Terminale) Probabilités (révisions 1 ère )

Cours (Terminale) Probabilités (révisions 1 ère ) Cours (Termale) Probabltés (révsos ère ) Quelques rappels et complémets sur les esembles Uo de deux esembles O appelle «uo de deux esembles E et F» l esemble oté E F dot les élémets sot costtués des élémets

Plus en détail

Correction Exercices du MODULE 1 : M1Exo4b Distribution statistique à un caractère

Correction Exercices du MODULE 1 : M1Exo4b Distribution statistique à un caractère Exo Math Stat Correcto exercces du Module Dstrbuto statstque à u caractère MExo4b Correcto Exercces du MODULE : MExo4b Dstrbuto statstque à u caractère Exercce Mexo4 b Objectf : Cet exercce trate du calcul

Plus en détail

CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4

CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4 page1/6 CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4 Dosser "Défcece" 1) = 30 pour les groupes. Les classes sot d'ampltudes dfféretes doc...utlser la desté (rappel : desté = effectf/ampltude). Durée

Plus en détail

Chapitre 1. Résumé d une distribution statistique

Chapitre 1. Résumé d une distribution statistique Chaptre. Résumé d ue dstrbuto statstque.. Cocepts de base de la statstque descrptve Populato = O appelle populato assocée à ue épreuve l esemble des résultats possbles d ue «épreuve». E statstques, le

Plus en détail

Saïd Chermak. Master 2012 MAGE. Statistique descriptive à une variable

Saïd Chermak. Master 2012 MAGE. Statistique descriptive à une variable Statstque descrptve à ue varable LES SAVOIRS La statstque est ue méthode scetfque qu recuelle, ordoe, aalyse et terprète des doées umérques. Pour ue melleure lsblté, ces doées sot représetées graphquemet.

Plus en détail

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x Probabltés A) Varable aléatore et lo de probablté Varable aléatore Défto : O cosdère l'esemble E des ssues d'ue expérece aléatore Défr ue varable aléatore X sur cet esemble, c est assocer u ombre à chaque

Plus en détail

Statistiques II Sc. Éco. & Gestion (S3) Pr. M. El Merouani 3-Notation ensembliste des événements :

Statistiques II Sc. Éco. & Gestion (S3) Pr. M. El Merouani 3-Notation ensembliste des événements : wwwelmerouajmdocom Statstques II Sc Éco & Gesto S r M El Meroua Chaptre : roaltés I Itroducto : -Epreuve ou expérece : O appelle épreuve ou expérece ue certae acto que l o peut répéter pluseurs fos ar

Plus en détail

Nombre de Clients [0 ; 50[ 72. x i. n i [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200 ; 250 [ 18

Nombre de Clients [0 ; 50[ 72. x i. n i [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200 ; 250 [ 18 1 U commerçat a relevé le motat des dépeses e euros de chaque clet au cours d ue semae. Motat des dépeses Clets [0 ; 50[ 72 x x - x ) - x )² -x ) ² [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200

Plus en détail

STATISTIQUE DESCRIPTIVE

STATISTIQUE DESCRIPTIVE Statstque descrtve ECS STATISTIQUE DESCRIPTIVE I Vocabulare de la statstque descrtve ) Poulato La statstque descrtve est ue scece qu recuelle et aalyse des formatos sur u esemble f, dot le cardal est souvet

Plus en détail

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position?

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position? Paramètres descrptfs Cours VETE043- Aée académque 06-07 Commet représeter les varables aléatores (doées)? Représetato sythétque Tables de fréqueces Représetato graphque Dagrammes de fréqueces Paramètres

Plus en détail

Partie 1. Corrigé de CCIP 2000 par Pierre Veuillez

Partie 1. Corrigé de CCIP 2000 par Pierre Veuillez Corrgé de CCIP 2000 par Perre Veullez Das tout le problème, désge u eter aturel o ul. O cosdère ue ure U coteat boules umérotées de à. O tre ue boule au hasard das U. O ote k le uméro de cette boule. S

Plus en détail

PRINCIPES DES STATISTIQUES INFERENTIELLES

PRINCIPES DES STATISTIQUES INFERENTIELLES Chaptre 3 PRINCIPES DES STATISTIQUES INFERENTIELLES Bases de la statstque féretelle PLPSTA0 0 Chaptre 3 1. Problématque. Objectfs des statstques féretelles.1 Estmato poctuelle. Estmato par tervalles.3

Plus en détail

Eléments de statistique descriptive

Eléments de statistique descriptive G Elémets de statstque Elémets de statstque descrptve. Itroducto.. Défto Statstques, brache des mathématques qu a pour objet la collecte, le tratemet et l aalyse de doées umérques relatves à u esemble

