La valeur positive extrême (ou maximale) prise par l abscisse angulaire est appelée amplitude de l oscillation.

Dimension: px
Commencer à balayer dès la page:

Download "La valeur positive extrême (ou maximale) prise par l abscisse angulaire est appelée amplitude de l oscillation."

Transcription

1 Terminale S Chapitre 12 Les systèmes mécaniques oscillants. Lycée J-B Schwilgué - SELESTAT I. Exemples de systèmes oscillants. 1. L oscillateur. On appelle oscillateur (ou système oscillant) un système pouvant évoluer, du fait de ses caractéristiques propres, de façon périodique et alternative autour d une position d équilibre. Un système oscillant est donc caractérisé par sa période ou pseudo-période. Exemples : Pendule pesant Pendule élastique vertical Balançoire Les marées Diapason Instrument de musique (vibration des cordes, de l air, de l embouchure). 2. Quelle grandeur suivre pour étudier un oscillateur? La grandeur oscillante intervenant dans les équations est l écart à l équilibre. C est une grandeur algébrique, repérée par l abscisse angulaire (t). Dans le cas d oscillation sans amortissement, l abscisse angulaire θ est une fonction sinusoïdale du temps : 2 π θ = θ m.sin( +ξ ) To La valeur positive extrême (ou maximale) prise par l abscisse angulaire est appelée amplitude de l oscillation. 3. Oscillateurs amortis. Savoir comment un système peut atteindre un régime apériodique. Certains oscillateurs subissent à cause des frottements un amortissement. On observe (comme en électricité) un régime pseudo-périodique lorsque l amortissement est faible, ou un régime apériodique.

2 II. Etude du pendule. 1. Le pendule à l équilibre. Définir un pendule simple. Justifier la position d équilibre dans le cas d un pendule simple. Définir l écart à l équilibre, l abscisse angulaire, l amplitude, la pseudo-période, la période propre et les mesurer sur un enregistrement. Un pendule simple est un oscillateur élémentaire. C est un modèle idéalisé du pendule pesant dans lequel la masse suspendue peut être considérée comme ponctuelle (le diamètre de la masse est très petit par rapport à la longueur du pendule). A l'équilibre, le fil qui supporte le solide S est vertical. Cette position d'équilibre est stable. A l équilibre, P + F = 0 Ecarté de la verticale et lâché sans vitesse, un pendule simple oscille de part et d'autre de sa position d'équilibre. Son mouvement est plan. 2. L isochronisme des petites oscillations. Enoncer la loi d isochronisme des petites oscillations. Lorsqu on écarte un pendule pesant ou un pendule simple de sa position d équilibre d une abscisse angulaire 0 et qu on l abandonne à lui-même, on constate que, pour des valeurs de 0 n excédant pas vingt degrés, celui-ci effectue des oscillations libres dont la période T est indépendante de 0. On dit que le pendule simple et le pendule pesant vérifient la loi d isochronisme des petites oscillations. 3. Expression de la période propre du pendule. Savoir que dans le cas d un amortissement faible, la pseudo-période est voisine de la période propre. Pour un pendule simple, justifier la forme de l expression de la période propre par analyse dimensionnelle. À partir d une série de résultats expérimentaux, vérifier la validité de l expression de la période propre d un pendule simple. Dans le cas du pendule simple sans frottement, la période des oscillations To est appelée période propre.

3 L expérience montre qu elle ne dépend pas de la masse du pendule mais qu elle est proportionnelle à la racine carrée de la longueur du pendule et qu elle est inversement proportionnelle à la racine carrée de l intensité de la pesanteur ( gravité g ) : On vérifie la relation To = 2. π. l g l est la longueur du fil (en mètre) g est l intensité de pesanteur en m/s². Comment montrer que l g correspond à un temps? la dimension de g correspond à la dimension d une longueur sur la dimension d un temps au carré [g ] = [ L ] / [ t ]² la dimension de l est une longueur [ L] t]² donc : = = [ t]² donc To à la dimension d un temps. [ g] [ L] 4. Comment mettre un pendule en oscillation forcées? Expérience des 3 pendules (2 de même longueur et un plus petit). Le système qui impose sa fréquence est l excitateur. Le pendule qui est mis en oscillation forcées est appelé le résonateur. Lorsqu un pendule est soumis à des actions périodiques d un système extérieur, la période des oscillations est imposée par l excitateur. A la résonance, l amplitude des oscillations est maximale. Pour un oscillateur peu amorti, la résonance a lieu pour une période voisine de sa période propre. L amplitude peut être tellement grande qu elle devient destructrice (pont Tacoma).

4 III. Etude de l oscillateur : solide + ressort. 1. Force exercée par un ressort. Connaître les caractéristiques de la force de rappel exercée par un ressort. On accroche à un ressort un solide (S). La position du solide est repérée par l abscisse x(t) de son centre de gravité. On prend comme centre O de l axe la position du ressort à l équilibre : l abscisse x(t) correspond donc au déplacement du solide (S). Le ressort est étiré : x(t) > 0 La force de rappel est dirigée vers le mur (gauche) Le ressort est compressé : x(t) < 0 La force de rappel est dirigée vers la droite. La force exercée par le ressort sur le solide (S) appelée force de rappel F est tel que : Direction : celle du ressort Sens : opposée à la déformation du ressort Norme : F = k. x avec k : constante de raideur en N/m Le vecteur force de rappel est : F = - k.x. i ne pas confondre la force de rappel exercée par la ressort qui est défini par rapport à la position d équilibre ressort+solide (vu ci-dessus) et la tension du ressort défini par rapport à la position d équilibre du ressort sans solide : T = k (L-Lo) où Lo correspond à la longueur du ressort à vide et L la longueur du ressort avec le solide ; 2. Etude théorique d un pendule élastique horizontal. Appliquer la deuxième loi de Newton au solide et effectuer la résolution analytique dans le cas d un dispositif oscillant horizontalement. Connaître la signification de tous les termes intervenant dans la solution de l équation différentielle et leur unité. Connaître et savoir exploiter l expression de la période propre, vérifier son homogénéité par analyse dimensionnelle Le solide (S) étudié dans un référentiel terrestre supposé galiléen est soumis à son poids, à la réaction du sol, à la force de rappel du ressort et à la force de frottement. Selon l intensité des frottements, on aura plusieurs régimes : régime apériodique, régime critique, régime pseudo-périodique, régime périodique. Dasn notre cas, on suppose f = 0.

