( ) = 1, Im( z 1 ) = 2. ( ) = 0, Im( z 2 ) = 1. ( ) = 7, Im( z 3 ) = 0. = 1+ 2i. Re z 1 = i. Re z 2 z 3. z 1. = 7. Re z 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "( ) = 1, Im( z 1 ) = 2. ( ) = 0, Im( z 2 ) = 1. ( ) = 7, Im( z 3 ) = 0. = 1+ 2i. Re z 1 = i. Re z 2 z 3. z 1. = 7. Re z 3"

Transcription

1 I Forme algébrique d un nombre complexe 1 Il existe un ensemble noté et appelé ensemble des nombres complexes qui vérifie les propriétés suivantes : " ; L'ensemble est muni d'une addition et d'une multiplication qui prolongent celles de et les règles de calcul restent les mêmes ; Il existe un nombre complexe, noté i, tel que i = 1 ; Tout nombre complexe z s'écrit de façon unique sous la forme z = x + iy, avec x et y deux réels Exemple 1+ i, i et i sont des nombres complexes 7 Forme algébrique Soit x et y deux réels L'écriture x + iy d un nombre complexe z s appelle la forme algébrique Le réel x est la partie réelle de z On la note Re z Le réel y est la partie imaginaire de z On la note Im z Exemple z 1 = 1+ i Re z 1 z = i Re z z 3 = 7 Re z 3 ( ) = 1, Im( z 1 ) = ( ) = 0, Im( z ) = 1 ( ) = 7, Im( z 3 ) = 0 Un nombre complexe de forme algébrique iy avec y est appelé imaginaire pur Exemple 15i et 3i sont des imaginaires purs Conséquences Pour tout nombre complexe z : z est un nombre réel Im z ( ) = 0 ; 1

2 z est un imaginaire pur Re( z) = 0 Remarque On retrouve le fait que " Application On considère z 1 = ( 1 5i) ( + i) et z = 3( 1+ i) ( 5 6i) On a alors z 1 = = 11i donc z 1 est un nombre imaginaire pur z = = donc z est un nombre réel Propriété Deux nombres complexes sont égaux si, et seulement si, ils ont même partie réelle et même partie imaginaire Conséquence Un nombre complexe est nul si, seulement si, sa partie réelle et sa partie imaginaire sont simultanément nulles Exercice 1 On considère le nombre complexe z = x + + i ix + x ( ) + i 5ix 1 Déterminer la forme algébrique de z a Déterminer x, pour que z soit un réel b Déterminer x, pour que z soit un imaginaire pur Exercice 1 Résoudre dans l équation : 3z + 6i = z a Montrer que z 6z + 5 = z 3 ( ) +16 b En déduire les solutions de l'équation z 6z + 5 = 0 II Opération sur les complexes 1 Opération sur les nombres complexes Soit deux nombres complexes z = x + iy et z' = x'+ iy' a Opposé L'opposé du nombre complexe z est le nombre complexe noté z définie par : z = x iy

3 b Somme et produit Propriété Somme : z + z' = ( x + x' ) + i( y + y' ) Produit : zz' = ( xx' yy' ) + i( xy'+ x' y) Remarque ( x + iy) ( x iy) = x + y c Inverse et quotient et propriété Tous nombre non nul z de forme algébrique x + iy admet un inverse noté 1 z de forme algébrique : 1 z = x x + y + i y x + y On définit le quotient z z' = z 1, avec z' 0 z' En pratique, pour obtenir la forme algébrique de 1 z et z', on multiplie le numérateur et le z dénominateur par le conjugué de z Conjugué d'un nombre complexe On appelle conjugué du nombre complexe z = x + iy, le nombre complexe noté z de forme algébrique x iy On écrit alors z = x iy Remarques z + z = Re( z) z z = i Im( z) Par conséquence : z est un réel z = z z est un imaginaire pur z = z Opérations sur les conjugués Pour tout nombre complexe z et z' et pour tout entier naturel n non nul on a : z + z' = z + z' zz' = zz' z n = z De plus, si z' 0, alors : ( ) n 3

4 1 z = 1 z z' z = z' z Remarques z = z zz = x + y Exemples ( i) = ( + i) + 3i 5 i = 3i 5+ i 3z + iz' = 3z iz' Exercice 3 Déterminer la forme algébrique des nombres complexes suivants : ( ) + 3( i) z = ( 3 i) + 6i z 1 = i 1 4i z 3 = 3 1 i z 5 = a + ib, où a et b sont deux réels b ia Exercice 4 z 4 = 1+ i i Soit z = x + iy et Z = z + où z est un nombre complexe différent de i z + i 1 Donner la forme algébrique de Z en fonction de x et y Déterminer l ensemble D 3 Déterminer l ensemble C ( ) des points M d affixe z tel que Z soit un réel ( ) des points M d affixe z tel que Z soit imaginaire pur III Equation du second degré à coefficients réels 1 Théorème On considère l'équation az + bz + c = 0 dont l'inconnue z est un nombre complexe et les coefficients a, b et c sont des réels, avec a 0 On note Δ le réel b 4ac appelé le discriminant Si Δ > 0, alors l'équation admet deux solutions réelles : b Δ b + Δ Si Δ = 0, alors l'équation admet une solution réelle : b Si Δ < 0, alors l'équation admet deux solutions complexes conjuguées : b i Δ b + i Δ 4

5 Démonstration Lorsque Δ 0, la résolution dans a été vue en Première Si Δ < 0 : az + bz + c = 0 a z + b Dans, Δ i Δ est le carré de 4a az + bz + c = 0 a z + b Δ 4a = 0, on peut donc factoriser : i Δ D où les deux solutions complexes conjuguées : Exercice 5 Résoudre dans les équations suivantes : 1 1+ i ( )z = 3+ i z = 9 3 4z +16z + 5 = 0 4 3z z +1 = z = 0 a z + b + i Δ z + b i Δ = 0 b i Δ et b+ i Δ Exercice 6 On considère dans le polynôme défini par P( z) = z Montrer que si le complexe α est racine de P alors α est aussi racine de P Vérifier que, pour tout complexe z, on a P( z) = P( z) 3 Calculer P( 1+ i) et en déduire les solutions de P( z) = 0 Livre Déclic : 5 p 4 IV Représentation graphique 1 Repère complexe s À tout point M du plan de coordonnées ( x; y) est associé le complexe z = x + iy appelé affixe du point M À tout nombre complexe z = x + iy avec x et y réels, on associe le point M de coordonnées ( x; y) Le plan muni d'un repère orthonormal direct dans lequel on représente des nombres complexes est appelé plan complexe 5