Plus en détail

I. Qu est-ce qu une variable aléatoire?

I. Qu est-ce qu une variable aléatoire? I. Qu est-ce qu ue varable aléatore?. Défto : Sot ue expérece aléatore dot l esemble des résultats possbles (l uvers est oté Ω. Ue varable aléatore est ue focto X allat de Ω sur R, c est-à-dre que c est

Plus en détail

Résumé de statistique I

Résumé de statistique I Résumé de statstque I Etude de doées statstques : Ce qu ous téresse lorsqu o a des doées statstque ou ue dstrbuto de celles-c : Le cetre : o o Moyee : mesures o robustes Médae : mesures robustes La dsperso

Plus en détail

a. Le symbole se lit «sigma» ; l écriture Ex : 2 Fréquences en % ( f i x 100) 11,1 % 29,6 % 59,3 % 100 %!!!!

a. Le symbole se lit «sigma» ; l écriture Ex : 2 Fréquences en % ( f i x 100) 11,1 % 29,6 % 59,3 % 100 %!!!! Cours : Statstques I. Itroducto Classe de ère S O a vu que our caractérser ue sére statstque, o utlse des : - aramètres de tedace cetrale : - la moyee ; - la médae. Ils ermettet d dquer la «osto» de la

Plus en détail

L2 Mention Informatique. UE Probabilités. Chapitre 4 : Simulation - Régression

L2 Mention Informatique. UE Probabilités. Chapitre 4 : Simulation - Régression L Meto Iformatque UE Probabltés Chaptre 4 : Smulato - Régresso Notes de cours rédgées par Rége Adré-Obrecht, Jule Pquer I- Smulato de varables aléatores. Itroducto Das certaes expéreces «réelles», où le

Plus en détail

Module : STATISTIQUE (1 e année) Document de cours

Module : STATISTIQUE (1 e année) Document de cours ESCE-Lyo Méthodes Quattatves Module : STATISTIQUE ( e aée) par Robert Chapelo, chargé de cours et de TD Documet de cours Fare de la statstque, c'est : - collecter des doées, - trater ces doées pour e redre

Plus en détail

1. Test d indépendance du KHI-2

1. Test d indépendance du KHI-2 1. Test d dépedace du HI- Ecrre ue focto qu réalse le test d dépedace du kh-. Etrée : x et y, deux vecteurs, de type factor Sorte : statstque de test, degrés de lberté, p-value Idcatos : Vous devez vérfer

Plus en détail

Lois de probabilités liées aux tirages de boules dans une urne Approche sondage : échantillonnage et estimation dans une population finie

Lois de probabilités liées aux tirages de boules dans une urne Approche sondage : échantillonnage et estimation dans une population finie Los de probabltés lées aux trages de boules das ue ure Approche sodage : échatlloage et estmato das ue populato fe Das le ouveau programme de secode, retrée 2009, sot scrtes les otos d'tervalle de fluctuato

Plus en détail

LEÇON N 6 : Loi de Poisson, loi normale.

LEÇON N 6 : Loi de Poisson, loi normale. LEÇON N 6 :. Pré-requs : Probabltés : défto, calculs et probabltés codtoelles ; Lo bomale cf. leço o 5) ; Noto de varables aléatores dscrètes et cotues cf. leços o 4 et 7), et proprétés assocées : espérace,

Plus en détail

Pondichéry Avril 2014 Série S Exercice.

Pondichéry Avril 2014 Série S Exercice. Podchéry Avrl 04 Sére S Exercce Le pla complexe est mu d u repère orthoormé ( O; uv, ) Pour tout eter aturel, o ote A le pot d affxe z déf par : O déft la sute ( ) z z 0 = et + = + z 4 4 r par r = z pour

Plus en détail

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit Itroducto à l écoométre S6-EF sc. éco. & gesto Prof. Mohamed El Meroua IV.- Espérace mathématque de l estmateur  : A ˆ A + X X X Nous avos ( ε alors l espérace mathématque sera : E ( E( A + E[ ( X X X

Plus en détail

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x Probabltés A) Varable aléatore et lo de probablté Varable aléatore Défto : O cosdère l'esemble des ssues d'ue expérece aléatore Défr ue varable aléatore X sur cet esemble, c est assocer u ombre à chaque

Plus en détail

PRO 1 EXPRO010 EXPRO019

PRO 1 EXPRO010 EXPRO019 Exercces résolus de mathématques. PRO 1 EXPRO010 EXPRO019 http://www.matheux.be.tf Jacques ollot 1 avrl 03 www.matheux.be.tf - PRO 1-1 - EXPRO010W Ue ure cotet boules blaches ( 4) et 10 boules ores. O

Plus en détail

Une urne contient 5 boules rouges, 5 boules blanches et 6 boules bleues.

