COURS DE THERMIQUE. Ecole d Ingénieurs de Genève. Séance N 5. Jean-Bernard Michel

Dimension: px
Commencer à balayer dès la page:

Download "COURS DE THERMIQUE. Ecole d Ingénieurs de Genève. Séance N 5. Jean-Bernard Michel"

Transcription

1 COURS DE THERMIQUE Ecole d Ingénieurs de Genève Séance N 5 Jean-Bernard Michel HES-SO - Energétique ::: convection ::: HES-SO / 64

2 7 séances 1 - Introduction et Généralités 2 - La conduction thermique 3 - L'équation de la chaleur 4 - Le rayonnement thermique 5 - La convection thermique 6 - Les échangeurs de chaleur 7 - Petite Classe d'application HES-SO - Energétique ::: convection ::: 2/ 64

3 Transfert par conduction HES-SO - Energétique ::: convection ::: 3/ 64

4 Transfert radiatif HES-SO - Energétique ::: convection ::: 4/ 64

5 Transfert convectif HES-SO - Energétique ::: convection ::: 5/ 64

6 Chauffage par convection HES-SO - Energétique ::: convection ::: 6/ 64

7 Coefficient d'échange de chaleur par convection d 2 Q : Quantité de chaleur qui traverse ds pendant le temps dt, en Joules d ( ) dt dt ( dq ) Flux de chaleur, en Watt 2 d Q = h p ( T T ) ds dt en W/(m 2.K) HES-SO - Energétique ::: convection ::: 7/ 64

8 Détermination du coefficient h h dépend: de la conduction entre les particules de fluide du mélange de ces particules par suite du mouvement d'ensemble du fluide l'échange de chaleur peut être accompagné d'un changement de phase HES-SO - Energétique ::: convection ::: 8/ 64

9 Différents échanges convectifs échange thermique monophasique en convection forcée échange thermique monophasique en convection naturelle échange thermique accompagné d'ébullition échange thermique accompagné de condensation HES-SO - Energétique ::: convection ::: 9/ 64

10 Convection forcée sans changement d'état Le problème consiste à préciser l'expression du flux thermique Φ échangé entre le fluide extérieur à la température T et une longueur unité de la surface du tuyau à la température T p HES-SO - Energétique ::: convection ::: 10/ 64

11 Flux thermique transféré par l'écoulement autour d'un tube Flux transféré, en Watt Φ = h ( T - T ) p π D en W/(m 2.K) Ecart de température entre paroi extérieure et fluide à l'infini, en K Surface d'échange par m de tuyau, en m 2 HES-SO - Energétique ::: convection ::: 11/ 64

12 Analyse dimensionnelle 8 Grandeurs physiques et 4 dimensions: M, L, T et θ HES-SO - Energétique ::: convection ::: 12/ 64

13 Analyse dimensionnelle Le théorème de VASCHY-BUCKINGHAM permet de prévoir que la forme la plus générale de la loi physique décrivant le phénomène étudié s'écrira: F( π, π, π 1 2 3, π 4 ) = 0 où les π i sont des groupements sans dimension de la forme: ( ) p π a λ b c = D U ρ d µ e f g C h T T i HES-SO - Energétique ::: convection ::: 13/ 64

14 Equations aux dimensions des 8 grandeurs D U ρ µ λ C h T p -T L, Longueur M, Masse T, Temps θ, température HES-SO - Energétique ::: convection ::: 14/ 64

15 Dimension d'un groupement p Définition d'un groupement π ( ) p π a λ b c = D U ρ d µ e f g C h T T i où a, b, c, d, e, f, g, i sont 8 paramètres inconnus HES-SO - Energétique ::: convection ::: 15/ 64

16 ( ) p π a λ b c = D U ρ d µ e f g C h T T i contribution de la Masse à la dimension du groupement π rien rien d e b rien g rien soit: b + d + e + g = 0 HES-SO - Energétique ::: convection ::: 16/ 64

17 ( ) p π a λ b c = D U ρ d µ e f g C h T T i contribution de la Longueur à la dimension du groupement π a c -3d -e b 2f rien rien soit: a + b + c - 3d - e + 2f = 0 HES-SO - Energétique ::: convection ::: 17/ 64

