Stabilité des schémas numériques explicites en mécanique des fluides incompressibles.

Dimension: px
Commencer à balayer dès la page:

Download "Stabilité des schémas numériques explicites en mécanique des fluides incompressibles."

Transcription

1 Stabilité des schémas numériques explicites en mécanique des fluides incompressibles. Laboratoire de Mécanique, Modélisation & Procédés Propres Marseilles avec Dmitry Kolomenskiy Journées de l équipe d Analyse Appliquée de Marseille Porquerolles

2 Plan Introduction 1 Introduction 2 3

3 Plan Introduction 1 Introduction 2 3

4 Equations de Navier-Stokes Équations de Navier-Stokes incompressible : t u + u u ν u + p = f, (N-S) divu = 0, x R d, t [0, T ] u(0, x) = u 0 (x) On résout numériquement : t u + P [u u] ν u = P(f) où P désigne le projecteur de Leray.

5 Schéma centré d ordre 2 en temps Par la suite : f = 0 Étape intermédiaire u n+1/2 ( Id ν δt ) 2 u n+1/2 = u n δt 2 P [(u n )u n ] puis ( Id ν δt ) ( ν 2 u n+1 = u n + δt 2 u n P [ ] ) (u n+1/2 )u n+1/2

6 Adams-Bashforth d ordre 2 En Fourier, le noyau de la chaleur t u = ν u est intégré de façon exacte en posant On résout alors v(ξ, t) = e νξ2tû(ξ, t) = e νt û(ξ, t) t v + e νt P [ ] (e νt v )e νt v = 0 avec, en posant F(v, t) = e νt P [ (e νt v )e νt v ] v n+1 = v n 3 2 δt F(v n, nδt) δt F(v n 1, (n 1)δt)

7 Plan Introduction 1 Introduction 2 3

8 Condition CFL δt = pas de temps δx = pas d espace Habituellement, la contrainte sur le pas de temps δt Cδx est calculée au cas par cas, et C déterminé de façon empirique pour assurer la stabilité. Cette condition de stabilité est en fait largement insuffisante = C ( δx 1/3 ) 0

9 Stabilité de von Neumann Soit l équation t u = F(u) avec u : R d ou T d R et F un opérateur linéaire de symbole constant σ(ξ) i.e. F(u)(ξ) = σ(ξ)û(ξ). Soit un schéma de type Runge-Kutta i=0 u n(0) = u n, u n+1 = u n(srk ) l 1 l 1 u n(l) = a li u n(i) + δt b li F(u n(i) ) for 1 l s RK ou de type Adams-Bashforth s AB i=0 i=0 s AB u n+1 = a i u n i + δt b i F(u n i ) i=0

10 Stabilité de von Neumann On isole un mode de Fourier u n (x) = φ n e iξ x et on calcule le facteur d amplification m(ζ) avec ζ = σ(ξ)δt u n+1 = m(ζ)u n La stabilité de von Neumann est donnée par : pour tout δx, tous les modes ξ présents dans le calcul numérique satisfont m(ζ) 1 + Cδt pour C une constante positive indépendante de δx et δt. Alors u T = m(ζ) T /δt u 0 (1 + Cδt) T /δt u 0 e CT u 0

11 Cas de l équation de transport Pour ν très petit et u une solution régulière, l étude de stabilité de Navier-Stokes se rapporte à celle de l équation de transport t u = a u Le symbole de cet opérateur est imaginaire pur : σ(ξ) = a iξ

12 Domaine de stabilité de von Neumann Le domaine de stabilité d un schéma numérique est donné par l ensemble {ζ C d, m(ζ) 1} Runge-Kutta Adams-Bashforth Question : que se passe-t-il au niveau de la tangente à (Oy)?

13 Plan Introduction 1 Introduction 2 3

14 Navier Stokes et Euler incompressibles équations 2D, en formulation vorticité fonction de courant : t ω + u ω ν 2 ω = 0, 2 Ψ = ω, u = Ψ. Code spectral Fourier, AB2 pour u ω, exacte pour ν 2 ω.