Une urne contient 5 boules rouges, 5 boules blanches et 6 boules bleues. Lycée Paul Gaugu CPGE-EC Aée 04/05 Exercces «basques» Fche N : Exercces sur les varables aléatores réelles dscrètes Exercce. : O cosdère deux dés dscerables be équlbrés. O ote X la varable aléatore égale

Plus en détail

COURS SUR LES MELANGES EN FILATURE DE COTON PARTIE 07. Section IV ELEMENTS DE STATISTIQUES APPLIQUES EN FILATURE

COURS SUR LES MELANGES EN FILATURE DE COTON PARTIE 07. Section IV ELEMENTS DE STATISTIQUES APPLIQUES EN FILATURE COURS SUR LES MELANGES EN FILATURE DE COTON PARTIE 07 Secto IV ELEMENTS DE STATISTIQUES APPLIQUES EN FILATURE 7.7. Elémets de statstques 7.7.. Caractérstques de posto. Moyee arthmétque La moyee est la

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an BTS BLANC Ma 0 Epreuve : Mathématques Géérales et Applquées Flère : DA / ARLE Durée: heures NB : Chaque parte dot être tratée sur des copes dfféretes I- MATHEMATIQUES GENERALES Exercce a b Sot le Sot la

Plus en détail

NOTATIONS ET FORMULAIRE

NOTATIONS ET FORMULAIRE Uversté PARIS DESCARTES Lcece de Psychologe L1 ADP1- Resp : Mrelle LAGARRIGUE page 1/5 PROTOCOLE SUR U ECHA TILLO NOTATIONS ET FORMULAIRE Esemble des sujets de l échatllo S { s 1 ; s ;.; s } (1) Varable

Plus en détail

- x)(y i. - y) (x i. r = - x) 2 (y i. - y) 2. (x- a) (d - c) + c b- a. + a (0.1) (1,1) C.L. (0.0) (1,0) Masse salairiale des x % gagnant le moins.

- x)(y i. - y) (x i. r = - x) 2 (y i. - y) 2. (x- a) (d - c) + c b- a. + a (0.1) (1,1) C.L. (0.0) (1,0) Masse salairiale des x % gagnant le moins. Résumé statstque.6 Le coeffcet de corrélato Corrélato etre deux composats: pod/talle d'u dvdu. r = å å =1 x - xy - y å x - x y - y =1 =1 La valeur se stuera etre -1 corrélato égatve/versée et 1corrélato

Plus en détail

Serie statistique double

Serie statistique double Sere statstque double Dstrbutos margales Actvté U relevé statstque des talles (e cm) et des pods Y (e kg) d u échatllo de 00 élèves a perms de costrure le tableau suvat : Y [0, 5[ [5, 50[ [50, 55[ [55,

Plus en détail

Partie I : Gestion de portefeuilles actions Chapitre 3 Gestion de Portefeuille Moyenne-Variance

Partie I : Gestion de portefeuilles actions Chapitre 3 Gestion de Portefeuille Moyenne-Variance Parte I : Gesto de portefeulles actos Chaptre 3 Gesto de Portefeulle Moyee-arace Gesto de Portefeulle D. Msae edemet d ue acto Cette parte est cosacrée à u apport mportat de la théore facère modere qu

Plus en détail

Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe

Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe Méthode du smplee: prélmares Modèles de recherche opératoelle (RO). Programmato léare b. Méthode du smplee Das le cas où l y a ue fté de solutos, la méthode d élmato de Gauss-Jorda permet d detfer tros

Plus en détail

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée.

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée. Lycée Ib Khaldou Devor de cotrôle ème Maths Radès ( heure) Mr ABIDI Fard Mathématques Mercred 9 Novembre 0 Exercce : ( pots) Répodre par Vra au Faux aux questos propostos suvates Aucue justfcato est demadée

Plus en détail

Séries chronologiques

Séries chronologiques Séres chroologques Rappel : Détermato de l équato d ue drote passat par pots. ( so équato peut se mettre sous la forme y ax + b ) ex : Détermato de l équato de la drote passat par les pots : A ( - ; -5