6 Conséquences L'axe des abscisses est appelé axe des réels L'axe des ordonnées est appelé axe des imaginaires purs Les points M z Les points M z ( ) sont symétriques par rapport à l'axe des réels ( ) et M 1 z ( ) et M ( z) sont symétriques par rapport à l'origine du repère Vecteur " À tout vecteur w du plan de coordonnées ( x; y) est associé le complexe z = x + iy appelé affixe du vecteur w " Notation On utilise la notation z w " pour désigner l'affixe du vecteur w " et on utilise la notation z A pour désigner l'affixe du point A Propriété " " Pour tout vecteur w et w' d'affixes respectives z" " w et z " w' L'affixe du vecteur w + w' est z" w + zw' " Pour tout réel k, l'affixe du vecteur k w " est kz w " Exemple " " On donne w ( 1+ i) et w' ( 1 i ) Le vecteur w " " w' a pour affixe : 1+ i " ( ) ( 1 i) = 3+ 4i 6

7 Propriétés On considère deux points A et B du plan complexe admettant pour affixes respectives z A et z B " L affixe du vecteur AB est zb z A L'affixe du milieu I de AB noté z I est z I = 1 ( z + z A B ) Exercice 7 On considère les points A, B, C et D d'affixes respectives z A = 3i, z B = 4 + i, z C = et z D = + i 1 Placer ces points sur un graphique puis déterminer l'affixe du milieu I du segment AC " " Déterminer les affixes des vecteurs AB et DC Que peut-on en déduire? 3 Déterminer l'affixe du point E symétrique de A par rapport à B 4 Déterminer la nature du quadrilatère DBEC Exercice 8 On considère le complexe z = x + y x 3+ i x 1+ y ( ) des points M d'affixe z tel que z soit un réel 1 Déterminer et représenter l'ensemble E Déterminer et représenter l'ensemble ( F )des points M d'affixe z tel que z soit un imaginaire pur V Forme trigonométrique d'un nombre complexe Dans cette partie le plan complexe est rapporté au repère orthonormal direct( O;u,v ) Pour tout point M distinct de O, on peut donner les coordonnées cartésiennes x; y On note OM = r et θ = u,om """" 1 Module et argument Soit z un nombre complexe non nul, M le point d'affixe z, r = OM etθ = ( u,om """" ) Alors : r est le module de z et on le note z ; ( ) π θ est un argument de z et on le note arg z 7

8 Point de vue algébrique z = r = x + y θ = arg( z), avec : cosθ = x r sinθ = y r Point de vue géométrique z = r = OM arg( z) = θ = ( u,om """" ) π Remarques Comme zz = x + y alors zz = z z = 0 z = 0 OM = 0 M = O Configurations de base Pour tout nombre complexe z, on appelle M 1 ( z), M z ( ), M 3 z ( ) et M 4 z CommeOM 1 = OM = OM 3 = OM 4, on en déduit que z = z = z = z arg z ( ) = arg z ( ) π, arg z Remarque Pour z = 0, on a r = 0 et θ n'est pas défini Forme trigonométrique ( ) = π + arg( z) π, arg z Soit z un nombre complexe non nul, l'écriture z = r cosθ + isinθ θ = arg z ( ) π, est appelée forme trigonométrique Remarque 0 n'a pas de forme trigonométrique ( ) = π arg z ( ) π ( ), avec r = z et Exercice 9 1 Dans le repère orthonormal direct O;u,v ( )déterminer par lecture graphique le module et un argument des affixes des points A, B, C et D 8

9 Déterminer le module et l'argument des nombres complexes suivants : z 1 = 3 + i, z = cos π 1 isin π 1 et z = 3 cos π isin π 4 Exercice 10 Déterminer la forme trigonométrique des nombres complexes suivants : z 1 = 1+ i 3, z = 1 i et z 3 = cos π 6 isin π 6 VI Opérations sur les formes trigonométriques 1 Égalité de deux complexes Les complexes z = r( cosθ + isinθ ) et z' = r '( cosθ '+ isinθ '), avec r > 0 et r ' > 0, sont égaux r = r ' si, et seulement si, θ = θ '+ kπ,k Propriétés Soit z et z ' deux nombres complexes non nuls et n entier naturel non nul Produit zz' = z z' arg(zz') = arg(z) + arg(z') Puissance z n = z n arg(z n ) = narg(z) Inverse Quotient 1 z = 1 z, z 0 arg 1 z = arg(z), z 0 z z' = z z', z ' 0 arg z z' = arg(z') arg(z), z' 0 9

10 Démonstration pour le produit ( ) z' ( cosθ '+ isinθ ') ( ) + i( sinθ cosθ '+ cosθ sinθ ') ( ) + isin( θ +θ ') zz' = z cosθ + isinθ = z z' cosθ cosθ ' sinθ sinθ ' = z z' cos θ +θ ' Donc le module de zz' est z z' et un argument de zz' est θ +θ ' = arg(z) + arg(z') 3 Inégalité triangulaire Pour tous nombres complexes z et z ', on a : z + z' z + z' 4 Module et argument d'un quotient z A, z B et z C sont trois nombres complexes distincts, d'images respectives A, B et C dans le plan complexe Propriété z B z A = AB et arg( z B z A ) = u """ (, AB) z B z C = BC et arg z z B C z A z C AC z A z C = CA " ( ",CB ) π Démonstration On considère un point M tel que OM " " = AB Alors M a pour affixe z B z A Donc u,om """" """ ( ) = arg z B z A ( ) = u, AB z B z A = z M = AB Comme OM " " = AB, OM = AB donc z B z A = AB arg z z B C z A z C = arg z z B C = u """,CB ( ) u "" (,CA) "" = ( CA,u ) + u """ (,CB) "" = CA " "",CB ( ) ( ) arg( z A z C ) Exercice 11 On note A, B, C et D les points d'affixes respectives, 4i, 1+ i et 3+ i Déterminer géométriquement les ensembles des points M d'affixe z vérifiant : 10