15 Plan Introduction 1 Introduction 2 3

16 Cas particulier du transport Pour des schémas de type Runge-Kutta avec u n+1 = m(ζ)u n m(ζ) = 1 + β 1 ζ + β 2 ζ β m ζ m appliqué à l équation de transport, ζ = ia δt δx ( ) δt 2 ( ) δt 4 ( ) δt 2m m(ζ) 2 = 1+S 1 a 2 +S 2 a 4 + +S m a 2m δx δx δx avec S l = β 2 l 2β l 1β l+1 +2β l 2 β l+2 +( 1) l 1 2β 1 β 2l 1 +( 1) l 2β 2l

17 CFL affinée Si S 1 = S 2 = = S r 1 = 0 et S r > 0, alors δt = o(δx) et ( ) ( δt 2r ( ) ) δt 2r m(ζ) 2 = 1 + S r a 2r + o δx δx ou encore m(ζ) = S r a 2r ( δt δx ) 2r + o Alors la condition de stabilité de von Neumann S r m(ζ) 1 + Cδt ( ( ) ) δt 2r δx nous est donnée par ( ) 2C 1/(2r 1) ( ) δx 2r/(2r 1) δt a

18 Théorème liant ordre et stabilité d un schéma Theorem Un schéma d ordre 2p est stable pour l équation de transport, au pire sous la condition de type CFL : Preuve : Pour un schéma d ordre 2p, on a : δt C δx 2p+2 2p+1 (1) u n+1 = u n + δt t u n + δt2 2p δt 2 2 t un + + (2p)! 2p u t n + o(δt 2p ) Pour F linéaire dans t u = F (u), l t un = F l (u n), d où le facteur d amplification : m(ζ) = 1 + ζ + ζ ζ 2p (2p)! + o(ζ2p ) avec o() rassemblant les termes negligeables sous la condition δt = o(δx). Alors pour q [1, p], 2q S q = ( 1) (q p) 1 p! p=0 1 (2q p)! = ( 1) q 2q C p (2q)! 2q ( 1)p = 0 p=0

19 Plan Introduction 1 Introduction 2 3

20 Equation de Burgers sans viscosité t u + u x u = 0 with x T( 1, 1), t [0, 10/π], u 0 (x) = sin(πx). Code Fourier pseudo-spectrale, déaliasé. critère de divergence : u N (, t) TV > K u 0 ( ) TV, K 5.

21 Plan Introduction 1 Introduction 2 3

22 Que deux cases mémoire Pour résoudre t u = F(u), on se propose d utiliser des schémas du type : ou encore u n (0) = u n u n (1) = u n + α p δtf (u n (0) )... u n (l) = u n + α p l δtf (u n (l 1) )... u n+1 = u n + α 1 δtf (u n (p 1) ) u n+1 = u n + α 1 δtf (u n + α 2 δtf (u n + α 3 δtf (u n +... )))

23 Ordre du schéma Si F est linéaire, cela correspond à u n+1 = u n + β 1 δtf(u n ) + β 2 δt 2 F 2 (u n ) + β 3 δt 3 F 3 (u n ) +... avec β m = m l=1 α l. Ou, sachant F l (u) = l t u, u n+1 = u n + β 1 δt t u n + β 2 δt 2 2 t u n + β 3 δt 3 3 t u n +... L ordre du schéma apparaît directement. Et aussi la stabilité : si F(u), u = 0 et F(u), v = u, F(v) u n+1 2 L 2 = u n 2 L 2 +S 1 δt 2 F(u n ) 2 L 2 +S 2 δt 4 F 2 (u n ) 2 L 2 +S 3 δt 6 F 3 (u n ) 2 L avec les S l précédemment calculés.

24 Exemples Introduction Euler explicite : u n+1 = u n + δtf (u n ) β = ordre 1, S 1 = 1 = δt 2C ( ) δx 2 a, Runge Kutta 2 : u n+1 = u n + δtf (u n δtf(u n)) β 1 = 1, β 2 = 1/2 et β 3 = = ordre 2, S 1 = 0 et S 2 = 1/4 = δt 2 C 1/3 ( ) δx 4/3 a, Schéma 3 : u n+1 = u n + δtf(u n δtf (u n δtf (u n))) β 1 = 1, β 2 = 1/2, β 3 = 1/8 1 6 S 1 = S 2 = 0 et S 3 = 1/64, = = ordre 2, δt 2 7/5 C 1/5 ( δx a ) 6/5.