18 ( ) p π a λ b c = D U ρ d µ e f g C h T T i contribution du Temps à la dimension du groupement π rien -c rien -e -3b -2f g rien soit: -3b -c -e -2f -3g = 0 HES-SO - Energétique ::: convection ::: 18/ 64

19 ( ) p π a λ b c = D U ρ d µ e f g C h T T i contribution de la Température à la dimension du groupement π rien rien rien rien -b -f -g i soit: - b - f - g + i = 0 HES-SO - Energétique ::: convection ::: 19/ 64

20 Dimension d'un groupement p π b+d+e+g a+b+c-3d-e+2f -3b-c-e-2f-3g -b-f-g+i = M L T [ ] [ ] [ ] [ ] [ ] θ Chacun de ces termes en exposant doit être nul HES-SO - Energétique ::: convection ::: 20/ 64

21 Groupements p sans dimension b + d + e + g = 0 a + b + c- 3d - e + 2f = 0-3b-c -e -2f-3g = 0 - b - f - g + i = 0 4 conditions pour que qu'un π soit adimensionnel mais 8 paramètres inconnus! HES-SO - Energétique ::: convection ::: 21/ 64

22 ( ) p π a λ b c = D U ρ d µ e f g C h T T 4 des 8 paramètres peuvent être choisis de manière arbitraire i g = 1 c = d = 0 i = 0 Pour obtenir une loi de la forme h = f (...) Le groupement π trouvé ne dépendra pas de l'énergie cinétique du fluide ρu 2 Le groupement π trouvé ne dépendra pas de l'écart de température T p -T HES-SO - Energétique ::: convection ::: 22/ 64

23 Résolution du système déterminant le premier groupement adimensionnel p Avec g = 1 et c = d = i = 0 b + d + e + g = 0 b + e = -1 a + b + c- 3d - e + 2f = 0 a + b + 2f - e = 0-3b-c -e -2f-3g = 0-3b-e -2f = 3 - b - f - g + i = 0 - b - f = 1 a = 1 b = - 1 e = 0 f = 0 HES-SO - Energétique ::: convection ::: 23/ 64

24 Nombre de Nusselt Nu ( ) p π a λ b c = D U ρ d µ e f g C h T T i Avec : g = 1 et : c = d = i = 0 a = 1 b = - 1 e = 0 f = 0 π 1 = N u = h D λ HES-SO - Energétique ::: convection ::: 24/ 64

25 Signification du Nombre de Nusselt Nu N u = Coefficient de convection h mis sous forme adimensionnelle F convecté = h ( T p - T ) ( DL ) Flux de référence = flux de conduction = λ ( DL ) [(T p - T ) / D] N u = F convecté Flux de référence = h ( T p - T ) ( DL ) λ ( DL ) [(T p - T ) / D] = h D λ HES-SO - Energétique ::: convection ::: 25/ 64

26 ( ) p π a λ b c = D U ρ d µ e f g C h T T i 4 des 8 paramètres peuvent être choisis de manière arbitraire b = 0 f = 0 g = 0 i = 0 de manière à ne conserver que les caractéristiques de l'interaction fluide-obstacle créant le transfert de chaleur: ω celles du fluide: ρ, µ ω celles de l'écoulement: U, D HES-SO - Energétique ::: convection ::: 26/ 64

27 Nombre de Reynolds Re ( ) p π a λ b c = D U ρ d µ e f g C h T T i Avec : b = f = g = i = 0 π ρu 2 = R e = µ D HES-SO - Energétique ::: convection ::: 27/ 64

28 Signification du Nombre de Reynolds Re R e = Forces d'inertie Forces de viscosité = ρ U D Re caractérise la forme du profil de vitesse de l'écoulement fluide µ HES-SO - Energétique ::: convection ::: 28/ 64

29 ( ) p π a λ b c = D U ρ d µ e f g C h T T i 4 des 8 paramètres peuvent être choisis de manière arbitraire a = 0 c = 0 g = 0 i = 0 de manière à ne conserver que les caractéristiques du fluide: ρ, µ, λ, C HES-SO - Energétique ::: convection ::: 29/ 64

30 Nombre de Prandtl Pr ( ) p π a λ b c = D U ρ d µ e f g C h T T i Avec : a = c = g = i = 0 π 3 = P r = µ λ C HES-SO - Energétique ::: convection ::: 30/ 64