11 E : z+ 1 i = 3 E : z 3 i = z 4i 1 E : z 1 i z 3 i 3 :arg 3 π 4 4 z + π E6 :arg = π z+ 1 i + + = E ( z i) = [ π ] π ( ) [ π ] E :arg 1 5 z i 3 Exercice = [ ] On donne z 1 = 1+ i 3 et z = 1 i 1 Déterminer la forme trigonométrique de z 1, z et Z = z 1 z Déterminer la forme algébrique de Z En déduire la valeur exacte de cos 7π 1 7π et sin 1 Exercice 13 Dans le plan complexe rapporté au repère orthonormal direct ( O;u,v ), on considère les points A, B, C et D d'affixes respectives : a = 1+ i, b = 1 i, c = i et d = i 1 Placer ces points sur un graphique Calculer c a et en déduire la nature du triangle ACD d a 3 Montrer que les points A, B, C et D appartiennent à un même cercle dont on précisera le centre et le rayon VII Forme exponentielle Posons f (θ) = cosθ + isinθ On a démontré précédemment que : ( cosθ + isinθ )( cosθ '+ isinθ ') = cos( θ +θ ') + isin( θ +θ ') Soit : f (θ) f (θ ') = f (θ +θ ') On retrouve ainsi la même équation fonctionnelle que celle établie pour les exponentielles : e θ e θ ' = e θ+θ ' 1 Pour tout réel θ, on a : e iθ = cosθ + isinθ Remarque e iθ est le nombre complexe de module 1 et d'argument θ Exemples e i0 = cos0 + isin0 = 1+ i 0 = 1 11

12 e iπ = cos π + isin π = 0 + i 1= i e iπ = cosπ + isinπ = 1 Tout nombre complexe z non nul de module r et d'argument θ s'écrit sous sa forme exponentielle z = re iθ Application 1 Déterminer la forme algébrique des nombres complexes e iπ et e iπ Déterminer la forme exponentielle des nombres complexes : z 1 = 3, z =, z 3 = 4i et z 4 = 5+ 5i 3 Propriétés Pour tous réels θ et θ ', pour tout entier naturel n non nul, e iθ e iθ ' = e i( θ+θ ') e iθ e iθ e iθ ' = e i θ θ ' ( ) ( ) n = e inθ (Formule de Moivre) e iθ = e iθ 1 e = iθ e iθ Application On donne z 1 = e iπ, z = ie iπ 3 et z 3 = 4e iπ 3 1 Déterminer la forme exponentielle de z 1 puis de z Déterminer la forme exponentielle de z 1 z z 3 puis de z z 1 ( ) Exercice 14 Déterminer les entiers n pour lesquels le point M d'affixe 6 i O;u ( ) n appartient à l'axe Livre Déclic : p

GEOMETRIE PLANE : NOMBRES COMPLEXES

GEOMETRIE PLANE : NOMBRES COMPLEXES GEOMETRIE PLANE : NOMBRES COMPLEXES I Les points du plan et les nombres complexes - Notion de nombre complexe Dans ce chapitre, on définit un ensemble noté C, qui prolonge l ensemble R, muni d une addition

Plus en détail

Relations entre forme trigonométrique et forme algébrique

Relations entre forme trigonométrique et forme algébrique FORMULES ET THÉORÈMES Carré du nombre i On définit le nombre i de la façon suivante. i = 1 Forme algébrique d'un nombre complexe Tout nombre complexe z peut s'écrire sous une forme algébrique. z = a +

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Les nombres complexes. Il existe un ensemble, noté C, d éléments appelés..........................., tels que : C contient l ensemble............... ; C contient un élément i tel

Plus en détail

Cours de terminale S Les nombres complexes

Cours de terminale S Les nombres complexes Cours de terminale S Les nombres complexes V. B. et S. B. Lycée des EK 20 décembre 2014 Définition Vocabulaire Conséquences Définition Il existe un ensemble, noté C, d éléments appelés nombres complexes,

Plus en détail

Chapitre VII Les nombres complexes

Chapitre VII Les nombres complexes Chapitre VII Les nombres complexes Extrait du programme : I. Ensemble des nombres complexes 1. Existence Théorème (admis) : Il existe un ensemble noté, appelé ensemble des nombres complexes, qui possède

Plus en détail

Chapitre 7. Les nombres complexes. Objectifs du chapitre : item références auto évaluation. forme algébrique d un nombre complexe

Chapitre 7. Les nombres complexes. Objectifs du chapitre : item références auto évaluation. forme algébrique d un nombre complexe Chapitre 7 Les nombres complexes Objectifs du chapitre : item références auto évaluation forme algébrique d un nombre complexe résolution d équation du second degré dans C forme exponentielle d un nombre

Plus en détail

NOMBRES COMPLEXES. I Définitions

NOMBRES COMPLEXES. I Définitions NOMBRES COMPLEXES Objectifs Définitions C, nombre complexe, forme algébrique, parties réelles imaginaires, imaginaire pur. Plan complexe, affixe, image, axe imaginaire, axe réel Introduction. Inclusions

Plus en détail

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2 NOMBRES COMPLEXES Ph DEPRESLE janvier 06 Table des matières Les nombres complexes-forme algébrique d un nombre complexe Opérations dans l ensemble C. Addition dans C...........................................

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes 8 novembre 009 Table des matières Définitions Forme algébrique Représentation graphique Opérations sur les nombres complexes Addition et multiplication Inverse d un nombre complexe

Plus en détail

NOMBRES COMPLEXES. Définition Deux nombres complexes Z = a + i b et Z = a + i b' sont égaux si et seulement si a = a et b = b

NOMBRES COMPLEXES. Définition Deux nombres complexes Z = a + i b et Z = a + i b' sont égaux si et seulement si a = a et b = b NOMBRES COMPLEXES I- s et règles de calcul dans C Un nombre complexe est un nombre de la forme Z = a + i b où a et b sont des réels et i un nombre vérifiant i² = 1 L'ensemble des nombres complexes est

Plus en détail

TS Applications géométriques des nombres complexes Cours

TS Applications géométriques des nombres complexes Cours TS Applications géométriques des nombres complexes Cours I. Forme trigonométrique d un nombre complexe non nul (O ; u ; v ) est un repère orthonormal direct du plan complexe 1. Module et argument d un

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Hervé Hocquard Université de Bordeaux, France 6 septembre 017 Rappels ou pas Introduction Soit (O; i, j ) un repère orthonormal direct et soit C le cercle trigonométrique de centre

Plus en détail

Dans l ensemble du chapitre, on considère le plan muni d un repère orthonormal. est un nombre «complexe» (au sens de «composé» défini avec

Dans l ensemble du chapitre, on considère le plan muni d un repère orthonormal. est un nombre «complexe» (au sens de «composé» défini avec 1/Les Nombres Complexes Chapitre 4 Les Nombres Complexes. I. Définitions Objectif : On veut «construire» un ensemble de nombres contenant l ensemble des nombres réels, muni de deux opérations qui généralisent