Plus en détail

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON BAC BLANC MATIERE : MATHEMATIQUES OBLIGATOIRE CLASSE de : Termale S SALLE : Grade Permaece PROFESSEUR : Mle GUIHENEUF ATE : Vedred javer 6 HEURE ébut : 8 h HEURE f : h MATERIEL UTILISE : CALCULATRICE AUTORISEE

Plus en détail

EPREUVE DE MATHEMATIQUES

EPREUVE DE MATHEMATIQUES Sesso févrer 009 BREVET DE TECHNICIEN SUPERIEUR «COMPTABILITE ET GESTION DES ORGANISATIONS» EPREUVE DE MATHEMATIQUES Durée : heures Coeffcet : Matérel et documets autorsés : L usage des strumets de calcul

Plus en détail

Bac blanc de mathématiques

Bac blanc de mathématiques Termale st2s le mercred 09/03/2016 Durée : 2 heures Bac blac de mathématques Exercce 1 : 6 pots Le tableau c-dessous doe le ombre d aboemets au servce de téléphoe moble e Frace etre f 2001 et f 2009, exprmé

Plus en détail

TD Techniques de prévision pour la Gestion de production

TD Techniques de prévision pour la Gestion de production Orgasato et gesto dustrelle Page / 6 TD Techques de prévso pour la Gesto de producto er Exercce Vetes d u rayo de jouraux das u supermarché Javer Févrer Mars Avrl Ma Ju Jullet Août Septembre Octobre Novembre

Plus en détail

Annexe 2 Note méthodologique sur le calcul des évolutions de bases, taux et produits de la fiscalité directe locale

Annexe 2 Note méthodologique sur le calcul des évolutions de bases, taux et produits de la fiscalité directe locale Mstère de l téreur, de l outre-mer ublcato : «le gude statstque de et des collectvtés terrtorales la fscalté drecte locale 2007» Aexe 2 Note méthodologque sur le calcul des évolutos de bases, taux et produts

Plus en détail

LOI NORMALE ET LOIS DERIVEES

LOI NORMALE ET LOIS DERIVEES Prcpes et Méthodes de la Bostatstque Chaptre 5 LOI NORMALE ET LOIS DERIVEES A-LA LOI NORMALE Présetato La dstrbuto ormale, dte ecore de Laplace-Gauss, est pour des rasos qu apparaîtrot plus lo, la plus

Plus en détail

Ch.6ÊPROBABILITÉS _ partie 1

Ch.6ÊPROBABILITÉS _ partie 1 LFA / remère S COURS Gesto de doées Mme MAINGUY I Raels / Lo de robablté Ch6ÊPROBABILITÉS _ arte ere S défto O aelle exérece aléatore toute exérece ayat luseurs ssues (ou évetualtés) ossbles et dot o e

Plus en détail

Améliorer la productivité

Améliorer la productivité Maurce Pllet Amélorer la productvté Déploemet dustrel du toléracemet ertel, 00 SBN : 978---54754- Commet calculer ue tolérace ertelle 75 Nous avos doc u toléracemet par tervalle sur les exgeces foctoelles

Plus en détail

Ift Chapitre 7. Introduction. aux valeurs propres et aux vecteurs propres

Ift Chapitre 7. Introduction. aux valeurs propres et aux vecteurs propres Ift 4 Chaptre 7 Itroducto au valeurs propres et au vecteurs propres Ift4 Chaptre 7 Défto : S A est ue matrce de, alors u vecteur o ul est dt vecteur propre de A s A est appelé valeur propre de A, et vecteur

Plus en détail

Divisibilité et congruences. Corrigés d exercices

Divisibilité et congruences. Corrigés d exercices Dvsblté et cogrueces Corrgés d exercces Les exercces du lvre corrgés das ce docuet sot les suvats : Page 445 : N 1, 5 Page 459 : N 45 Page 449 : N 10 Page 460 : N 51, 5, 55, 57 Page 451 : N 16 Page 461

Plus en détail

3- LES TIRAGES PROBABILISTES D'ECHANTILLONS

3- LES TIRAGES PROBABILISTES D'ECHANTILLONS 3- LES TIRAGES PROBABILISTES D'EHATILLOS Das de ombreuses alcatos ratques du calcul des robabltés, o retrouve u ou luseurs des schémas de trages robablstes d'échatllos que ous allos exoser. Le cadre gééral

Plus en détail

L2 Mention Informatique. UE Probabilités. Chapitre 3 : Variables aléatoires réelles

L2 Mention Informatique. UE Probabilités. Chapitre 3 : Variables aléatoires réelles L Meto Iformatque UE Probabltés Chaptre 3 : Varables aléatores réelles Notes de cours rédgées par Rége Adré-Obrecht, Jule Pquer, Serge Solovev Sot (, A, P) Ω et X : Ω R ue varable aléatore. I. Varable