31 Signification du Nombre de Prandtl Pr P r = Viscosité dynamique Diffusivité thermique = µ / ρ λ /ρc = µ C λ Pr compare les influences respectives: du profil de vitesse du fluide (viscosité) du profil de température (diffusivité) Pour les gaz usuels, Pr est voisin de 0.75 HES-SO - Energétique ::: convection ::: 31/ 64

32 Influence de la diffusivité thermique a 2 x T 2 = 1 a T t avec a = λ ρ c dt proportionnel à a HES-SO - Energétique ::: convection ::: 32/ 64

33 Conclusion de l'analyse dimensionnelle Le transfert de chaleur convectif implique une relation entre 4 nombres sans dimension F( π, π2, π3, 4 1 π ) = 0 F (N u,r e,p r,e c ) = 0 Nu = h D λ Re = ρu D µ P r = µ C λ Le quatrième groupement adimensionnel possible est le Nombre d'eckert. Il n'intervient que dans la description d'écoulements proches de la vitesse du son. HES-SO - Energétique ::: convection ::: 33/ 64

34 Nombres dérivés Nombre de Peclet: papport des flux thermiques par convection et par conduction Pe = Re.Pr U. D Pe = a = ρ. U. D µ µ. C. λ avec a, diffusivité thermique = λ ρ.c p Il existe aussi les nombres de Stanton, Grashof, Froude, Weber, Rayleigh p HES-SO - Energétique ::: convection ::: 34/ 64

35 Loi de la convection forcée F (N u,r e,p r ) = 0 ou N u = f (R e,p r ) hd λ = f ρ U µ D, µ λ C HES-SO - Energétique ::: convection ::: 35/ 64

36 Écoulement dans un tube Régime permanent dans une conduite cylindrique circulaire de diamètre intérieur D. Flux de chaleur dφ échangé à travers l aire latérale de paroi ds comprise entre les abscisses x et x + dx: dφ = h ( T - T ) π D dx m p HES-SO - Energétique ::: convection ::: 36/ 64

37 Coefficient d échange en régime turbulent Pour les nombres de Reynolds : 10 4 < Re < 1, Formule de Colburn corrélation expérimentale: N u = P r 1 3 R 0,8 e Conditions d application: Le régime d écoulement doit être parfaitement établi x/d > 60 0,7 < Pr < 100. HES-SO - Energétique ::: convection ::: 37/ 64

38 Régime turbulent non établi x/d < 60 N u = P r 1 3 R 0.8 e 1+ D x 0.7 HES-SO - Energétique ::: convection ::: 38/ 64

39 Régime laminaire Re < 2000, corrélations expérimentales de Lévêque, avec: A = R 1 P e avecα = r x D λ ρ. C p = V. D α N N u u = 3.66 =1.06 A pour A > 0.05 pour A < 0.05 HES-SO - Energétique ::: convection ::: 39/ 64

40 Exemple d application Tuyau de diamètre D = 20 mm Débit Q = 0,5 l/s d eau à 50 C. Déterminer le flux thermique transmis par convection du fluide vers la paroi, par mètre linéaire de conduite, dans le cadre des hypothèses suivantes: Température d entrée de l eau constante; Paroi du tube assez mince - on néglige la conduction; Température extérieure = 15 C; Ecoulement parfaitement établi Propriétés physiques de l eau: Masse volumique à 50 C: ρ = 988 kg/m3 Viscosité dynamique à 50 C: µ = Pa.s Conductivité thermique à 50 C: λ = W/(m. C) Capacité thermique massique à 50 C: Cp = J/(kg. C) HES-SO - Energétique ::: convection ::: 40/ 64

41 Résolution d'un problème de convection forcée 1 une géométrie 2 une dimension caractéristique L 3 L'écart T p - T entre paroi et fluide 4 La vitesse U du fluide 5 ρ, µ, C et λ du fluide HES-SO - Energétique ::: convection ::: 41/ 64

42 1 une géométrie Exemple: Un tuyau à section circulaire transportant de l'eau chaude. HES-SO - Energétique ::: convection ::: 42/ 64

43 2 une dimension caractéristique L Exemple: un tuyau de diamètre D = 20 mm HES-SO - Energétique ::: convection ::: 43/ 64

44 3 L'écart T p - T entre paroi et fluide Ecoulement Flux de chaleur Exemple: Le tuyau transporte de l'eau à la température moyenne: T m = 50 C alors que la paroi est à la température: T p = 15 C HES-SO - Energétique ::: convection ::: 44/ 64