Plus en détail

Terminale STI-GE

Terminale STI-GE Le programme : Les premiers éléments de l'étude des nombres complexes ont été mis en place en première. L'objectif est de compléter cet acquis pour fournir des outils utilisés en algèbre, en trigonométrie

Plus en détail

NOMBRES COMPLEXES. avec une calculatrice TI on écrit par exemple 5^(1/3) et on obtient environ 1,71. On a donc 3 5 1,71

NOMBRES COMPLEXES. avec une calculatrice TI on écrit par exemple 5^(1/3) et on obtient environ 1,71. On a donc 3 5 1,71 NMBRES CMPLEXES I - Représentation géométrique Rappel Pour tout réel k, il existe un unique nombre réel dont le cube est k. Ce nombre est appelé racine cubique de k. Il est noté 3 k ou aussi k n a par

Plus en détail

CH 1 Géométrie : Complexes 4 ème Sciences Septembre 2009

CH 1 Géométrie : Complexes 4 ème Sciences Septembre 2009 CH 1 Géométrie : Complexes 4 ème Sciences Septembre 009 A. LAATAOUI I. INTRODUCTION ET DEFINITION Tous les nombres positifs ont une racine carrée, par exemple, 9 a pour racine 3 et 3 et a pour racine et

Plus en détail

Chapitre VII : LES NOMBRES COMPLEXES

Chapitre VII : LES NOMBRES COMPLEXES I - Ecriture algébrique des nombres complexes 1) Définition Chapitre VII : LES NOMBRES COMPLEXES Définition 1 : On admet qu il existe un ensemble de nombres, noté C, vérifiant les propriétés suivantes

Plus en détail

Chapitre 9 Les nombres complexes

Chapitre 9 Les nombres complexes Chapitre 9 Les nombres complexes Vocabulaire-représentation Définition des nombres complexes Définition Nombres complexes, partie réelle, partie imaginaire) On introduit i, un nombre qui vérifie i = On

Plus en détail

Cours de Terminale S /Nombres complexes. E. Dostal

Cours de Terminale S /Nombres complexes. E. Dostal Cours de Terminale S /Nombres complexes E. Dostal aout 01 Table des matières 8 Nombres complexes 8.1 Introduction............................................ 8. Le plan complexe.........................................

Plus en détail

NOMBRES COMPLEXES. 2 + q 2

NOMBRES COMPLEXES. 2 + q 2 NMBRES CMPLEXES I - Représentation géométrique f(x) = x 3 Pour tout réel k, il existe un unique nombre réel dont le cube est k. Ce nombre est appelé racine cubique de k. Il est noté 3 k ou aussi k 3. k

Plus en détail

Chapitre 1 Les nombres complexes

Chapitre 1 Les nombres complexes Chapitre 1 Les nombres complexes A) Définition et propriétés de base (rappels) 1) Définition a) On appelle C l'ensemble des nombres complexes. Un nombre complexe s'écrit z a bi, où a et b sont des réels

Plus en détail

Nombres complexes - Équations et forme trigonométrique

Nombres complexes - Équations et forme trigonométrique Lycée Paul Doumer 0-04 TS Cours Nombres complexes - Équations et forme trigonométrique Contents Équation du second degré. Racines carrées..................................... Équation du second degré à

Plus en détail

Nombres et plan complexes Les exercices fondamentaux à connaître

Nombres et plan complexes Les exercices fondamentaux à connaître Nombres et plan complexes Les exercices fondamentaux à connaître Y. Morel Version en ligne et interactive : http://xymaths.free.fr/lycee/ts/exercices-corriges-complexes.php Table des matières 1 Formes

Plus en détail

Ecritures des nombres complexes

Ecritures des nombres complexes Ecritures des nombres complexes I. Rappel sur les nombres complexes Le nombre i est un nombre dont le carré vaut 1. Donc : i² = 1 De plus, son opposé i a aussi pour carré 1. ( i)² = i² = 1 Les deux racines

Plus en détail

Nombres complexes et application à la géométrie

Nombres complexes et application à la géométrie Nombres complexes et application à la géométrie I) Représentation graphique d un nombre complexe Le plan est muni d un repère orthonormé (O,u,v). 1) Affixe d un point a) Définition Si M est le point de

Plus en détail

BTS Mécanique et Automatismes Industriels. Nombres complexes

BTS Mécanique et Automatismes Industriels. Nombres complexes BTS Mécanique et Automatismes Industriels, Année scolaire 006 007 Table des matières. Les différentes écritures. - Forme algébrique d un nombre complexe. - Représentation géométrique d un nombre complexe.3

Plus en détail

TS Nombres complexes Cours

TS Nombres complexes Cours TS Nombres complexes Cours I. Le plan complexe 1. Définitions générales Théorème( admis ) Il existe un ensemble noté, appelé ensemble des nombres complexes qui possède les propriétés suivantes : contient

Plus en détail

Chapitre 4 Les nombres complexes : 1ère Partie

Chapitre 4 Les nombres complexes : 1ère Partie Chapitre 4 Les nombres complexes : 1ère Partie A) Définition et propriétés de base 1) Historique Les nombre complexes ont été inventés au départ en 1545 par le mathématicien italien Jérôme Cardan (Girolamo

Plus en détail

I. Nombres complexes. 1 Corps C des nombres complexes

I. Nombres complexes. 1 Corps C des nombres complexes 1 Corps C des nombres complexes Théorème 1. Il existe un ensemble C des nombres complexes qui possède les propriétés suivantes : C contient R. C est muni d une addition et d une multiplication qui suivent

Plus en détail

Nombres complexes. s'écrit alors i

Nombres complexes. s'écrit alors i Nombres complexes préambule : En 1545, dans son ouvrage Artis magnae sive regulis algebraicus, le mathématicien italien Cardan veut résoudre l'équation : x(10 x) 40. Il est confronté à une opération impossible

Plus en détail

NOMBRES COMPLEXES (Partie 3)

NOMBRES COMPLEXES (Partie 3) NOMBRES COMPLEXES (Partie 3) 1 Dans tout le chapitre, on munit le plan d'un repère orthonormé direct ( O; u! ; v! ). I. Forme exponentielle d un nombre complexe 1) Définition Posons f (θ) = cosθ + isinθ.