5 Appliquons le théorème du centre d inertie au système (S): F = m. a Projetons cette relation vectorielle sur l axe Ox : m..a x = -k.x soit Cette équation correspond à une équation différentielle du second ordre. d ² x dt² + m k.x = 0 La solution de cette équation est l équation horaire d un mouvement libre non amorti. Elle est de la 2. π forme : x(t) = Xm. cos (.t + ϕ ). To Vérifions que x(t) est solution de l équation différentielle. 2. π 4. π ² k On obtient : Xm.cos (.t + ϕ ).( - )= 0 To m Donc x(t) est solution si : 4. ² To² To² π k m - = 0 soit To =2. π. m k L expérience montre que la période est proportionnelle à la racine carrée de la masse et qu elle est inversement proportionnelle à la racine carrée de la raideur du ressort. m Comment montrer que correspond à un temps? k la dimension de m correspond à la dimension d une masse la dimension de k correspond à la dimensions d une force sur la dimension d une longueur [ m] m] donc : = [ N] /[ L] [ N] la dimension d une force correspond à la dimension d une masse multiplié par la dimension de l accélération (dimension d une longueur divisée par la dimension d un temps au carré). [ m] m] m] Donc : = = = [t]² donc T correspond bien à un temps [ N] /[ L] [ N] [ m].[ L] /[ t]² Comment déterminer les valeurs de Xm et ϕ? On utilise les conditions initiales : à t = 0 s v(0) = 0 ( qui impose ici 0 = 0 radian ). x(0) = x0 ( qui impose ici Xm = x0 ) III. Etude de système oscillant subissant une action extérieur. Savoir que la résonance mécanique se produit lorsque la période de l excitateur est voisine de la période propre du résonateur Savoir que l augmentation de l amortissement provoque une diminution de l amplitude Connaître des exemples de résonance mécanique. 1. Influence d une force de frottement. Montrer avec Pendulor l influence de l amortissement. Lorsque l amortissement augmente, l amplitude des oscillations diminue, la pseudo-période reste constante. On montre expérimentalement l existence de 2 types de

6 frottements : Frottement fluide Frottement solide Lycée J-B Schwilgué - SELESTAT 2. Influence d un excitateur. Lorsque l on relie un système augmentant l amplitude du système étudié, le système augmentant l amplitude est appelé excitateur et le système étudié est appelé résonateur. Lorsque l excitateur est à la fréquence propre ( f=fo = 1/To), l amplitude atteinte par le résonateur est maximale : on dit que l on est à la résonance.

Cours de mécanique. M13-Oscillateurs

Cours de mécanique. M13-Oscillateurs Cours de mécanique M13-Oscillateurs 1 Introduction Nous étudierons dans ce chapitre en premier lieu l oscillateur harmonique solide-ressort horizontale, nous introduirons donc la force de rappel du ressort

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section i-prépa - Chapitre 10 : Oscillateurs mécaniques (II) 5. Oscillateur mécanique libre amorti : En présence de frottements, il n y a plus

Plus en détail

1 Description d un système oscillant

1 Description d un système oscillant Notions et contenus Oscillations mécaniques Amortissement Oscillations libres Oscillations forcées Résonance Objectifs Décrire un système oscillant autour de sa position d équilibre Décrire l oscillateur

Plus en détail

Etude énergétique des systèmes mécaniques

Etude énergétique des systèmes mécaniques Etude énergétique des systèmes mécaniques I) TRAVAIL D UNE FORCE CONSTANTE 1) Expression du travail (rappel) 2) Travail du poids d un corps II) TRAVAIL D UNE FORCE QUELCONQUE 1) Travail élémentaire a)

Plus en détail

ETUDE DES OSCILLATIONS MECANIQUE FORCEES

ETUDE DES OSCILLATIONS MECANIQUE FORCEES EXERCICE 1 ETUDE DES OSCILLATIONS MECANIQUE FORCEES A/ Un pendule élastique horizontal est formé d'un ressort (R) à spires non jointives, de masse négligeable, de raideur K=20N.m -1 dont l'une de ses extrémités

Plus en détail

CHAPITRE I Oscillations libres non amorties Système à un degré de liberté CHAPITRE I

CHAPITRE I Oscillations libres non amorties Système à un degré de liberté CHAPITRE I Page1 CHAPITRE I Oscillations libres non amorties : Système à un degré de liberté I.1 Généralités sur les vibrations I.1.1 Mouvement périodique : Définition : C est un mouvement qui se répète à intervalles

Plus en détail

Amérique du Sud 2005 Sans calculatrice I. ÉMISSION ET RÉCEPTION D UNE ONDE RADIO (4 points)

Amérique du Sud 2005 Sans calculatrice I. ÉMISSION ET RÉCEPTION D UNE ONDE RADIO (4 points) Amérique du Sud 25 Sans calculatrice I. ÉMISSION ET RÉCEPTION D UNE ONDE RADIO (4 points) Au cours d une séance de travaux pratiques, les élèves réalisent un montage permettant d émettre puis de recevoir

Plus en détail

Oscillations forcées en mécanique

Oscillations forcées en mécanique Oscillations forcées en mécanique I. Oscillateur amorti soumis à une excitation Lorsque l'oscillateur ( amorti par frottement fluide ) est soumis à une force excitatrice () son équation différentielle