25 Exemples Introduction Schéma 4 : u n+1 = u n +δtf(u n δtf(u n β 3 = 2± = ordre 2, δtf (u n δtf (u n )))) 4 S 1 = S 2 = S 3 = 0 et S 4 = β 2 4 = δt ( 2C β 2 4 ) 1/7 ( δx a Schéma 5 : ) 8/7, u n+1 = u n +δtf (u n + δt 2 F(u n+ δt 3 F(u n+ δt 4 F(u n+ δt 6 F(u n))))) β 1 = 1, β 2 = 1/2, β 3 = 1/6, β 4 = 1/24 et β 5 = 1/144 1/120 = ordre 4, S 1 = S 2 = S 3 = S 4 = 0 et S 5 = β4 2 2β 3β 5 < 0 = CFL usuelle.

26 Domaine de stabilité et CFL Domaine de stabilité Stabilité expérimentale

27 Plan Introduction 1 Introduction 2 3

28 Propriété d asymétrie du transport Lemme Soient u, v, w H 1 (Ω) d, Ω un ouvert de R d, telles que (u )v et (u )w L 2. Si div u = 0 et u n = 0 sur Ω, alors < v, (u )w > L 2 (Ω) = < (u )v, w > L 2 (Ω) Corollaire Avec les mêmes hypothèses, < v, (u )v > L 2 (Ω) = 0

29 Stabilité L 2 pour Euler explicite [R. Temam] Theorem Une erreur ε t valant ε 0 au temps t = 0 se propage dans le schéma Euler explicite avec : 2 0 ε t L 2 e ( A 2 δt δx 2 +A 1)t ε0 L 2 où A 0 = sup u(t, x), A 1 = sup u(t, x) x R d, t [0,T ] x R d, t [0,T ] δt le pas de temps et δx le pas d espace. Alors le schéma Euler est stable sous la condition CFL δt pour une constante C > 0. δx 2 C

30 Preuve de la stabilité L 2 Supposons une erreur ε n pour u n dans le schéma d Euler : u n+1 + ε n+1 = u n + ε n δtp [((u n + ε n ) )(u n + ε n )] aussi ε n+1 vérifie en norme L 2 : ε n+1 ε n + P [(u n )ε n] δt + A 1 ε nδt ε n + P [(u n )ε n] δt + A 1 ε nδt (2) avec u n et ε n à divergence nulle, on a : ε n (u n )ε n = ε n P [(u n )ε n ] ε n + P [(u n )ε n ] δt 2 L = ε 2 n 2 L + P [(u 2 n )ε n ] 2 L δt 2 2 Avec ε n H 1 εn L 2 δx, ε n + P [(u n )ε n] δt L 2 ε n 2 + A 2 δt 2 L 2 0 ε δx n 2 2 L 2

31 Preuve de la stabilité L 2 Sachant que (1 + x) 1/2 1 + x 2, Donc ε n+1 L 2 ( 1 + ( A Stabilité pour ε n+1 (1 + Cδt) ε n Car alors étant donné t = nδt, ) ) δt δx 2 + A 1 δt ε n L 2 ε t (1 + Cδt) t/δt ε 0 e Ct ε 0 Ainsi ε t e ( A ) δt δx 2 +A 1 t ε0

32 Stabilité L 2 pour le schéma centré d ordre 2 Theorem Supposons que l équation (NS) a une solution u(t, x) C 2. Une petite erreur ε n, avec ε n L 2 = O(δx 2 ) sur u n - une solution discrète proche de u(nδt, ) - dans le schéma numérique d ordre 2, devient au pas n + 1, ε n+1 avec : ( ε n+1 L λa 4 δt 4 ) 0 8δx 4 + A 1δt + o()δt ε n L 2 (3) avec λ une constante proche de 1, et o()une fonction tendant vers 0 sous la condition δt = o(δx). Aussi ce schéma est stable sous la condition CFL : δt Cδx 4/3 (4)