Plus en détail

Quelques éléments de statistiques

Quelques éléments de statistiques Quelques élémets de statstques Avat-propos Ces quelques élémets coceret essetellemet les statstques au programme das l esegemet secodare. Ils preet appu sur les documets utlsés par M. ARTIGUES, IA-IPR

Plus en détail

MODULE : STATISTIQUES ROYAUME DU MAROC OFPPT RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES SECTEUR : TERTIAIRE

MODULE : STATISTIQUES ROYAUME DU MAROC OFPPT RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES SECTEUR : TERTIAIRE OFPPT ROYAUME DU MAROC مكتب التكوين المهني وإنعاش الشغل Offce de la Formato Professoelle et de la Promoto du Traval DIRECTION RECHERCHE ET INGENIERIE DE FORMATION RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES

Plus en détail

COUPLE DE VARIABLES ALEATOIRES. On considère deux variables aléatoires X et Y. On aimerait connaitre s il y a influence entre ces deux variables.

COUPLE DE VARIABLES ALEATOIRES. On considère deux variables aléatoires X et Y. On aimerait connaitre s il y a influence entre ces deux variables. COUPLE DE VARIABLES ALEATOIRES O cosdère deux varables aléatores et. O amerat coatre s l y a fluece etre ces deux varables. I Coule de varables dscrètes : 1) Lo ote : Soet et deux varables dscrètes, à

Plus en détail

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2 Exercce Lba 6 4 pots O cosdère u solde ADECBF costtué de deux pyramdes detques ayat pour base commue le carré ABCD de cetre I. Ue représetato e perspectve de ce solde est doée e aexe (à redre avec la cope).

Plus en détail

2.1 Variable aléatoire Fonction de répartition Fonction de masse et de densité...2

2.1 Variable aléatoire Fonction de répartition Fonction de masse et de densité...2 - Varables aléatores et dstrbutos - Chaptre : Varables aléatores et dstrbutos. Varable aléatore.... Focto de répartto....3 Focto de masse et de desté....4 Dstrbuto cojote de varables aléatores...5.4. Dstrbuto

Plus en détail

2. On présente ensuite une proposition : l'équiprobabilité à chaque étape entraîne l'équiprobabilité sur l'ensemble des résultats.

2. On présente ensuite une proposition : l'équiprobabilité à chaque étape entraîne l'équiprobabilité sur l'ensemble des résultats. rbre de déombremet et arbre de probablté Pla du documet. O présete tout d'abord la règle du produt pour les arbres de déombremet avec, e cas partculer, le cardal d'u produt cartése d'esembles fs.. O présete

Plus en détail

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant :

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant : STATISTIQUES Cours Termale ES O observe que, das certas cas, l semble ester u le etre deu caractères statstques quattatfs (deu varables) sur ue populato ; par eemple, etre le pods et la talle d u ouveau-é,

Plus en détail

Séries de Fourier 12-1

Séries de Fourier 12-1 Séres de Fourer 1-1 Sommare 1. Applcato de classe C 1 par morceaux 1 1.1. Applcato de classe C 1 par morceaux 1 1.. Applcato -pérodque C 1 par mcx. 1 1.3. pérato sur les applcatos C 1 par mcx 1. Sére de

Plus en détail

arlesrcomplexesraurbacr2014r==corriges=z

arlesrcomplexesraurbacr2014r==corriges=z arlesrcomplexesraurbacr0r==corriges= Nouvelle-Calédoe ovembre 0 5 pots Proposto : Pour tout eter aturel : ( + ) = () VRAI! ( ) doc d où ( ) ( ) ( ) ( ) Sot (E) l équato ( )( + 8) = 0 où désge u ombre complexe

Plus en détail

Série d'exercices *** 4 ème Maths Lycée Secondaire Ali Zouaoui LES N. COMPLEXES " Hajeb Laayoun "

Série d'exercices *** 4 ème Maths Lycée Secondaire Ali Zouaoui LES N. COMPLEXES  Hajeb Laayoun Sére d'exercces *** 4 ème Maths Lycée Secodare Al ouaou LES N COMPLEXES " Hajeb Laayou " I / L esemble des ombres complexes : Défto : O appelle esemble des ombres complexes, et o ote C, l esemble des ombres

Plus en détail

Concours général 2014 pb 3 : chiffres et lettres

Concours général 2014 pb 3 : chiffres et lettres Cocours gééral 014 pb 3 : chffres et lettres 1 Le sujet U mot de logueur est ue sute de lettres choses parm les l0 lettres A, B, C, D, E, F, G, H, I, J Par exemple, BEC, IJCD, AFFICHAGE, ABCDEFGHIJ sot

Plus en détail

Chapitre 3 Les indicateurs

Chapitre 3 Les indicateurs Chaptre 3 Les dcateurs O se place uqueet das le cas d ue varable quattatve. L objectf est de résuer l eseble des observatos par des dcateurs. Il est toujours suffsat de résuer ue sére par u seul dcateur.