Plus en détail

Oscillateurs mécaniques

Oscillateurs mécaniques Oscillateurs mécaniques I. Mouvement Harmonique Simple (MHS) + + =. Projection sur [ ) : = + = Equation différentielle régissant le mouvement du dispositif {solide-ressort} Les solutions sont de la forme

Plus en détail

oscillateurs et ondes progressive

oscillateurs et ondes progressive oscillateurs et ondes progressive Ce cours reprend le cours de madame Grenier de 2007, il constitue une aide et en aucun cas une référence pour le concours! C est un résumé du cours de madame Grenier,

Plus en détail

OSCILLATEURS MECANIQUES

OSCILLATEURS MECANIQUES OSCILLATEURS MECANIQUES 1 1. GENERALITES : 1.1.Définition : un oscillateur mécanique est un système matériel animé d un mouvement périodique. On appelle oscillateur harmonique, un oscillateur pour lequel

Plus en détail

1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son

1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son Physique TC 1 Correction 1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son centre. 2. Proposer une expression

Plus en détail

Cours n 4 : La chute

Cours n 4 : La chute Cours n 4 : La chute 1) Le champ de pesanteur terrestre Il est possible de caractériser en tout point de l espace la capacité d attraction de la terre sur un objet par la définition de la notion de champ

Plus en détail

Terminale S Chapitre 5 Les systèmes mécaniques oscillants

Terminale S Chapitre 5 Les systèmes mécaniques oscillants Chapitre 5 : Les systèes écaniques oscillants Chapitre 5 : Les systèes écaniques oscillants erinale S bjectifs : Définir un pendule siple et justifier la position d équilibre dans le cas d un pendule siple

Plus en détail

-I- Vibrations et oscillations :

-I- Vibrations et oscillations : BTS BTP 2 ème année Les oscillateurs mécaniques 1 Introduction : l'étude des oscillateurs mécaniques fait partie de la mécanique vibratoire. Cette partie de la physique étudie les vibrations dans les solides,

Plus en détail

Chapitre n 3 Travail et énergie. W AB ( ) =. = F.AB.cos α

Chapitre n 3 Travail et énergie. W AB ( ) =. = F.AB.cos α Chapitre n 3 Travail et énergie I. Travail d une force constante 1. Notion de travail Le travail est une grandeur algébrique qui permet d évaluer l effet d une force sur l énergie d un objet en mouvement.

Plus en détail

Comprendre-cours 3 TS - programme Travail et énergie

Comprendre-cours 3 TS - programme Travail et énergie Comprendrecours 3 TS programme 2012 Introduction : Travail et énergie L énergétique est la partie de la mécanique qui étudie les travaux et les puissances mises en oeuvres dans les déplacements des solides.

Plus en détail

Chapitre 13 Systèmes oscillants

Chapitre 13 Systèmes oscillants Chapitre 13 Systèmes oscillants Introduction : Les pendules de Galilée Le physicien Galileo Galilei (1564-1642) fut le premier à étudier expérimentalement les pendules. Ses résultats sont le fruit d'une

Plus en détail

Oscillateurs. Une oscillation est le mouvement effectué par le système entre deux passages consécutifs à la même position et dans le même sens.

Oscillateurs. Une oscillation est le mouvement effectué par le système entre deux passages consécutifs à la même position et dans le même sens. I - Systèmes oscillants et mouvement sinusoïdal 1) Système mécanique oscillant Oscillateurs On appelle système mécanique oscillant un système matériel pouvant évoluer de part et d'autre d'une position

Plus en détail

SERIE N 7 ETUDE DES OSCILLATIONS MECANIQUE LIBRES

SERIE N 7 ETUDE DES OSCILLATIONS MECANIQUE LIBRES SERIE N 7 ETUDE DES OSCILLATIONS MECANIQUE LIBRES EXERCICE 1 Dans cet eercice, les réponses attendues doivent être rédigées de façon succincte. Le modèle d'oscillateur étudié est décrit ci-contre, et les

Plus en détail

repose sur le sol. Lorsque le sol est localement mis en mouvement O sous l effet de secousses sismiques, le référentiel du boîtier est animé,

repose sur le sol. Lorsque le sol est localement mis en mouvement O sous l effet de secousses sismiques, le référentiel du boîtier est animé, FICHE TD PREMIER PRINCIPE DE LA MECANIQUE CLASSIQUE EXERCICE N 1 Un sismographe est un appareil destiné à enregistrer les vibrations de la surface terrestre sous l action d un séisme. Son S g principe

Plus en détail

Devoir n 3 de sciences physiques (2 heures)

Devoir n 3 de sciences physiques (2 heures) Lycée de Bambey erminale Sa Année: 7/8 Devoir n 3 de sciences physiques ( heures) 1 Exercice 1: Réaction entre un acide fort et une base forte (8 points) Les parties I et II sont indépendantes. Partie

Plus en détail

CORRIGE SERIE 11 : OSCILLATIONS MECANIQUES EXERCICE 1 PARTIE

CORRIGE SERIE 11 : OSCILLATIONS MECANIQUES EXERCICE 1 PARTIE CORRIGE SERIE 11 : OSCILLATIONS MECANIQUES EXERCICE 1 PARTIE 1 1 ) «Evoluer de façon alternative et périodique» signifie osciller entre une valeur maximale et une valeur minimale en répétant le phénomène

Plus en détail

Lycée El Hadji Omar lamine Badji Année scolaire 2013-2014 Cellules de sciences physiques Classe : TS1 OSCILLATIONS MECANIQUES LIBRES EXERCICE 1: Un oscillateur harmonique est constitué d un ressort de

Plus en détail

S14 - Oscillateurs mécaniques amortis. Signaux physiques. Chapitre 14 : Oscillateurs mécaniques amortis

S14 - Oscillateurs mécaniques amortis. Signaux physiques. Chapitre 14 : Oscillateurs mécaniques amortis Signaux physiques Chapitre 14 : Oscillateurs mécaniques amortis Sommaire 1 Etude du régime libre de l oscillateur harmonique amorti 1 1.1 Définition d un OH amorti...........................................