Plus en détail

BTS Mécanique et Automatismes Industriels. Nombrescomplexes

BTS Mécanique et Automatismes Industriels. Nombrescomplexes BTS Mécanique Automatismes Industriels Nombrescomplexes, Année scolaire 008/009 Table des matières Nombres complexes.lesdifférentesécritures....... Forme algébriqued unnombre complexe.... Représentationgéométrique

Plus en détail

Module d'un nombre complexe. Nombres complexes. Définition. Forme algébrique :

Module d'un nombre complexe. Nombres complexes. Définition. Forme algébrique : Définition Nombres complexes L'ensemble des nombres complexes noté est l'ensemble des nombres de la forme z = a + biou a et b sont des réels quelconques et i un nouveau nombre tel que i²= -1. Le nombre

Plus en détail

9 page 333 du LIVRE : EXERCICE N 5 : Extrait de l épreuve du concours EFREI (mai 2010) ÉLÉMENTS DE RÉPONSE DES EXERCICES DU CHAPITRE 5.

9 page 333 du LIVRE : EXERCICE N 5 : Extrait de l épreuve du concours EFREI (mai 2010) ÉLÉMENTS DE RÉPONSE DES EXERCICES DU CHAPITRE 5. 1 FICHE : EXERCICE N 1 : 1. j = 1.. j = j. 1 + j + j = 0 et j = 1. EXERCICE N : 15 page du LIVRE : correction page 474 du livre. EXERCICE N : 6 page du LIVRE : z 1 = 1 + 1 i ; z = 7 + 7 i ; z = 4 5 + 5

Plus en détail

Mathématique en Terminale S Les nombres complexes

Mathématique en Terminale S Les nombres complexes Mathématique en Les nombres complexes Table des matières 1 Approche historique 3 2 4 3 Représentation graphique des nombres complexes 4 4 Opérations sur les nombres complexes 5 4.1 Addition et soustraction

Plus en détail

II ÉQUATIONS DU SECOND DEGRÉ À COEFFICIENTS RÉELS

II ÉQUATIONS DU SECOND DEGRÉ À COEFFICIENTS RÉELS Terminale S (3-4) I GÉNÉRALITÉS I. Présentation des nombres complexes Définition - Théorème : (admis) Il existe un ensemble noté C, contenant R, vérifiant les conditions suivantes : C est muni d une addition

Plus en détail

CHAPITRE 4 : Les nombres complexes

CHAPITRE 4 : Les nombres complexes CHAPITRE 4 : Les nombres complexes 1 Définition... 1.1 Théorème... 1. Définitions... 1.3 Théorème... Nombre complexe conjugué... 3.1 Définition... 3. Théorème 1... 3.3 Théorème... 3.4 Théorème 3... 5 3

Plus en détail

Les nombres complexes : exercices page 1

Les nombres complexes : exercices page 1 Les nombres complexes : exercices page 1 Ex 1 : Vrai ou faux Forme algébrique 1 ) =(4 5i ) 2 6 ) z 6 =i 4 i 3 2 ) z 2 =(4 5i ) ( 4+5i ) 7 ) z 7 =(1 2i ) 2 1 ) Si z=4i 3, alors a ) Im( z )= 3 d ) z=4 i+3

Plus en détail

Nombres complexes, cours, Terminale S

Nombres complexes, cours, Terminale S Nombres complexes, cours, Terminale S F.Gaudon 18 décembre 2013 Table des matières 1 Notion de nombre complexe 2 2 Opérations sur les nombres complexes 3 3 Représentation géométrique des nombres complexes

Plus en détail

Nombres complexes, cours, terminale S

Nombres complexes, cours, terminale S Nombres complexes, cours, terminale S 1 Notion de nombre complexe Il existe un ensemble noté C et appelé ensemble des nombres complexes tel que : C contient l'ensemble des...... ; l'addition et la multiplication

Plus en détail

Nombres complexes. I.2 Représentation géométrique des nombres complexes

Nombres complexes. I.2 Représentation géométrique des nombres complexes MTA - ch3 Page 1/11 Nombres complexes I L'ensemble C des nombres complexes I.1 Écriture des nombres complexes Il existe un ensemble noté C de nombres dits complexes vériant : R C C contient le nombre i

Plus en détail

NOMBRES COMPLEXES. I Introduction 1 I.1 Le nombre i... 1 I.2 L ensemble des nombres complexes... 1

NOMBRES COMPLEXES. I Introduction 1 I.1 Le nombre i... 1 I.2 L ensemble des nombres complexes... 1 re STI Ch03 : Nombres complexes 006/007 NOMBRES COMPLEXES Table des matières I Introduction I. Le nombre i............................................ I. L ensemble des nombres complexes...............................

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Table des matières 1 Approche historique 2 2 Définition 2 3 Représentation graphique des nombres complexes 3 4 Opérations sur les nombres complexes 4 4.1 Addition et soustraction

Plus en détail

Chapitre VI : Complexes (1) Forme algébrique

Chapitre VI : Complexes (1) Forme algébrique Forme algébrique. Ensemble des nombres complexes. Notion de nombres complexes Théorème l existe un ensemble, noté, appelé ensemble de nombres complexes qui possède les propriétés suivantes : R l addition

Plus en détail

Nombres complexes. Deux nombres complexes sont égaux si, et seulement si, ils ont même partie réelle et même partie imaginaire :

Nombres complexes. Deux nombres complexes sont égaux si, et seulement si, ils ont même partie réelle et même partie imaginaire : Nombres complexes 1 Ensemble des nombres complexes 1.1 Forme algébrique d un nombre complexe Théorème Admis 1. Il existe un ensemble, noté C, d éléments appelés nombres complexes, tel que : C contient

Plus en détail

1 Forme algébrique d un nombre complexe

1 Forme algébrique d un nombre complexe Chapitre 2 Nombres complexes 1 BCPST 851 27 septembre 2011 Chapitre 2 Nombres complexes On suppose donné un nombre i n appartenant pas à R. 1 Forme algébrique d un nombre complexe Définition 1 Propriété

Plus en détail

Les nombres complexes - 2

Les nombres complexes - 2 Chapitre 9 Les nombres complexes - Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 1ère partie Forme algébrique, conjugué. Somme, produit, quotient. Équation du second degré

Plus en détail

TERMINALE S Les nombres complexes [forme algébrique]

TERMINALE S Les nombres complexes [forme algébrique] Définitions et propriétés. Il existe un ensemble de nombres, noté C, qui contient tous les nombres réels et qui de plus : -contient un nombre noté i, un symbole tel que i 2 = -1. -tous les nombres de C

Plus en détail

Module et Argument d un nombre complexe

Module et Argument d un nombre complexe I Module et Argument d un nombre complexe Tout point M du plan peut être repéré par un couple de coordonnées polaires (r, θ) (r > 0, θ réel) M r est la distance OM ; θ est une mesure de l angle ( u, OM).