Plus en détail

Programmation linéaire en nombres entiers

Programmation linéaire en nombres entiers Programmato léare e ombres eters Itroducto Problème de programmato léare e ombres eters (P) M Suet à = = c a = b =,, m 0, eter =,, Eemple M z = Suet à, + 0 5 0 0, eter F(P) = domae réalsable de P Itroducto

Plus en détail

Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, )

Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, ) Polyése Ju 00 Sére S xercce Le pla complexe est rapporté à u repère orthoormal drect ( O; uv, ) Prérequs Parte A Resttuto orgasée de coassaces Sot u ombre complexe tel que = a+ b où a et b sot deux ombres

Plus en détail

VI. Statistique descriptive.

VI. Statistique descriptive. VI. Statstque descrptve. 1. Avat - propos : le sge sommatore. Soet x 1, x,...x : réels x 1 + x +...+ x = x Remarquos : Proprétés. 1 x = x j j1 1. x = x + x 1 p 1. kx = k x 1 1 p1 3. ( x y ) = x + y 1 Exercces.

Plus en détail

Alain MORINEAU

Alain MORINEAU www.deeov.com Ala MORINEAU Cet artcle est ue reprse et u extrat de l artcle «Note sur la Caractérsato Statstque d'ue Classe et les Valeurs-tests», publé das la revue Bullet Techque du Cetre de Statstque

Plus en détail

MATHEMATIQUES. Semestre 2. Statistiques à deux variables COURS. Cours en ligne : sur section DUT Maths S2.

MATHEMATIQUES. Semestre 2. Statistiques à deux variables COURS. Cours en ligne : sur  section DUT Maths S2. Départemet TECHNIQUES DE COMMERCIALISATION MATHEMATIQUES Semestre 2 Statstques à deux varables COURS Cours e lge : sur http://jff-dut-tc.weebly.com secto DUT Maths S2. IUT de Sat-Etee Départemet TC J.F.Ferrars

Plus en détail

Terminales S Exercices sur les nombres complexes Page 1 sur 6

Terminales S Exercices sur les nombres complexes Page 1 sur 6 Termales S Exercces sur les ombres complexes Page sur 6 Exercce : ) Calculer, et 5 6 7 ) E dédure, et ) Détermer les eters pour lesquels est a) u réel, b) est u magare pur, c) égal à Exercce : Ecrre sous

Plus en détail

Statistiques. Ne pas oublier - la légende sur les axes - les unités - un titre pour le diagramme

Statistiques. Ne pas oublier - la légende sur les axes - les unités - un titre pour le diagramme Statistiques I. Tableaux d effectifs, de fréqueces : 1. Calculer la fréquece d'ue valeur ou d'ue classe : Diviser l effectif de la valeur par l effectif total fréquece La somme des fréqueces est 1 (ou

Plus en détail

MODULE : STATISTIQUES

MODULE : STATISTIQUES OFPPT ROYAUME DU MAROC مكتب التكوين المهني وإنعاش الشغل Offce de la Formato Professoelle et de la Promoto du Traval DIRECTION RECHERCHE ET INGENIERIE DE FORMATION RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES

Plus en détail

Méthodes stochastiques de calcul de stabilité des pentes

Méthodes stochastiques de calcul de stabilité des pentes Républque Algéree Démocratque et Populare Mstère de l Esegemet Supéreur et de la Recherche Scetfque UNIVERSITE MOULOUD MAMMERI - TIZI OUZOU - Faculté du Gée de la costructo Départemet de Gée Cvl MÉMOIRE

Plus en détail

SOMMAIRE. Généralités :...2

SOMMAIRE. Généralités :...2 SOMMAIRE Gééraltés :... I. Déftos :... II. Apport de la statstque au écoomstes :... III. Les lmtes de la méthode statstque :... IV. Le vocabulare utlsé e statstque :...3 V. Quelques symboles mathématques

Plus en détail

Statistique descriptive

Statistique descriptive SOMMAIRE Gééraltés :... I.Déftos :... II.Apport de la statstque aux écoomstes :... III. Les lmtes de la méthode statstque :... IV.Le vocabulare utlsé e statstque :...3 V.Quelque symboles mathématques utlsés

Plus en détail

Exercice 1 : Analogie entre équilibres acido-basiques et équilibres de complexation (Application du Principe de Le Châtelier).