Plus en détail

Tronc commun scientifique Mahdade Allal année scolaire Énergie cinétique et travail : activités

Tronc commun scientifique Mahdade Allal année scolaire Énergie cinétique et travail : activités Énergie cinétique et travail : activités Application 1 a. Calculer l énergie cinétique : d une voiture de masse 1, 0tonnes roulant à 90km/h d un camion de masse 30tonnes roulant à 90km/h b. Calculer la

Plus en détail

Oscillateur harmonique (CORRIGES)

Oscillateur harmonique (CORRIGES) Oscillateur harmonique (CORRIGES) 1. Mesure de masse en apesanteur : a) Système ; chaise, de masse m o représentée par un point matériel M de masse m o. Actions : poids et rappel du ressort. La RFD (ou

Plus en détail

Le plan sur lequel se déplace le solide S est horizontal. La position du centre d'inertie G est donnée par

Le plan sur lequel se déplace le solide S est horizontal. La position du centre d'inertie G est donnée par P12-OSCILLATIONS MECANIQUES TRAVAUX DIRIGÉS TERMINALEE S 1 Oscillateur mécanique horizontal Un oscillateur mécanique est constitué d'un ressort à spires non jointives de raideur k dont une extrémité est

Plus en détail

Exercices et Problèmes de renforcement en Mécanique

Exercices et Problèmes de renforcement en Mécanique Exercices et Problèmes de renforcement en Mécanique I Un ressort de raideur k = 9 N/m et de longueur à vide L = 4 cm, fixé par une de ces deux extrémités en un point O, d un plan, incliné de 3 sur l horizontal,

Plus en détail

Chapitre 14 : Système solide-ressort

Chapitre 14 : Système solide-ressort (1) Chapitre 14 : Systèe solide-ressort Connaissances et savoir-faire exigibles : Connaître les caractéristiques de la force de rappel exercée par un ressort. (2) Appliquer la deuxièe loi de Newton au

Plus en détail

EXERCICE 1 : Ondes sismiques et sismomètre (9 points)

EXERCICE 1 : Ondes sismiques et sismomètre (9 points) Bac S 2010 Réunion http://labolycee.org EXERCICE 1 : Ondes sismiques et sismomètre (9 points) Partie 1 : Les ondes sismiques naturelles «Les ondes sismiques naturelles produites par les tremblements de

Plus en détail

BACCALAURÉAT LIBANAIS - SG Corrigé

BACCALAURÉAT LIBANAIS - SG Corrigé Exercice 1 : Pendule de torsion Le but de l exercice est de déterminer le moment d inertie d une tige homogène par rapport à un axe qui lui est perpendiculaire en son milieu et la constante de torsion

Plus en détail

L'oscillateur "pendule simple"

L'oscillateur pendule simple Outils du physicien Outils du logiciel Notions de physique Les Outils du Physicien Aide du logiciel IP Notions de Physique L'oscillateur "pendule simple" L'objectif de cette étude est la détermination

Plus en détail

TD 17 Approche énergétique du mouvement d un point matériel

TD 17 Approche énergétique du mouvement d un point matériel Mécanique I 1TPC TD 17 Approche énergétique du mouvement d un point matériel Exercice 1 Questions de cours 1. Rappeler la définition du travail et de la puissance d une force. Citer des cas de nullité

Plus en détail

Exercices complémentaires sur la dynamique et l'énergie de l'oscillateur harmonique.

Exercices complémentaires sur la dynamique et l'énergie de l'oscillateur harmonique. Exercices complémentaires sur la dynamique et l'énergie de l'oscillateur harmonique. E x 1. Le graphique ci-contre présente l élongation en fonction du temps d un pendule élastique amorti oscillant verticalement

Plus en détail

FORCES ET EFFETS DES FORCES I- INTERACTIONS MÉCANIQUES ET ACTIONS MÉCANIQUES

FORCES ET EFFETS DES FORCES I- INTERACTIONS MÉCANIQUES ET ACTIONS MÉCANIQUES Dans ce chapitre, nous allons étudier quelques exemples de forces ainsi que leurs effets produits sur un système. FORCES ET EFFETS DES FORCES I- INTERACTIONS MÉCANIQUES ET ACTIONS MÉCANIQUES Avant de faire

Plus en détail

Matière : Physique Classe : SG.

Matière : Physique Classe : SG. Matière : Physique Classe : SG. Premier exercice (7pts) : étude énergétique Un jouet d'enfant est formé d'un rail placé dans un plan vertical comme indique la figure ci-dessous. La partie ABC est un trajet

Plus en détail

Mécanique Chapitre 1 : Cinématique du point matériel

Mécanique Chapitre 1 : Cinématique du point matériel Lycée François Arago Perpignan M.P.S.I. 2012-2013 Mécanique Chapitre 1 : Cinématique du point matériel On se place dans le cadre de la mécanique classique (newtonienne) qui convient très bien pour expliquer

Plus en détail

TD 17 Approche énergétique du mouvement d un point matériel

TD 17 Approche énergétique du mouvement d un point matériel Mécanique I 1TPC TD 17 Approche énergétique du mouvement d un point matériel Exercice 1 Energie cinétique et théorème de l énergie cinétique (cours) 1. Donner la définition de l énergie cinétique d un

Plus en détail

Cette manipulation doit être effectuée 3 fois afin de minimiser certaines erreurs expérimentales.