45 4 La vitesse U du fluide Exemple: Le tuyau transporte un débit: Q = 0,5 l/s La vitesse moyenne de l'écoulement est alors: 1,6 m/s Um = Q/S = 1,6 m/s HES-SO - Energétique ::: convection ::: 45/ 64

46 5 ρ, µ, C et λ du fluide Pour de l'eau: Masse volumique à 50 C: ρ = 988 kg/m3 Viscosité dynamique à 50 C: µ = Pa.s Conductivité thermique à 50 C: λ = W/(m. C) Capacité thermique massique à 50 C: C = 4184 J/(kg. C) HES-SO - Energétique ::: convection ::: 46/ 64

47 Calcul du coefficient de transfert convectif h hd λ = f ρ U µ D, µ λ C 4 h HES-SO - Energétique ::: convection ::: 47/ 64

48 1 - Calcul du Nombre de Prandtl du fluide µ C P r = λ = = 3.60 HES-SO - Energétique ::: convection ::: 48/ 64

49 2 - Calcul du Nombre de Reynolds du fluide ρ UmD R e = = = µ HES-SO - Energétique ::: convection ::: 49/ 64

50 3 - Choix de la corrélation expérimentale Nu = f(re, Pr) Pour: 10 4 <R e < 1.2 x10 5 et: 0,7 < Pr < 100 on applique la corrélation de COLBURN: N u = P r 1 3 R 0,8 e HES-SO - Energétique ::: convection ::: 50/ 64

51 Calcul du Nombre de Nusselt (Formule de Colburn) 1 N = 0,023 P 3 R 0,8 u r e P r = 10 Nu = 224 P r = 3,6 P r = 1 N R = HES-SO - Energétique ::: convection ::: 51/ 64

52 4 - Calcul de h N = 224 = h D u λ h = λ N u = = 7156 W/(m. C) D 0.02 HES-SO - Energétique ::: convection ::: 52/ 64

53 Calcul du Flux thermique transmis par convection dφ ( T - T ) Ddx = h p π W = dφ dx = h ( T - T ) π D =15.7 kw/m m p HES-SO - Energétique ::: convection ::: 53/ 64

54 Ecoulement autour d un tube Pour un gaz : Nu = A Re m Pour un liquide : Nu = 1.11 A Re m 0.31 Pr R e A m 1 < R e < < R e < < R e < < R e < < R e < HES-SO - Energétique ::: convection ::: 54/ 64

55 Cas des échangeurs à tubes N u = B ( R ) ( P ) e 0.6 r 0.33 Faisceau aligné : B = 0.26 Faisceau en quinconce : B = 0.33 HES-SO - Energétique ::: convection ::: 55/ 64

56 Exercice d application Calculer la longueur de tube nécessaire à un échangeur aireau Températures Air in = 800 C Air out = 40 C Eau in = 15 C Eau out = 40 C Puissance moyenne fournie = 10 kw Diametre du tube= 10 mm HES-SO - Energétique ::: convection ::: 56/ 64

57 Ecoulement le long d une plaque Dans la sous - couche laminaire: dφ ds d 2 h = - = Q = h T p 2 d Q ds dt ( T - T ) p λ - T m T = - λ n m T n ds dt n=0 [ W n= 0 / m 2. K] HES-SO - Energétique ::: convection ::: 57/ 64

58 Cas d une paroi plane Régime laminaire Régime laminaire Re < Nu Nu L L = Régime ( Re ) ( Pr) L turbulent = 0,036 : ρ Um L µ h L λ HES-SO - Energétique ::: convection ::: 58/ 64 Re L N u ( Re ) 0.8 ( Pr) L 2000 : 0.33 = L =

59 HES-SO - Energétique ::: convection ::: 59/ 64 Convection naturelle: nombres de Grashof et de Froude 2 3 p = cte 2 3. T 1 Pour un fluide parfait T v v 1 = coefficient de dilatation volumique isobare du fluide avec... γ α α α γ α D g T T Gr T D g Gr = = = = Rapport entre forces de poussée ascensionnelle dues à une différence de température et forces de viscosité

60 Nombre de Froude Fr = U 2 g. L Rapport entre forces de viscosité, de gravité et d inertie. HES-SO - Energétique ::: convection ::: 60/ 64