Exercice 1 : Analogie entre équilibres acido-basiques et équilibres de complexation (Application du Principe de Le Châtelier). Bla UE 1C G. EXERCICES BILAN Exercce 1 : Aaloge etre équlbres acdo-basques et équlbres de complexato (Applcato du Prcpe de Le Châteler). Objectfs de l'exercce - Coassaces/Compéteces testées das cet exercce

Plus en détail

= exportations du pays i en produit k

= exportations du pays i en produit k CHELE, Comptes harmosés sur les échages et l écoome modale LES INDICATEURS Les dcateurs reteus ot été choss e se fodat sur l'expérece acquse das les travaux du CEPII, et après avor cofroté les méthodes

Plus en détail

EXERCICES CORRIGES. Partie 1 : Suites numériques = 4

EXERCICES CORRIGES. Partie 1 : Suites numériques = 4 EXERIES ORRIGES Parte : Sutes umérques Exercce : Ue sute arthmétque est telle que la somme de ses premers termes est égale à 8 et la somme de ses 6 premers termes est égale à 7 68. alculer le 5 ème terme

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

La valeur acquise par un capital au bout d'une année est donc obtenue en multipliant ce capital par (1 + i). Par suite, le capital C1

La valeur acquise par un capital au bout d'une année est donc obtenue en multipliant ce capital par (1 + i). Par suite, le capital C1 LGL Cours de Mathématques 26 Exemples de sutes das le domae des faces 1) Itérêts composés O place 1. à térêts composés au taux de 4,5 % par a. Détermer le captal dspoble à la f de chaque aée et ce pedat

Plus en détail

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES ANALYSE DES DONNÉES TEST DU KHI-DEUX ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES Perre-Lous Gozalez Mesure de la laso etre deux varables qualtatves Kh deux Equête : Êtes-vous «pas du tout d accord»

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 003 EPREUVE SPECIFIQUE FILIERE MP MAHEMAIQUES 1 Durée : 4 heures Les calculatrces sot terdtes * * * NB : Le caddat attachera la plus grade mportace à la clarté, à la précso et à la cocso de la

Plus en détail

Leçon 08 : Statistiques Terminale. Altitude (x i ) Températures ( y i )

Leçon 08 : Statistiques Terminale. Altitude (x i ) Températures ( y i ) Leço 08 : Statstques Termale E premer leu, l te faut relre les cours de premère sur les statstques à ue varable, l a tout u lagage à se remémorer : étude d u échatllo d ue populato, mode, moee et médae

Plus en détail

1 ère partie : STATISTIQUE DESCRIPTIVE

1 ère partie : STATISTIQUE DESCRIPTIVE ère parte : STATISTIQUE DESCRIPTIVE CHAPITRE : COLLECTE DE L INFORMATION, TABLEAUX ET GRAPHIQUES. I. Défto et vocabulare Défto : la statstque est ue méthode scetfque qu cosste à réur des doées chffrées

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

Exercice n 1 1) Par associativité de l intersection des événements, et à l aide de la formule des probabilités conditionnelles,

Exercice n 1 1) Par associativité de l intersection des événements, et à l aide de la formule des probabilités conditionnelles, CONCOURS EMIA Sceces CONCOURS 0 EPREUVE DE MATHEMATIQUES Corrgé o offcel rédgé par Jea-Gullaume CUAZ, esegat au Lycée Mltare de Sat-Cyr, jgcuaz@hotmalcom Eercce ) Par assocatvté de l tersecto des évéemets,

Plus en détail

Variables j.. p. Xij

Variables j.. p. Xij L alyse e Composates Prcpales (CP) O possède u tableau rectaulare de mesure dot les coloes sot des varables quattatves (mesuratos, taux, statos clmatques) et dot les les représetet des dvdus statstques

Plus en détail

5. Variables aléatoires simultanées

5. Variables aléatoires simultanées 5. Varables aléatores smultaées 5.1 Coule de varables aléatores Défto 1 Pour tout dce das 1, sot X ue varable aléatore. O dt que X X 1 X est ue varable aléatore de dmeso. Nous ous téresseros rcalemet aux