Cette manipulation doit être effectuée 3 fois afin de minimiser certaines erreurs expérimentales. TP - N : LA LOI DE NEWTON But de l expérience : - Vérifier le principe fondamental de la dynamique pour un mouvement de translation uniformément accéléré. - Déterminer expérimentalement la valeur de g.

Plus en détail

Thème 2 : COMPRENDRE Lois et modèles p : 1 Ch.7. Travail et énergie

Thème 2 : COMPRENDRE Lois et modèles p : 1 Ch.7. Travail et énergie Thème 2 : COMPRENDRE Lois et modèles p : 1 Ch.7. Travail et énergie Chapitre 7 : Temps, mouvement et évolution Notions et contenus Travail d une force. Force conservative ; énergie potentielle. Forces

Plus en détail

TRAVAUX DIRIGÉS DE S 1

TRAVAUX DIRIGÉS DE S 1 Travau Dirigés S 1 Correction PCSI 2016 2017 TRAVAUX DIRIGÉS DE S 1 Eercice 1 : Homogénéité 1. ontrer que l epression obtenue en cours ω = k est homogène. m 2. n trouve epérimentalement ω = 250 /min, convertir

Plus en détail

A- MOUVEMENT CIRCULAIRE

A- MOUVEMENT CIRCULAIRE CHAPITRE 3 MOUVEMENTS PARTICULIERS A- Mouvement circulaire B- Mouvement oscillatoire Pr. M. ABD-LEFDIL Université Mohammed V- Agdal Département de Physique Année universitaire 5-6 SVI-STU A- MOUVEMENT

Plus en détail

Professeur : Mohamed lemine ould Hasnat

Professeur : Mohamed lemine ould Hasnat Énoncé de l exercice 1 On étudie le mouvement d un solide ponctuel S dans le référentiel terrestre supposé galiléen. Ce solide, de masse m, est initialement au repos en A. On le lance sur la piste ACD,

Plus en détail

La mécanique de Newton

La mécanique de Newton I. Comment décrire le mouvement d un solide? La mécanique de Newton Afin de décrire le mouvement d un solide, il faut : - choisir un système. - choisir un repère d espace et de temps (référentiel). - effectuer

Plus en détail

SYSTEMES OSCILLANTS. L étude des oscillations d un mobile en translation (MOt) ou d un mobile en rotation (MOr) est le sujet de cette manipulation.

SYSTEMES OSCILLANTS. L étude des oscillations d un mobile en translation (MOt) ou d un mobile en rotation (MOr) est le sujet de cette manipulation. MO 1 SYSTEMES OSCILLANTS On rencontre fréquemment en physique des phénomènes périodiques (ou oscillants ou vibratoires): mouvement autour d'une position d'équilibre d'un pendule, d'un poids suspendu à

Plus en détail

PROBLEME : PENDULES COUPLÉS PAR UNE BARRE DE TORSION

PROBLEME : PENDULES COUPLÉS PAR UNE BARRE DE TORSION UE PHY44 Vibrations, ondes et optique ondulatoire, 014-015 L Université Joseph Fourier, Grenoble UE PHY44 Partiel 1 mars 015 durée h 5 pages alculatrice collège autorisée, documents interdits, téléphone

Plus en détail

Oscillateur harmonique - Régime libre

Oscillateur harmonique - Régime libre Mécanique 2 - Oscillations libres page 1/9 Oscillateur harmonique - Régime libre Table des matières 1 Oscillateur harmonique 1 2 Oscillations libres 2 2.1 Pulsation propre - Isochronisme des oscillations........

Plus en détail

TP pendules. Ce TP est évalué en direct par les observations de l'enseignant.

TP pendules. Ce TP est évalué en direct par les observations de l'enseignant. TP pendules Ce TP est évalué en direct par les observations de l'enseignant. Objectifs : Étudier les oscillations libres et forcées d un pendule élastique (ressort) ; Étudier les oscillations libres non

Plus en détail

Documents de Physique-Chimie M. MORIN

Documents de Physique-Chimie M. MORIN 1 Afin de décrire le mouvement d un solide, il faut : Thème : Lois et modèles Partie : Temps, mouvement et évolution. Cours 16 : Cinématique - Mouvement d un point au cours du temps. Comment décrire le

Plus en détail

LES OSCILLATIONS. Un mouvement qui se répète à intervalles de temps consécutifs égaux est dit périodique.

LES OSCILLATIONS. Un mouvement qui se répète à intervalles de temps consécutifs égaux est dit périodique. LES OSCILLATIONS Un mouvement qui se répète à intervalles de temps consécutifs égaux est dit périodique. Exemples d oscillations : la balancoire, cordes d une guitare... molécules d air qui transmettent

Plus en détail

Sujet. I. Pas de frottements. G.P. DNS Octobre Ressort et frottement

Sujet. I. Pas de frottements. G.P. DNS Octobre Ressort et frottement DNS Sujet Ressort et frottement...1 I.Pas de frottements... 1 II.Frottement fluide...2 III.Frottement solide... 2 A.Plage d équilibre... 2 B.Mouvement...3 Ressort et frottement Un mobile ponctuel B de

Plus en détail

I. Les systèmes oscillants

I. Les systèmes oscillants CHAPITRE N 5 PARTIE B OSCILLATEURS MECANIQUES TS Introduction : Les points de certain système mécanique décrivent des trajectoires particulières, au cours desquels ils occupent une même position à des

Plus en détail

TD OH1 Oscillateurs harmoniques en. et OH2 régime libre et forcé. Oscillateur en régime libre

TD OH1 Oscillateurs harmoniques en. et OH2 régime libre et forcé. Oscillateur en régime libre TD OH1 Oscillateurs harmoniques en et OH2 régime libre et forcé Oscillateur en régime libre Exercice 1 Oscillateur harmonique non amorti ˆˆž Considérons le système représenté ci-dessous : une masse m est