33 Preuve Introduction En ne gardant que les termes dominants, ε n+1 = ε n δtp [(u n )ε δt 2 n]+ P [(un )P [(un )εn]] δtp [(εn )un]+o() 2 Or D où : P [(u n )ε n ] ε n P [(u n )P [(u n )ε n ]] P [(u n )ε n ] ε n, P [(u n )P [(u n )ε n ]] = P [(u n )ε n ] 2 L 2 ε n δtp [(u n )ε n ] + δt2 2 P [(u n )P [(u n )ε n ]] 2 L 2 ε n 2 L 2 + λ δt4 4 u n 4 L ε n 2 L 2 δx 4 + o()δt

34 Plan Introduction 1 Introduction 2 3

35 Équation de Navier-Stokes : t u + u u ν u + p = f, (N-S) divu = 0, u(0, x) = u 0 (x) x [ 1 16, 15 ] T, t [0, T ] 16 Pénalisation sur [0, ] T et [ 16, 1] T Deux méthodes numériques : AB2 et une méthode d ordre 2 stable sous CFL usuelle : ( ) un + u n 1 u n+1 = u n + δt F + δt F(u n ) 2 Le développement de la turbulence demande une grande précision et crée des instabilités numériques.

36 Domaine de stabilité

37 Plan Introduction 1 Introduction 2 3

38 Stabilisation par dissipation numérique Amortissement dû à la discrétisation spatiale : m(ζ) v(ξ) Exemple ordre 1 : v(ξ) = sin(πξ) πξ Pas d instabilité lorsqu il y a de la viscosité numérique (cf Zang & Shu, 2004).

39 Conclusion Perspectives Résultat connu pour Euler explicite [Roger Temam, Loyd Trefethen], Schémas d ordre 2 très utilisés en mécanique des fluides, avec des CFL trop faibles, Résultat de stabilité trop peu connu (présenté de façon peu évidente dans Zang & Shu Siam J. Numer. Anal. 2004, pour RK2 Galerkin Discontinu), Explique un phénomène numérique effectivement observé, Pour un schéma amplificateur de petites échelles, l instabilité sera franche ou n aura aucun impact schémas stables sous CFL usuelle, l erreur de stabilité n apparaît pas toujours clairement.

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique 1 ANALYSE NUMERIQUE ET OPTIMISATION Une introduction à la modélisation mathématique et à la simulation numérique G. ALLAIRE 28 Janvier 2014 CHAPITRE I Analyse numérique: amphis 1 à 12. Optimisation: amphis

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

C algèbre d un certain groupe de Lie nilpotent.

C algèbre d un certain groupe de Lie nilpotent. Université Paul Verlaine - METZ LMAM 6 décembre 2011 1 2 3 4 Les transformations de Fourier. Le C algèbre de G/ Z. Le C algèbre du sous-groupe G 5 / vect{u,v }. Conclusion. G un groupe de Lie, Ĝ l ensemble

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

Formation à la C F D Computational Fluid Dynamics. Formation à la CFD, Ph Parnaudeau

Formation à la C F D Computational Fluid Dynamics. Formation à la CFD, Ph Parnaudeau Formation à la C F D Computational Fluid Dynamics Formation à la CFD, Ph Parnaudeau 1 Qu est-ce que la CFD? La simulation numérique d un écoulement fluide Considérer à présent comme une alternative «raisonnable»

Plus en détail

Rupture et plasticité

Rupture et plasticité Rupture et plasticité Département de Mécanique, Ecole Polytechnique, 2009 2010 Département de Mécanique, Ecole Polytechnique, 2009 2010 25 novembre 2009 1 / 44 Rupture et plasticité : plan du cours Comportements

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Finance, Navier-Stokes, et la calibration

Finance, Navier-Stokes, et la calibration Finance, Navier-Stokes, et la calibration non linéarités en finance 1 1 www.crimere.com/blog Avril 2013 Lignes directrices Non-linéarités en Finance 1 Non-linéarités en Finance Les équations de Fokker-Planck

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Construction d un cercle tangent à deux cercles donnés.