Plus en détail

PROBABILITÉS ET STATISTIQUE POUR L ENSEIGNEMENT SECONDAIRE

PROBABILITÉS ET STATISTIQUE POUR L ENSEIGNEMENT SECONDAIRE PROILITÉS ET STTISTIQUE POUR L ENSEIGNEMENT SECONDIRE Ce documet a été rédgé à l occaso d u stage de formato cotue de professeurs de mathématques de trosème et secode e décembre 009 à Toulouse, sute à

Plus en détail

1 Un peu de vocabulaire

1 Un peu de vocabulaire Statistiques - Échatilloage Cours Objectifs du chapitre Passer d u mode de représetatio des doées à u autre (doées brutes, tableau d effectifs, représetatio graphique) Calculer la moyee, la médiae, les

Plus en détail

NOMBRES COMPLEXES EXERCICES CORRIGES

NOMBRES COMPLEXES EXERCICES CORRIGES Cours et exercces de mathématques NOMRES COMPLEXES EXERCICES CORRIGES Exercce. O doe = + et = + Ecrre sous forme algébrque les complexes suvats : = ; Exercce. Calculer, et = ; = ; = ; 5 006 009 E dédure

Plus en détail

Espaces probabilisés.

Espaces probabilisés. Espaces probablsés Chaptre 6 : cours complet Itroducto Défto : Défto 2 : Défto 3 : uvers évèemet aléatore évèemets mpossbles, certas, compatbles 2 Espaces probablsés fs Défto 2 : Défto 22 : Théorème 2

Plus en détail

Introduction à la statistique descriptive

Introduction à la statistique descriptive Itroducto à la statstque descrptve Cours et eercces avec tableur Luce LEBOUCHER Mare-José VOISIN CÉPADUÈS-ÉDITIONS 111, rue Ncolas Vauquel 311 Toulouse Frace Tél. : 5 61 4 57 36 Fa : 5 61 41 79 89 www.cepadues.com

Plus en détail

Les nombres complexes

Les nombres complexes haptre 6 termale S Les ombres complexes 1 hstorque et créato : N Z ID Q R es esembles ot été costruts au fl de l hstore grâce à u même problème : certaes équatos ot des solutos das u esemble doé mas d

Plus en détail

L ensemble des modalités ou des classes des modalités de X

L ensemble des modalités ou des classes des modalités de X Module statstque et probabltés_ parte 2 Zahra ROYER B _ Etude des dstrbutons d un caractère quanttatf : Sans perte de généralté : à la place de varable statstque, on va utlser le terme courant chez les

Plus en détail

CHAPITRE 4 Paramètres d'une série statistique

CHAPITRE 4 Paramètres d'une série statistique Cours de Mathématiques Classe de secode Statistiques CHAPITRE 4 Paramètres d'ue série statistique A) Diverses sortes de séries statistiques 1) Défiitio Ue série statistiques est u esemble de ombres, représetat

Plus en détail

2. Statistique descriptive

2. Statistique descriptive - -. Statstque descrptve. Statstque descrptve «Ctoyes! Cessez de crore yeu fermés les statstces! Appreez à jauger» «Les corrélatos qu vous motret que plus l y a de médecs plus o meurt jeue!». Quelques

Plus en détail

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale

Module 4 - Leçon 01 - Budget des ventes 1. Introduction - Recherche de la tendance générale Cotrôle de gesto Budget des vetes Module 4 - Leço - Budget des vetes Itroducto - Recherche de la tedace géérale - Itroducto Le budget des vetes est le premer budget opératoel à établr. Il est cosdéré comme

Plus en détail

M : Zribi. 4 ème Maths Chapitre 1. 1) Ensemble des nombres complexes : Activité 1:

M : Zribi. 4 ème Maths Chapitre 1. 1) Ensemble des nombres complexes : Activité 1: LSMarsa Elradh 1) Esemble des ombres complexes : Actvté 1: Résoudre das IN pus das Z l équato 5+x=1 ; résoudre das Z pus das Q l équato 3x=2 ; résoudre das Q pus das IR l équato : x²=2 Résoudre das IR

Plus en détail

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20.

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20. BTS CG 996 Eercce : (0 pots) Ue agece mmoblère evsage de commercalser u programme de costructo d'appartemets Deu projets lu sot soums: Projet P : Le coût de producto de appartemets ( eter et 0 )est doé

Plus en détail

Le cours Interprétation physique de la dérivée

Le cours Interprétation physique de la dérivée Il est égalemet possble de procéder à la «dérvato umérque» d ue sute de valeurs {(t ; f )}. La sute dérvée est elle-même costtuée de couples {(t ; f )} ; la valeur f de correspodat au tau de varato mesuré

Plus en détail