Plus en détail

TERMINALE S Chapitre 1 : les nombres complexes [forme algébrique]

TERMINALE S Chapitre 1 : les nombres complexes [forme algébrique] SOMMAIRE * 1. NOTION DE NOMBRE COMPLEXE... 2 DEFINITIONS ET PROPRIETES.... 2 * 2. INTERPRETATION GEOMETRIQUE.... 3 * 3. AFFIXE D UN VECTEUR, D UN BARYCENTRE... 3 * 4. NOMBRES COMPLEXES CONJUGUES... 4 *

Plus en détail

Les nombres complexes

Les nombres complexes DERNIÈRE IMPRESSION LE 17 février 016 à 15:35 Les nombres complexes Table des matières 1 Introduction 1.1 Un problème historique......................... 1. Création d un nouvel ensemble.....................

Plus en détail

4 Racines n-ièmes d un nombre complexe Racines n-ièmes de l unité Racines n-ièmes d un nombre complexe quelconque...

4 Racines n-ièmes d un nombre complexe Racines n-ièmes de l unité Racines n-ièmes d un nombre complexe quelconque... Le corps C des nombres complexes Table des matières 1 Définitions algébrique et géométrique de C 1 1.1 Définition de C............................................. 1 1. Structure algébrique de C.......................................

Plus en détail

MATHÉMATIQUES T erminale S

MATHÉMATIQUES T erminale S L Oasis Des M@Thém@tiques MATHÉMATIQUES T erminale S Boubacar MANÉ Mansour SANÉ Préface Table des matières 1 Les Nombres Complexes 5 I Historique......................................... 5 II Fabrication

Plus en détail

Nombres complexes, fonctions et formules trigonométriques

Nombres complexes, fonctions et formules trigonométriques Chapitre 4 Nombres complexes, fonctions et formules trigonométriques 41 Nombres complexes L ensemble C des nombres complexes est où i = 1 R C C = {z = a + ib : a, b R} Définition 411 On dit que l écriture

Plus en détail

Les nombres complexes (forme algébrique)

Les nombres complexes (forme algébrique) Les nombres complexes (forme algébrique) I. L'ensemble IC des nombres complexes. ) Notion de nombre complexe. def : Soit i le nombre "imaginaire" tel que i ² =. L'ensemble IC des nombres complexes est

Plus en détail

LES NOMBRES COMPLEXES

LES NOMBRES COMPLEXES LES NMBRES CMPLEXES Table des matières Écriture algébrique d un nombre complee Définitions Propriétés 3 Somme, produit et inverse 4 Équation dans C Représentation géométrique d un nombre complee 4 Définitions

Plus en détail

Nombres complexes, cours, première STI2D

Nombres complexes, cours, première STI2D Nombres complexes, cours, première STID F.Gaudon 9 juin 015 Table des matières 1 Notion de nombre complexe Opérations sur les nombres complexes 3 3 Représentation géométrique des nombres complexes 3 4

Plus en détail

Chapitre 10 Nombres complexes NOMBRES COMPLEXES. et Im(z) =

Chapitre 10 Nombres complexes NOMBRES COMPLEXES. et Im(z) = Chapitre 0 Nombres complexes NOMBRES COMPLEXES I- - Forme algébrique d un nombre complexe Définition : On note C l ensemble des nombres de la forme z = x + iy, où x et y sont deux nombres réels et ii un

Plus en détail

COMPLEXES. Sujets. septembre Antilles-Guyane. novembre Amérique du Sud. avril Pondichéry. mai Liban.

COMPLEXES. Sujets. septembre Antilles-Guyane. novembre Amérique du Sud. avril Pondichéry. mai Liban. COMPLEXES Sujets septembre 01 novembre 01 avril 01 mai 01 Antilles-Guyane Amérique du Sud Pondichéry Liban Formulaire COMPLEXES 1 Antilles-Guyane septembre 01. EXERCICE Le plan complexe est rapporté à

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes 1 Un peu d histoire En 157, l italien NICCLÓ FNTANA dit TARTAGLIA le bègue) découvre une méthode de résolution d équations du troisième degré. Il la dévoile à CARDAN. Celui que les

Plus en détail

NOMBRES COMPLEXES ET TRIGONOMÉTRIE

NOMBRES COMPLEXES ET TRIGONOMÉTRIE CHAPITRE 2 NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Rappels de trigonométrie tanα sinα π 2 M(α) π α cosα 0 3π 2 Figure 2.1 Sinus, cosinus, tangente Définition 2.1 La tangente d un nombre réel x, notée tan

Plus en détail

AL1 Complexes FC - Exercices -

AL1 Complexes FC - Exercices - AL Complexes FC - Exercices - CALCULS TRANSFORMATIONS D ÉCRITURES TRIGONOMÉTRIE 4 4 POLYNÔMES 4 5 EXERCICES DE TESTS 5 Page sur 9 Calculs. Additions.. ( i) ( 4i) Mathématiques AL - Complexes + + +.. i

Plus en détail

Université de Tours Année Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2

Université de Tours Année Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2 Université de Tours Année 2015-2016 Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2 NOMBRES COMPLEXES ET ÉQUATIONS ALGÉBRIQUES (12 h) 1 Nombres complexes 1.1 Introduction

Plus en détail

Chapitre 14 : Nombres complexes et géométrie

Chapitre 14 : Nombres complexes et géométrie Chapitre 14 : Nombres complexes et géométrie I Affixe, module et argument I.1 Représentation géométrique d un nombre complexe Le plan est muni d un repère orthonormal direct (O; u; v. Il est ainsi appelé

Plus en détail

Chap. 5 : Ensemble C 1. L ensemble C. Pour généraliser la notion de racine d une équation on introduit l ensemble C := {a + i.

Chap. 5 : Ensemble C 1. L ensemble C. Pour généraliser la notion de racine d une équation on introduit l ensemble C := {a + i. Chap 5 : Ensemble C 1 Arthur LANNUZEL le 1 Octobre 005 L ensemble C 1 Définition de C 11 Rappels Pour généraliser la notion de racine d une équation on introduit l ensemble C := {a + ib, a, b R} où i =

Plus en détail

Fiche BAC 09 Terminale S Nombres complexes (2ème partie) Exercice 1 ( Ex n 2 Antilles-Guyane juin 2000 adapté) Commun à tous les candidats

Fiche BAC 09 Terminale S Nombres complexes (2ème partie) Exercice 1 ( Ex n 2 Antilles-Guyane juin 2000 adapté) Commun à tous les candidats Fiche BAC 09 Terminale S Nombres complexes (ème partie) Exercice 1 ( Ex n Antilles-Guyane juin 000 adapté) Commun à tous les candidats 1 ) Pour tout nombre complexe z, on pose P (z)=z 3 3 z +3 z+7. a)

Plus en détail

Nombres complexes. Représentation géométrique. Notation exponentielle.