Plus en détail

Objectifs d apprentissage du chapitre 1 Physique et mécaniques, analyse dimensionnelle et ordres de grandeur

Objectifs d apprentissage du chapitre 1 Physique et mécaniques, analyse dimensionnelle et ordres de grandeur Objectifs d apprentissage du chapitre 1 Physique et mécaniques, analyse dimensionnelle et ordres de grandeur Principes de la démarche scientifique Cadre d étude de la physique Définition des mécaniques

Plus en détail

Mouvement d un solide en rotation autour d un axe fixe

Mouvement d un solide en rotation autour d un axe fixe Mouvement d un solide en rotation autour d un axe fixe II. Moment cinétique scalaire d un solide en rotation autour d un axe fixe 1. Moment cinétique d un point matériel par rapport à un point On appelle

Plus en détail

Mécanique des solides

Mécanique des solides Mécanique des solides Equilibre d un solide soumis à 2 forces Auteur : Mme RASOLOARIMANA Vololoniarivo, professeur de sciences physiques au collège RASALAMA- Antananarivo Remarque : les lettres en caractère

Plus en détail

analyse dimensionnelle

analyse dimensionnelle analyse dimensionnelle La physique cherche à décrire les phénomènes de manière qualitative et quantitative. Elle doit donc les caractériser par des grandeurs susceptibles d être mesurées. 1. définitions

Plus en détail

EXERCICES ONDES & LUMIERE

EXERCICES ONDES & LUMIERE EXERCICES ONDES & LUIERE Exercices : Ondes mécaniques 1. Une onde se propage à la vitesse de 40 cm/s. Sa fréquence est de 50 Hz. Quelle est sa longueur d onde? 2. Une onde a une longueur d onde de 1.20

Plus en détail

3)Modélisation des actions mécaniques Une action mécanique se modélise par un vecteur force noté F

3)Modélisation des actions mécaniques Une action mécanique se modélise par un vecteur force noté F Actions mécaniques I) Notion d'actions mécaniques 1)Effets possibles Une action mécanique peut : mettre en mouvement un objet maintenir en équilibre un objet Déformer un objet 2)Classification On distingue

Plus en détail

TP Oscillateur de torsion

TP Oscillateur de torsion TP Oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

Lycée Viette TSI 1. DS h 50. Problème 01 Trajectoire d une particule

Lycée Viette TSI 1. DS h 50. Problème 01 Trajectoire d une particule DS 03 02 12 2011 1 h 50 Problème 01 Trajectoire d une particule On considère un point matériel en mouvement dans un référentiel. L équation en polaire de la trajectoire en polaire s écrit : =.. avec =.,

Plus en détail

LES OSCILLATEURS R L C. I(t) Les analogies électriques et mécaniques sont indiquées dans le tableau suivant : 1/LC K/m

LES OSCILLATEURS R L C. I(t) Les analogies électriques et mécaniques sont indiquées dans le tableau suivant : 1/LC K/m LES OSCILLATEURS Rappels théoriques Quelques domaines concernés... Electromagnétisme, électronique Acoustique Microscope à force atomique, vibrations intramoléculaires Sismographie Marées : résonances

Plus en détail

Énergie potentielle - Énergie

Énergie potentielle - Énergie MPSI - 2006/2007 - Mécanique I - Énergie potentielle - Énergie mécanique - Problèmes à un degré de liberté page 1/6 Énergie potentielle - Énergie mécanique - Problèmes à un degré de liberté Dans le chapitre

Plus en détail

Mécanique fondamentale

Mécanique fondamentale Chapitre 1 Mécanique fondamentale CURS Ce cours a pour objet de donner aux étudiants en PAES les outils indispensables àlaréussite de leurs concours. Nous avons donc privilégié systématiquement l aspect

Plus en détail

Chapitre 5: Oscillations libres d un pendule élastique horizontal

Chapitre 5: Oscillations libres d un pendule élastique horizontal 1 re B et C 5 Oscillations libres d'un pendule élastique horizontal 39 Chapitre 5: Oscillations libres d un pendule élastique horizontal 1. Définitions a) Oscillateur écanique * Un systèe écanique qui

Plus en détail

Devoir de contrôle N 2 BAC TECHNIQUE 1 Durée : 2h. Chimie (07 points)

Devoir de contrôle N 2 BAC TECHNIQUE 1 Durée : 2h. Chimie (07 points) Devoir de contrôle N 2 BAC TECHNIQUE 1 Durée : 2h Prof : M.BEN ABDEJELIL SAMI LYCEE HAMMAM SOUSSE II Chimie (07 points) On donne à 25 C, pke = 14 Exercice N 1 : Loi d action de masse appliquée aux réactions

Plus en détail

Oscillateurs mécaniques

Oscillateurs mécaniques Oscillateurs mécaniques I. Fiches d exercices R.Duperray Oscillateur harmonique en régime libre Lycée F.BUISSON PTSI Mécanique série n 4: Oscillateurs harmoniques libres Exercice: Détermination d un coefficient

Plus en détail

MΔ(F ) = F d CHAPITRE 7 : «FORCES, COUPLES, MOMENTS, TRAVAUX ET ENERGIES DANS LE TRANSPORT»

MΔ(F ) = F d CHAPITRE 7 : «FORCES, COUPLES, MOMENTS, TRAVAUX ET ENERGIES DANS LE TRANSPORT» CHAPITRE 7 : «FORCES, COUPLES, MOMENTS, TRAVAUX ET ENERGIES DANS LE TRANSPORT» Introduction : Ce chapitre a pour but de relier les concepts de forces et couples de forces (causes des mouvements) appliquées