Construction d un cercle tangent à deux cercles donnés. Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Corps des nombres complexes, J Paul Tsasa

Corps des nombres complexes, J Paul Tsasa Corps des nombres complexes, J Paul Tsasa One Pager Février 2013 Vol. 5 Num. 011 Copyright Laréq 2013 http://www.lareq.com Corps des Nombres Complexes Définitions, Règles de Calcul et Théorèmes «Les idiots

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 Le compressed sensing pour l holographie acoustique de champ proche II: Mise en œuvre expérimentale. Antoine Peillot 1, Gilles Chardon 2, François

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½ Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½ Patrick Ciarlet et Vivette Girault ciarlet@ensta.fr & girault@ann.jussieu.fr ENSTA & Laboratoire Jacques-Louis Lions, Paris 6 Condition

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Les travaux de Iooss et Plotnikov sur les vagues tri-dimensionnelles

Les travaux de Iooss et Plotnikov sur les vagues tri-dimensionnelles 24 T. ALAZARD premiers inférieurs à une limite donnée», Mem. Couronnés de l Acad. Roy. Sci. Bruxelles 59 (1899). [55] C.-J. d. la Vallée Poussin «Recherches analytiques sur la théorie des nombres premiers,

Plus en détail

Introduction. Mathématiques Quantiques Discrètes

Introduction. Mathématiques Quantiques Discrètes Mathématiques Quantiques Discrètes Didier Robert Facultés des Sciences et Techniques Laboratoire de Mathématiques Jean Leray, Université de Nantes email: v-nantes.fr Commençons par expliquer le titre.

Plus en détail

Programmation Linéaire - Cours 1

Programmation Linéaire - Cours 1 Programmation Linéaire - Cours 1 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.

Plus en détail

Intérêt du découpage en sous-bandes pour l analyse spectrale

Intérêt du découpage en sous-bandes pour l analyse spectrale Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008) Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut

Plus en détail

Compte rendu des TP matlab

Compte rendu des TP matlab Compte rendu des TP matlab Krell Stella, Minjeaud Sebastian 18 décembre 006 1 TP1, Discrétisation de problèmes elliptiques linéaires 1d Soient > 0, a R, b 0, c, d R et f C([0, 1], R). On cerce à approcer

Plus en détail

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU) 0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2

Plus en détail

Simulation numérique d un stockage de déchets nucléaires en site géologique profond

Simulation numérique d un stockage de déchets nucléaires en site géologique profond Simulation numérique d un stockage de déchets nucléaires en site géologique profond Page 1 de 12 G. Allaire, M. Briane, R. Brizzi and Y. Capdeboscq CMAP, UMR-CNRS 7641, Ecole Polytechnique 14 juin 2006

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

Licence à distance Chapitre V : Equations différentielles. Méthodes numériques à un pas.

Licence à distance Chapitre V : Equations différentielles. Méthodes numériques à un pas. Licence à distance Chapitre V : Equations différentielles. Méthodes numériques à un pas. M. Granger Table des matières 1 Rappels sur le cours d équations différentielles 2 1.1 Généralités..........................................

Plus en détail

3ème séance de Mécanique des fluides. Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait. 2 Écoulements potentiels

3ème séance de Mécanique des fluides. Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait. 2 Écoulements potentiels 3ème séance de Mécanique des fluides Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait 1 Généralités 1.1 Introduction 1.2 Équation d Euler 1.3 Premier théorème de Bernoulli 1.4

Plus en détail

CONTRÔLE ET ÉQUATIONS AUX DÉRIVÉES PARTIELLES. par. Jean-Pierre Puel

CONTRÔLE ET ÉQUATIONS AUX DÉRIVÉES PARTIELLES. par. Jean-Pierre Puel CONTRÔLE ET ÉQUATIONS AUX DÉRIVÉES PARTIELLES par Jean-Pierre Puel 1. Introduction Pourquoi équations aux dérivées partielles et pourquoi contrôle? Les équations aux dérivées partielles, associées à certaines

Plus en détail

= b j a i φ ai,b j. = ˆBa i φ ai,b j. = a i b j φ ai,b j. Par conséquent = 0 (6.3)

= b j a i φ ai,b j. = ˆBa i φ ai,b j. = a i b j φ ai,b j. Par conséquent = 0 (6.3) I Commutation d opérateurs Chapitre VI Les relations d incertitude I Commutation d opérateurs Un des résultats importants établis dans les chapitres précédents concerne la mesure d une observable  : une

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples

Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples Franck LESIEUR Mathématiques et Applications, Physique Mathématique d Orléans UMR 6628 - BP 6759 45067 ORLEANS CEDEX 2 - FRANCE e-mail

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

NOMBRES COMPLEXES. Exercice 1 :

NOMBRES COMPLEXES. Exercice 1 : Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1

Plus en détail

I- Définitions des signaux.