Nombres complexes. Représentation géométrique. Notation exponentielle. Nombres complexes. Représentation géométrique. Notation exponentielle. 1. Représentation géométrique d'un nombre complexe... P2 4. Propriétés... P15 2. Module d'un nombre complexe... p7 5. Compléments...

Plus en détail

( ) ( ) Terminale S Chapitre 10 «Nombres complexes 2 ème partie» Page 1 sur 9. I) Forme exponentielle. 1) Argument du produit

( ) ( ) Terminale S Chapitre 10 «Nombres complexes 2 ème partie» Page 1 sur 9. I) Forme exponentielle. 1) Argument du produit Terminale S Chapitre 0 «Nombres complexes ème partie» Page sur 9 I) Forme exponentielle ) Argument du produit Propriété : Soient deux nombres complexes et d'arguments respectifs θ et θ. A B A B Alors un

Plus en détail

Les nombres complexes

Les nombres complexes Chapitre 6 Terminale S Ce que dit le programme : Les nombres complexes CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 1ère partie Forme algébrique, conjugué. Somme, produit, quotient. Équation du second degré

Plus en détail

Chapitre 2 : LES NOMBRES COMPLEXES : FORME ALGEBRIQUE

Chapitre 2 : LES NOMBRES COMPLEXES : FORME ALGEBRIQUE SOMMAIRE 1.ACTIVITES... 2 ACTIVITE 1... 2 ACTIVITE 2... 2 2. NOTION DE NOMBRE COMPLEXE... 3 DEFINITIONS ET PROPRIETES.... 3 3. INTERPRETATION GEOMETRIQUE.... 4 4. AFFIXE D UN VECTEUR, D UN BARYCENTRE...

Plus en détail

Série Maths. Nombres complexes. . Exercice n 1 : On considère l'équation : 2 Z² - 4 i Z 3- i 3 = 0

Série Maths. Nombres complexes. . Exercice n 1 : On considère l'équation : 2 Z² - 4 i Z 3- i 3 = 0 . Exercice n 1 : On considère l'équation : Z² - 4 i Z 3- i 3 = 0 1- Montrer que cette équation possède deux solutions complexes distinctes Z 1 et Z. - On désigne par M 1 et M les points du plan complexes

Plus en détail

TRANSFORMATIONS ET NOMBRES COMPLEXES

TRANSFORMATIONS ET NOMBRES COMPLEXES TRANSFORATIONS ET NOBRES COPLEXES Table des matières Applications géométriques des nombres complexes. Arguments d un nombre complexe........................................... Ensemble de points du plan.

Plus en détail

Terminale S - Nombres Complexes

Terminale S - Nombres Complexes Exercice - 1 Terminale S - Nombres Complexes Ecrire le nombre complexe z = 1 + i 3 sous sa forme exponentielle En déduire la forme algébrique de z 5 Exercice - 2 2iπ On pose ω = e 5 1 Calculer ω 5 et prouver

Plus en détail

Fiche d exercices 8 : Nombres complexes

Fiche d exercices 8 : Nombres complexes Fiche d exercices 8 : Nombres complexes Ecriture algébrique Exercice 1 1. Donner l écriture algébrique des nombres complexes ci-dessous : i a. z = 1+ 1 + i 1 b. z = c. z3 = i 1 i + i. On considère les

Plus en détail

Nombres complexes - Partie 2

Nombres complexes - Partie 2 Chapitre F Nombres complexes - Partie 2 Contenus Capacités attendues Commentaires Forme trigonométrique : module et argument, interprétation géométrique dans un repère orthonormé direct ; notation exponentielle.

Plus en détail

NOMBRES COMPLEXES. I Définition - Représentation géométrique. II Forme trigonométrique - Module - Argument. Exercice 01 Apprendre le cours!...

NOMBRES COMPLEXES. I Définition - Représentation géométrique. II Forme trigonométrique - Module - Argument. Exercice 01 Apprendre le cours!... NOMBRES COMPLEXES I Définition - Représentation géométrique Exercice 0 Apprendre le cours!... Exercice 0 Soit z + i ; z' i - 5. Calculer et écrire sous la forme algébrique z + z' ; z - z' ; z - z' ; z.z'

Plus en détail

Rappels : nombres complexes

Rappels : nombres complexes INSA Toulouse Cycle Préparatoire IFCI Module Outils Mathématiques Regroupement n Rappels : nombres complexes Nombres complexes Définition Définition Il existe un ensemble C appelé ensemble des complexes

Plus en détail

NOMBRES COMPLEXES. I Introduction 2 I.1 Le nombrei... 2 I.2 L ensemble des nombres complexes... 2

NOMBRES COMPLEXES. I Introduction 2 I.1 Le nombrei... 2 I.2 L ensemble des nombres complexes... 2 T ale STI Nombres complexes 008/009 NOMBRES COMPLEXES Table des matières I Introduction I. Le nombrei.............................................. I. L ensemble des nombres complexes.................................

Plus en détail

1 Argument d un nombre complexe. 2 Ecriture trigonométrique. M(z = a + ib) r = z = OM. θ = arg(z) Chapitre 5 Les nombres complexes (2)

1 Argument d un nombre complexe. 2 Ecriture trigonométrique. M(z = a + ib) r = z = OM. θ = arg(z) Chapitre 5 Les nombres complexes (2) Chapitre 5 Les nombres complexes ) 1 rgument d un nombre complexe Un point M peut être repéré dans le plan muni d un repère orthonormé direct O; u, v ) de deux façons : par ses coordonnées cartésiennes

Plus en détail

Les nombres complexes

Les nombres complexes Lycée Paul Doumer 2013-2014 TS1 Cours Les nombres complexes Contents 1 Introduction - Une extension des ensembles de nombres 2 2 Forme algébrique d un nombre complexe 3 2.1 Définitions et vocabulaire..............................

Plus en détail

Ch 4. Complexes. D où l idée d introduire de nouveaux nombres dont le carré serait négatif, pour traiter le cas < 0.