61 Couche limite de convection naturelle G r = α g T µ 2 ρ 2 L 3 Forces de gravité Par unité de volume G = r α g T µ ρ 2 1 L 3 Forces de frottement visqueux par unité de volume HES-SO - Energétique ::: convection ::: 61/ 64

62 Convection naturelle laminaire et turbulente N u = C calculés à ( G. P ) la température moyenne, fluide - paroi Laminaire : n = 1/4 Turbulent : n = 1/3 r r n HES-SO - Energétique ::: convection ::: 62/ 64

63 Facteur de forme C Géométrie et orientation de la paroi Dimension caractéristique L C en convection laminaire Plaque verticale Hauteur 0,59 (10 4 < G r.p r < 10 9 ) C en convection turbulente 0,13 (10 9 < G r.p r < ) Cylindre horizontal Diamètre extérieur 0,53 (10 3 < G r.p r < 10 9 ) 0,10 (10 9 < G r.p r < ) Plaque horizontale chauffant vers le haut Plaque horizontale chauffant vers le bas Largeur 0,54 (10 5 < G r.p r < ) Largeur 0,27 ( < G r.p r < ) 0,14 ( < G r.p r < ) 0,07 ( < G r.p r < ) HES-SO - Energétique ::: convection ::: 63/ 64

64 Exemple d application: mur ensoleillé H=6 m L=10 m Pr = 0.72 Gr = Ra = Nu Nu. λ h = = L 11 = Ra W/m = K Tp = 313 K Ta = 293 K Tm = 303 K ρ = 1,149 kg/m3 λ = W/(m.K) µ = Pa.s Cp = 1006 J/(kg.K) HES-SO - Energétique ::: convection ::: 64/ 64

Convection thermique

Convection thermique Convection thermique I. Introduction Le transfert thermique s effectue spontanément dès qu il existe une différence de température entre deux points d un système ou de deux systèmes différents en absence

Plus en détail

SOMMAIRE NOTIONS FONDAMENTALES 1

SOMMAIRE NOTIONS FONDAMENTALES 1 SOMMAIRE NOTIONS FONDAMENTALES 1 OBJECTIFS POURSUIVIS 1 NOTION DE TEMPERATURE 2 NOTION DE CHALEUR 3 DÉFINITIONS 3 ECHANGE DE CHALEUR À TRAVERS UNE SURFACE 3 UNITÉS SI ET UNITÉS PRATIQUES 4 EXEMPLES DE

Plus en détail

Transferts de chaleur et de masse : Objectifs

Transferts de chaleur et de masse : Objectifs Convection Objectifs Transferts de chaleur et de masse : Objectifs Faire comprendre les mécanismes de transferts par convection Metter en évidence et présenter des outils de calcul des transferts par convection

Plus en détail

Durée de l épreuve : 3 heures Documents autorisés Date examen : Mercredi 15 février 2012 de 18h30 à 21h30 Date rattrapage : Mercredi 18 avril 2012 de 18h30 à 21h30 1 ECHANGEUR On utilise un échangeur à

Plus en détail

Dynamique des fluides

Dynamique des fluides Dynamique des fluides DYNAMIQUE DES FLUIDES INCOMPRESSIBLES DEFINITIONS Le débit est le quotient de la quantité de fluide qui traverse une section droite de la conduite par la durée de cet écoulement.

Plus en détail

Titre: Energétique Etu #1

Titre: Energétique Etu #1 Titre: Energétique Etu 2015-2016 #1 Auteur: Patrice Nortier Objectif de l'exercice : Cours : Energétique Code : 3FMT1026 Durée : 1h30 Évaluer les compétences acquises, Promotion : 2018 essentiellement

Plus en détail

TABLE DES MATIERES CHAPITRE I : LES TRANSFERTS EN GENIE DES PROCEDES CHAPITRE II : TRANSFERT DE MATIERE EQUATION DE CONTINUITE

TABLE DES MATIERES CHAPITRE I : LES TRANSFERTS EN GENIE DES PROCEDES CHAPITRE II : TRANSFERT DE MATIERE EQUATION DE CONTINUITE TABLE DES MATIERES Nomenclature VIII IX CHAPITRE I : LES TRANSFERTS EN GENIE DES PROCEDES 1 Transferts unidirectionnels 2 1.1. Cas d une phase non homogène 2 1.2. Transfert électrique 2 1.3. Transfert