I- Définitions des signaux. 101011011100 010110101010 101110101101 100101010101 Du compact-disc, au DVD, en passant par l appareil photo numérique, le scanner, et télévision numérique, le numérique a fait une entrée progressive mais

Plus en détail

Equations aux Dérivées Partielles

Equations aux Dérivées Partielles Equations aux Dérivées Partielles Tony Lelièvre 29-2 Après avoir considéré dans le capitre précédent des équations d évolution pour des fonctions ne dépendant que du paramètre temps, nous nous intéressons

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université

Plus en détail

NOTICE DOUBLE DIPLÔME

NOTICE DOUBLE DIPLÔME NOTICE DOUBLE DIPLÔME MINES ParisTech / HEC MINES ParisTech/ AgroParisTech Diplômes obtenus : Diplôme d ingénieur de l Ecole des Mines de Paris Diplôme de HEC Paris Ou Diplôme d ingénieur de l Ecole des

Plus en détail

Initiation à la simulation numérique. Eléments d analyse numérique.

Initiation à la simulation numérique. Eléments d analyse numérique. Initiation à la simulation numérique en mécanique des fluides : Eléments d analyse numérique. Cours ENSTA MF307 6 juin 2003 Frédéric DABBENE et Henri PAILLERE Résumé Nous présentons dans ce rapport des

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau PHYSIQUE-CHIMIE L absorption des radiations lumineuses par la matière dans le domaine s étendant du proche ultraviolet au très proche infrarouge a beaucoup d applications en analyse chimique quantitative

Plus en détail

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t 3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes

Plus en détail

Sur certaines séries entières particulières

Sur certaines séries entières particulières ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane

Plus en détail

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

- Instrumentation numérique -

- Instrumentation numérique - - Instrumentation numérique - I.Présentation du signal numérique. I.1. Définition des différents types de signaux. Signal analogique: Un signal analogique a son amplitude qui varie de façon continue au

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

SSNL126 - Flambement élastoplastique d'une poutre droite. Deux modélisations permettent de tester le critère de flambement en élastoplasticité :

SSNL126 - Flambement élastoplastique d'une poutre droite. Deux modélisations permettent de tester le critère de flambement en élastoplasticité : Titre : SSNL16 - Flambement élastoplastique d'une poutre [...] Date : 15/1/011 Page : 1/6 Responsable : Nicolas GREFFET Clé : V6.0.16 Révision : 8101 SSNL16 - Flambement élastoplastique d'une poutre droite

Plus en détail

Les calculatrices sont autorisées

Les calculatrices sont autorisées Les calculatrices sont autorisées Le sujet comporte quatre parties indépendantes. Les parties 1 et portent sur la mécanique (de la page à la page 7). Les parties 3 et 4 portent sur la thermodnamique (de

Plus en détail

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans

Mathématique et Automatique : de la boucle ouverte à la boucle fermée. Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Mathématique et Automatique : de la boucle ouverte à la boucle fermée Maïtine bergounioux Laboratoire MAPMO - UMR 6628 Université d'orléans Maitine.Bergounioux@labomath.univ-orleans.fr Plan 1. Un peu de

Plus en détail

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M belayach@fsr.ac.ma 1 1.Le réseau

Plus en détail

Calculs et Certificats de Quantités d Intérêts Non Linéaires d un Mousqueton Cédric Bellis

Calculs et Certificats de Quantités d Intérêts Non Linéaires d un Mousqueton Cédric Bellis Ecole Normale Supérieure de Cachan Département de Génie Mécanique Rapport de Stage de M1 Mécanique et Ingéniérie des Systèmes Stage effectué du 10/04 au 27/08 Laboratori de Càlcul Numèric - Universitat

Plus en détail

Cours 9. Régimes du transistor MOS

Cours 9. Régimes du transistor MOS Cours 9. Régimes du transistor MOS Par Dimitri galayko Unité d enseignement Élec-info pour master ACSI à l UPMC Octobre-décembre 005 Dans ce document le transistor MOS est traité comme un composant électronique.