Plus en détail

GE3-GCE3 - DS1 de Physique 06-07

GE3-GCE3 - DS1 de Physique 06-07 Vibrations et Ondes DS - /9 GE3-GCE3 - DS de Physique 06-07 ère partie (sans document). QCM ET COMMENTAIRES A) On considère un oscillateur mécanique amorti en régime forcé. A t0, on applique à cet oscillateur

Plus en détail

1 Définitions : Dynamique de translation : Dynamique de rotation :

1 Définitions : Dynamique de translation : Dynamique de rotation : M 2 Dynamique Bac pro - Faire l inventaire des forces agissant sur un système - Appliquer la relation fondamentale de la dynamique à un solide en translation, à un solide en rotation. - Calculer un moment

Plus en détail

Exercices Mécanique du solide

Exercices Mécanique du solide Exercices Mécanique du solide Exo 1 Balançoire Un enfant sur une balançoire est schématisé par un pendule oscillant autour d un axe horizontal grâce à une liaison parfaite. L angle avec la verticale est

Plus en détail

LE TRAVAIL : UN MODE DE TRANSFERT D ÉNERGIE

LE TRAVAIL : UN MODE DE TRANSFERT D ÉNERGIE LE TRAVAIL : UN MODE DE TRANSFERT D ÉNERGIE Commençons ce chapitre par étudier la relation qu il y a entre le travail des forces extérieures qui s exercent sur un solide et une forme d énergie : l énergie

Plus en détail

Gabriel Scherer TS3 LE PENDULE ÉLASTIQUE

Gabriel Scherer TS3 LE PENDULE ÉLASTIQUE Gabriel Scherer TS3 LE PENDULE ÉLASTIQUE 1 Étude manuelle d un pendule élastique vertical Schéma : Ressort constante de raideur k M asselote M asse m Support Table S chém a du m ontage utilisé TPP6odt

Plus en détail

Partie A : Ondes, Interférences dues à un écho

Partie A : Ondes, Interférences dues à un écho Samedi 28 Mars DS n 6 PCSI A Lycée Brizeux Partie A : Ondes, Interférences dues à un écho Un son de fréquence =100Hz émis par une source S parvient à un auditeur A de 2 façons possibles : de façon directe

Plus en détail

Le Pendule de Foucault Fête de la Science à Chenaud Association «la bergeronnette»

Le Pendule de Foucault Fête de la Science à Chenaud Association «la bergeronnette» Le Pendule de Foucault 2015 Fête de la Science à Chenaud Association «la bergeronnette» 10/10/2015 9,10-11 Octobre 2015 Fête de la Science 2015 Table des Matières Historique... 3 Pendule - Définition physique

Plus en détail

Dans un référentiel choisi, un solide est en mouvement de translation s il conserve la même orientation au cours du mouvement.

Dans un référentiel choisi, un solide est en mouvement de translation s il conserve la même orientation au cours du mouvement. NOM : Prénom : M6. Rotation d un solide On limitera notre étude à la rotation autour d un axe fixe. L étude du mouvement d un solide, lorsqu il n est plus ponctuel, ne peut plus se limiter à l application

Plus en détail

TS Physique Mécanique du vol d un ballon sonde Exercice résolu

TS Physique Mécanique du vol d un ballon sonde Exercice résolu P a g e 1 TS Physique Exercice résolu Enoncé Un ballon sonde, en caoutchouc mince très élastique, est gonflé à l hélium. Une nacelle, attachée sous le ballon, emporte du matériel scientifique afin d étudier

Plus en détail

TD Dynamique du Point Saut à l Elastique

TD Dynamique du Point Saut à l Elastique TD Dynamique du Point Saut à l Elastique Objectif On se propose de choisir un élastique pour effectuer un saut depuis le pont de PONSONNAS présent une hauteur de chute de 03 m. Mise en situation d un saut

Plus en détail

MOUVEMENTS PLANS DANS UN CHAMP DE PESANTEUR OU ELECTROSTATIQUE UNIFORME

MOUVEMENTS PLANS DANS UN CHAMP DE PESANTEUR OU ELECTROSTATIQUE UNIFORME , Chapitre 6 Terminale S MOUVEMENTS PLANS DANS UN CHAMP DE PESANTEUR OU ELECTROSTATIQUE UNIFORME I - MOUVEMENTS DANS UN CHAMP DE PESANTEUR UNIFORME Considérons un solide S soumis à une impulsion initiale,

Plus en détail

8 v 7.1 Oscillations 1

8 v 7.1 Oscillations 1 8 Oscillations v 7.1 Mouvement oscillatoire exemples d'oscillations : pendule de Galilée corde d'une guitare, air dans une flûte, dans un tuyau d'orgue propagation du son dans la matière vibrations des

Plus en détail

Kaplas : des chutes édifiantes

Kaplas : des chutes édifiantes Kaplas : des chutes édifiantes Auteurs : COUZIER Juliette - GOURRIN Arthur COUSTURIAN Louis Encadrés par : Monsieur Ducassou et Monsieur Torrens Lycée Bertran de Born, Périgueux ANNEXES 1. COEFFICIENT

Plus en détail

Correction exercice 1 :

Correction exercice 1 : Exercice 1 : Déterminer une hauteur Une bille est lancée verticalement vers le haut à une altitude h = 2,0 m par rapport au sol, avec une vitesse v = 10 m / s. On considère que le poids est la seule force

Plus en détail

EXERCICE PHYSIQUE TERMINALE DOCUMENT. On rappelle que mathématiquement cette équation admet en particulier 2 solutions : QUESTIONS

EXERCICE PHYSIQUE TERMINALE DOCUMENT. On rappelle que mathématiquement cette équation admet en particulier 2 solutions : QUESTIONS EXERCICE PHYSIQUE TERMINALE EXERCICE DOCUMENT L équation différentielle étant des grandeurs constantes), permet de décrire un grand nombre de phénomènes physiques variables au cours du temps : intensité,

Plus en détail

Lycée de Kounoune TS Retrouver la série Page 1

Lycée de Kounoune TS Retrouver la série  Page 1 Lycée de Kounoune Série d exercices classe de Tle S2 2015/2016: prof : M.Diagne P2 : Applications des bases de la dynamique email : diagnensis@yahoo.fr EXERCICE 1 Sur un banc à coussin d'air, on étudie

Plus en détail

1 ière Partie: VIBRATIONS

1 ière Partie: VIBRATIONS 1 ière Partie: VIBRATIONS Chapitre 3: Mouvement amorti à un degré de liberté Dr Fouad BOUKLI HACENE E P S T T L E M C E N A N N É E 1 5-16 Objectifs: 1. L équation différentielle d un mouvement amorti.