Ch 4. Complexes. D où l idée d introduire de nouveaux nombres dont le carré serait négatif, pour traiter le cas < 0. PTSI2 2016/2017 Maths Lycée La Martinière-Monplaisir Lyon Ch 4. Complexes. 1 L ensemble C des nombres complexes 1.a Introduction Pour résoudre une équation de la forme ax 2 + bx + c = 0, avec a, b, c réels

Plus en détail

NOMBRES COMPLEXES (exercices)

NOMBRES COMPLEXES (exercices) Exercice : NOMBRES COMPLEXES (exercices). Placer les points A,B,C,D et E d affixes a = 3 + 3 i, b = - i, c = 4, d = -i, e = - + i dans le plan complexe.. Calculer l affixe du milieu I de [BD] Exercice

Plus en détail

Géométrie plane & nombres complexes

Géométrie plane & nombres complexes Géométrie plane & nombres complexes Terminale S P. Flambard Lycée Max Linder Année scolaire 2017-2018 1. Notion de nombre complexe Ensemble des nombres complexes Propriété Il existe un ensemble de nombres,

Plus en détail

CHAPITRE 1 : LES NOMBRES COMPEXES :

CHAPITRE 1 : LES NOMBRES COMPEXES : CHAPITRE 1 : LES NOMBRES COMPEXES : I-Forme algébrique d un nombre complexe : I.1) Définitions : On appelle nombre complexe tout nombre de la forme z=a+ib où a et b sont des nombres réels et où la quantité

Plus en détail

Nombres Complexes Exercice 1. [5 pts] Équations

Nombres Complexes Exercice 1. [5 pts] Équations Nombres Complexes Exercice 1. [5 pts] Équations On se propose d étudier les solutions de l équation (E) z + 1 = 0 1. Vérifier que pour tout nombre complexe z, on a : z + 1 = (z + 1)(z z + 1). En déduire

Plus en détail

Fondamentaux d'algèbre et de trigonométrie

Fondamentaux d'algèbre et de trigonométrie Fondamentaux d'algèbre et de trigonométrie I Fonctions trigonométriques ) cercle trigonométrique Définition On considère un repère orthonormé (O ; I, J) Un cercle trigonométrique est un cercle de rayon,

Plus en détail

Chap9 Forme trigonométrique et forme exponentielle de nombres complexes

Chap9 Forme trigonométrique et forme exponentielle de nombres complexes Chap9 Forme trigonométrique et forme exponentielle de nombres complexes I Module, argument et forme trigonométrique d un nombre complexe Rappel : le plan complexe est le plan muni d un repère orthonormé

Plus en détail

Nombres complexes. 0 + i 1 + i i n. Ecrire sous forme algébrique les nombres complexes suivants:

Nombres complexes. 0 + i 1 + i i n. Ecrire sous forme algébrique les nombres complexes suivants: Nombres complexes Exercice 1 1 Ecrire sous forme algébrique et trigonométrique les nombres suivants : i 0, i 1, i, i et i a Pour tout n IN, on note S n i 0 + i 1 + i +... + i n. Calculer S n - i S n, puis

Plus en détail

TS - Maths - Révisions Nombres complexes

TS - Maths - Révisions Nombres complexes TS - Maths - Révisions Nombres complexes Exercice 1 LIBAN 01 On considère la suite de nombres complexes z n définie par z 0 = i et pour tout entier naturel n : z n+1 = 1 + iz n. Les parties A et B peuvent

Plus en détail

Séance de soutien PCSI2 numéro 3 : Représentations des nombres complexes

Séance de soutien PCSI2 numéro 3 : Représentations des nombres complexes Séance de soutien PCSI2 numéro 3 : Représentations des nombres complexes Tatiana Labopin-Richard 5 novembre 2014 Il existe plusieurs façons de représenter des nombres complexes. Nom Notation Unicité Neutre

Plus en détail

Nombres complexes. I. Conventions

Nombres complexes. I. Conventions Nombres complexes I. Conventions On admet qu il existe un ensemble, noté que : d éléments appelés nombres complexes tel contient Les opérations dans prolongent celles dans avec des propriétés analogues

Plus en détail

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 01-014 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Complexes 1 Le Plan complexe 1.1 Introduction Dans tout ce chapitre,

Plus en détail

Cours Chapitre 1 : Nombres complexes

Cours Chapitre 1 : Nombres complexes Mr Arfaoui.O Tél : 563334 4 éme année sc & tech Cours Chapitre : Nombres complexes Forme cartésienne (algébrique) : Définition : La forme algébrique d un nombre complexe zεc est : z = a + ib avec a et

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Généralités 1.1 Définitions................................................. 1. Règles de calcul dans C.........................................

Plus en détail

Module et argument d un nombre complexe non nul.

Module et argument d un nombre complexe non nul. Chapitre 9 Module et argument d un nombre complexe non nul. I Module d un nombre complexe. Le plan est toujours rapporté à un repère orthonormal direct,,. Définition. Rappel: Soit = x+i.y un nombre complexe

Plus en détail

Nombres complexes, cours, Terminale S

Nombres complexes, cours, Terminale S Nombres complexes, cours, Terminale S F.Gaudon 25 mars 2014 Table des matières 1 Notion de nombre complexe 2 2 Opérations sur les nombres complexes 3 3 Représentation géométrique des nombres complexes

Plus en détail

Les nombres complexes : forme algébrique

Les nombres complexes : forme algébrique Isabelle orel-ts-cours complexes forme algébrique Les nombres complexes : forme algébrique Introduction. Le problème L histoire des nombres complexes commence en pleine Renaissance italienne avec les algébristes

Plus en détail

Feuille de TD - Les nombres complexes

Feuille de TD - Les nombres complexes Université Paris-Diderot Année 016-017 MM1 - Algèbre et analyse élémentaires I Feuille de TD - Les nombres complexes Questions du cours. (a) Donner la définition de nombre complexe sous forme cartésienne

Plus en détail

1.1 Nombres complexes

1.1 Nombres complexes Université de Provence 011 01 Mathématiques Générales I Parcours PEIP Cours : Nombres complexes 1 Définitions 11 Nombres complexes Définition 1 On appelle nombre complexe tout élément z de la forme z a

Plus en détail

Pierre-Louis CAYREL Licence 1 Introduction aux Mathématiques Générales Université de Paris 8. Nombres complexes

Pierre-Louis CAYREL Licence 1 Introduction aux Mathématiques Générales Université de Paris 8. Nombres complexes Pierre-Louis CAYREL 008-009 Licence 1 Introduction aux Mathématiques Générales Université de Paris 8 Nombres complexes 1 Forme cartésienne, forme polaire Exercice 1 Calculer le module des nombres complexes

Plus en détail