Plus en détail

Fonctions Analytiques

Fonctions Analytiques 5 Chapitre Fonctions Analytiques. Le plan complexe.. Rappels Soit z C, alors!(x,y) IR 2 tel que z = x + iy. On définit le module de z comme z = x 2 + y 2. On peut aussi repérer z par des coordonnées polaires,

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

Communication parlée L2F01 TD 7 Phonétique acoustique (1) Jiayin GAO <jiayin.gao@univ-paris3.fr> 20 mars 2014

Communication parlée L2F01 TD 7 Phonétique acoustique (1) Jiayin GAO <jiayin.gao@univ-paris3.fr> 20 mars 2014 Communication parlée L2F01 TD 7 Phonétique acoustique (1) Jiayin GAO 20 mars 2014 La phonétique acoustique La phonétique acoustique étudie les propriétés physiques du signal

Plus en détail

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques Durée 4 h Si, au cours de l épreuve, un candidat repère ce qui lui semble être une erreur d énoncé, d une part il le signale au chef

Plus en détail

La température du filament mesurée et mémorisée par ce thermomètre Infra-Rouge(IR) est de 285 C. EST-CE POSSIBLE?

La température du filament mesurée et mémorisée par ce thermomètre Infra-Rouge(IR) est de 285 C. EST-CE POSSIBLE? INVESTIGATION De nombreux appareils domestiques, convecteurs, chauffe-biberon, cafetière convertissent l énergie électrique en chaleur. Comment interviennent les grandeurs électriques, tension, intensité,

Plus en détail

Transmission d informations sur le réseau électrique

Transmission d informations sur le réseau électrique Transmission d informations sur le réseau électrique Introduction Remarques Toutes les questions en italique devront être préparées par écrit avant la séance du TP. Les préparations seront ramassées en

Plus en détail

MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours

MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours MSUR T INTÉGRATION N UN DIMNSION Notes de cours André Giroux Département de Mathématiques et Statistique Université de Montréal Mai 2004 Table des matières 1 INTRODUCTION 2 1.1 xercices.............................

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Mesure d angles et trigonométrie

Mesure d angles et trigonométrie Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi

Plus en détail

Prédiction des effets des explosions et de réponse des structures pyrotechniques

Prédiction des effets des explosions et de réponse des structures pyrotechniques Prédiction des effets des explosions et de réponse des structures pyrotechniques Jean-Pierre Languy, TECHNIP 1. INTRODUCTION La prédiction des effets des explosifs intéresse en premier lieu le chimiste

Plus en détail

1 Introduction et modèle mathématique

1 Introduction et modèle mathématique Optimisation parallèle et mathématiques financières Optimisation parallèle et mathématiques financières Pierre Spiteri 1 IRIT ENSEEIHT, UMR CNRS 5505 2 rue Charles Camichel, B.P. 7122 F-31 071 Toulouse,

Plus en détail

Le projet DRIAS : premières études et documents

Le projet DRIAS : premières études et documents Le projet DRIAS : premières études et documents Julien Lémond CNRM / GAME, Météo-France, CNRS Direction de la Climatologie Réunion Comité Utilisateurs, le 29 juin 2010 Plan de la présentation 1 ) Les services

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2 Exemple de sujet n 2 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 2 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche

Plus en détail

Systèmes de communications numériques 2

Systèmes de communications numériques 2 Systèmes de Communications Numériques Philippe Ciuciu, Christophe Vignat Laboratoire des Signaux et Systèmes CNRS SUPÉLEC UPS SUPÉLEC, Plateau de Moulon, 91192 Gif-sur-Yvette ciuciu@lss.supelec.fr Université