Plus en détail

TORSION. I.2 : Hypothèse sur le système des forces extérieures appliquées et sur les déformations qui en résultent:

TORSION. I.2 : Hypothèse sur le système des forces extérieures appliquées et sur les déformations qui en résultent: 1 TORSION Définition: La torsion est un mode de charge telle que dans les sections droites de la barre, seul apparaît un moment de torsion. Les autres facteurs de forces (Moment fléchissant, force normale

Plus en détail

G.P. DNS03 Septembre 2011

G.P. DNS03 Septembre 2011 DNS Sujet Secousses en mécanique...1 I.Première modélisation...2 II.Une modélisation plus réaliste...2 A.Phase de non glissement...2 B.Phase de glissement...3 Tunnel terrestre...4 I.Étude préliminaire...4

Plus en détail

Exercice 1: Exercice2:

Exercice 1: Exercice2: Exercice 1: Un corps de masse m 1 = 3,2 kg se déplace vers l ouest à la vitesse de 6,0 m/s. Un autre corps différent, de masse m 2 = 1,6 kg, se déplace vers le nord à la vitesse de 5,0 m/s. Les deux corps

Plus en détail

Chapitre 10 : Mouvement de chute verticale d un solide

Chapitre 10 : Mouvement de chute verticale d un solide (1) (2) (3) (4) (5) (6) (7) (8) (9) Chapitre 10 : Mouvement de chute verticale d un solide Connaissances et savoir-faire exigibles : Définir un champ de pesanteur uniforme. Connaître les caractéristiques

Plus en détail

Circuit mobile dans un champ magnétique stationnaire

Circuit mobile dans un champ magnétique stationnaire Circuit mobile dans un champ magnétique stationnaire II. Conversion de puissance mécanique en puissance électrique 1. Retour sur les rails de Laplace ( générateur ) Les rails de Laplace vus dan des chapitres

Plus en détail

1- Le régime sinusoïdal forcé : généralisation 2- Impédance et admittance complexes 3- Lois de l'électrocinétique en complexe

1- Le régime sinusoïdal forcé : généralisation 2- Impédance et admittance complexes 3- Lois de l'électrocinétique en complexe OH2 Oscillateurs en régime sinusoïdal forcé Plan I- Signaux sinusoïdaux 1- Dénition 2- Grandeurs caractéristiques 3- Notation complexe d'un signal sinusoïdal 4- Application de la notation complexe à un

Plus en détail

I. Première observation

I. Première observation PCSI1 Lycée Michelet L OSCILLATEUR HARMONIQUE Introduction Lorsqu une onde se propage (onde acoustique, onde à la surface de l eau), on observe localement un mouvement oscillant (oscillation des particules

Plus en détail

Travaux Pratiques de Physique Expérience n 9

Travaux Pratiques de Physique Expérience n 9 Expérience n 9 PENDULES Domaine: Mécanique Lien avec le cours de Physique Générale: Cette expérience est liée aux chapitres suivants du cours de Physique Générale (Physique I): - Physique I, Chapitre 11:

Plus en détail

Oscillations mécaniques forcées

Oscillations mécaniques forcées SCIENCES PHYSIQUES année 4 ème Oscillations mécaniques forcées Exercice n : 1 A/ Un pendule élastique horizontal est formé d'un ressort (R) à spires non (R) (S) -1 jointives, de masse négligeable, de raideur

Plus en détail

Mécanique du Point Matériel

Mécanique du Point Matériel (1) (1) Université Cadi Ayyad Faculté des Sciences Semlalia Département de Physique Année universitaire 2013/2014 Chapitre VII : Oscillateur harmonique 1 Introduction 2 3 Chapitre VII: Oscillateur harmonique

Plus en détail

Polynésie 09/2009 EXERCICE I. RECORD DE SAUT EN LONGUEUR À MOTO (6 points)

Polynésie 09/2009 EXERCICE I. RECORD DE SAUT EN LONGUEUR À MOTO (6 points) Polynésie 9/29 EXERCICE I. RECORD DE SAUT EN LONGUEUR À MOTO (6 points) http://labolycee.org Le 31 mars 28, l Australien Robbie Maddison a battu son propre record de saut en longueur à moto à Melbourne.

Plus en détail

Etablissement : Lycée Thelepte Devoir de synthèse N2 sections: 4 ème sc.exp & 4 ème M Physiques SC. Physiques Durée : 3h ROFS : Nasri & Jafel Hamza Zied Partie chimie(8pts) Exercice1 :Etude d un document

Plus en détail

1. Applications des lois de Newton

1. Applications des lois de Newton 1. Applications des lois de Newton 1.1. A un mouvement dans le champ de pesanteur Activité expérimentale 1.A p.156 1.1.1. Vecteur accélération En 1 er lieu, pour toute étude de mouvement, il faut définir

Plus en détail

Travail et énergie mécanique

Travail et énergie mécanique Travail et énergie mécanique Si le chapitre 5 donnait les lois de la mécanique permettant de connaître position, vitesse et accélération d un système soumis à un ensemble de forces extérieures, nous prenons

Plus en détail