Plus en détail

Résonance Magnétique Nucléaire : RMN

Résonance Magnétique Nucléaire : RMN 21 Résonance Magnétique Nucléaire : RMN Salle de TP de Génie Analytique Ce document résume les principaux aspects de la RMN nécessaires à la réalisation des TP de Génie Analytique de 2ème année d IUT de

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

CHAPITRE 5. Stratégies Mixtes

CHAPITRE 5. Stratégies Mixtes CHAPITRE 5 Stratégies Mixtes Un des problèmes inhérents au concept d équilibre de Nash en stratégies pures est que pour certains jeux, de tels équilibres n existent pas. P.ex.le jeu de Pierre, Papier,

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Appel à Propositions. Thème : «Couplage CFD / CAA»

Appel à Propositions. Thème : «Couplage CFD / CAA» Appel à Propositions CORAC Feuille de route Propulsion Thème : «Couplage CFD / CAA» Référence de l Appel Titre de l appel Personne à contacter responsable de l appel à proposition (AàP) Date de début du

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

ECTS INFORMATIQUE ET RESEAUX POUR L INDUSTRIE ET LES SERVICES TECHNIQUES

ECTS INFORMATIQUE ET RESEAUX POUR L INDUSTRIE ET LES SERVICES TECHNIQUES ECTS INFORMATIQUE ET RESEAUX POUR L INDUSTRIE ET LES SERVICES TECHNIQUES CHAPITRES PAGES I DEFINITION 3 II CONTEXTE PROFESSIONNEL 3 HORAIRE HEBDOMADAIRE 1 er ET 2 ème ANNEE 4 FRANÇAIS 4 ANGLAIS 5 MATHEMATIQUES

Plus en détail

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE Le schéma synoptique ci-dessous décrit les différentes étapes du traitement numérique

Plus en détail

chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d

chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d Laboratoire de Mécanique et Ingénieriesnieries EA 3867 - FR TIMS / CNRS 2856 ER MPS Modélisation stochastique d un d chargement d amplitude variable à partir de mesures Application à l approche fiabiliste

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

Modélisation géostatistique des débits le long des cours d eau.

Modélisation géostatistique des débits le long des cours d eau. Modélisation géostatistique des débits le long des cours d eau. C. Bernard-Michel (actuellement à ) & C. de Fouquet MISTIS, INRIA Rhône-Alpes. 655 avenue de l Europe, 38334 SAINT ISMIER Cedex. Ecole des

Plus en détail

Méthode des éléments-finis par l exemple

Méthode des éléments-finis par l exemple par l exemple Daniel Choï 1 LMNO Groupe Mécanique Modélisation Mathématique et Numérique Université de Caen, Bld Maréchal Juin, 14032 Caen Cedex, France Version Avril 2010 1. daniel.choi@unicaen.fr Ce

Plus en détail

Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée

Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée EXAMENS D'ADMISSION Admission RÉCAPITULATIFS DES MATIÈRES EXAMINÉES MATIÈRES Préparation en 3 ou 4 semestres Formation visée Préparation complète en 1 an 2 ème partiel (semestriel) Niveau Durée de l examen

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Chapitre 2 Les ondes progressives périodiques

Chapitre 2 Les ondes progressives périodiques DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................

Plus en détail

Temps et thermodynamique quantique

Temps et thermodynamique quantique Temps et thermodynamique quantique Journée Ludwig Boltzmann 1 Ensemble Canonique Distribution de Maxwell-Boltzmann, Ensemble canonique ϕ(a) = Z 1 tr(a e β H ) Z = tr(e β H ) 2 La condition KMS ϕ(x x) 0

Plus en détail

Dérivation : Résumé de cours et méthodes

Dérivation : Résumé de cours et méthodes Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers

Plus en détail

Ce cours introduit l'électrodynamique classique. Les chapitres principaux sont :

Ce cours introduit l'électrodynamique classique. Les chapitres principaux sont : 11P001 ELECTRDYNAMIQUE I Automne 4 crédits BACHELR 1ère ANNEE MASTER BIDISCIPLINAIRE MINEURE PHYSIQUE CURS BLIGATIRES Enseignant(s) G. Iacobucci P Automne (A) Horaire A C2 E2 LU 1113 EPA JE 810 EPA = obligatoire

Plus en détail