Plus en détail

INSA de LYON Dép. Génie Civil et Urbanisme 3GCU CONVECTION - 93. [J. Brau], [2006], INSA de Lyon, tous droits réservés

INSA de LYON Dép. Génie Civil et Urbanisme 3GCU CONVECTION - 93. [J. Brau], [2006], INSA de Lyon, tous droits réservés CONVECTION - 93 Introduction Ce mode de transfert est basé sur le fait qu il y a déplacement de matière : il ne concerne donc que les fluides (liquides et gaz). Contrairement à la conduction où le transfert

Plus en détail

TP MDF LES PERTES DE CHARGES DANS LES CONDUITES ET LES RACCORDS (HM150-11)

TP MDF LES PERTES DE CHARGES DANS LES CONDUITES ET LES RACCORDS (HM150-11) TP MDF LES PERTES DE CHARGES DANS LES CONDUITES ET LES RACCORDS (HM150-11) 1. INTRODUCTION La plupart des installations hydrauliques ou thermiques sont conditionnées par le déplacement des fluides dans

Plus en détail

TRANSFERT DE CHALEUR ETUDE D'UN ECHANGEUR A PLAQUES ET JOINTS

TRANSFERT DE CHALEUR ETUDE D'UN ECHANGEUR A PLAQUES ET JOINTS TRANSFERT DE CHALEUR ETUDE D'UN ECHANGEUR A PLAQUES ET JOINTS Manip n 9 ATELIER INTER UNIVERSITAIRE DE GENIE DES PROCEDES Février 2006 J. ALBET 2 ème Année Objectifs de la manipulation - Étude de la technologie

Plus en détail

Refroidissement d'un pot d'échappement

Refroidissement d'un pot d'échappement Transferts Thermiques dans les fluides. 9 février 04 Cours MFE202 Refroidissement d'un pot d'échappement Durée: 2 heures Tout document personnel autorisé. On veut étudier les transferts autour du pot d'échappement

Plus en détail

THERMODYNAMIQUE-DIFFUSION

THERMODYNAMIQUE-DIFFUSION Spé y 3-4 Devoir n THERMODYNAMIQUE-DIFFUSION On étudie la compression ou la détente d un ga enfermé dans un récipient. Lorsque le bouchon se déplace, le volume V occupé par le ga varie. L atmosphère est

Plus en détail

THERMOFLUIDE II (TRANSMISSION DE CHALEUR) IMC 220 CONVECTION. Marcel Lacroix Université de Sherbrooke

THERMOFLUIDE II (TRANSMISSION DE CHALEUR) IMC 220 CONVECTION. Marcel Lacroix Université de Sherbrooke HERMOFLUIDE II (RANSMISSION DE CHALEUR IMC 220 CONVECION Marcel Lacroix Université de Sherbrooke 1 CONVECION 1. Concepts et définitions 2. Convection forcée 2.1 Écoulements externes 2.2 Écoulements internes

Plus en détail

Anémomètre à fil chaud

Anémomètre à fil chaud EPEUVE OPTIONNELLE de PHYSIQUE Anémomètre à fil chaud Un fil de platine de longueur l et de diamètre d est parcouru par un courant électrique qui lui fournit une puissance maintenue constante par un dispositif

Plus en détail

Mécanique des Fluides

Mécanique des Fluides Mécanique des Fluides Contenu 1. RAPPELS PRÉALABLES...2 1.1. Définition d un fluide :...2 1.2. Masse volumique...2 1.3. Densité...2 1.4. Débit massique et fluidique...3 1.5. Notion de pression...3 2. ÉQUATION

Plus en détail

Transferts de chaleur et de masse

Transferts de chaleur et de masse Objectifs Transferts de chaleur et de masse Objectifs Introduire les notions théoriques à la base de transferts thermiques et de masse Établir leurs liens aux comportements de systèmes thermiques Arriver

Plus en détail

LES PRINCIPES DE LA THERMIQUE

LES PRINCIPES DE LA THERMIQUE LES PRINCIPES DE LA THERMIQUE 1- Introduction : isolation d une maison Après avoir regardé la vidéo «bien isoler sa maison», répondre aux questions suivantes : Depuis 2011, qu impose la réglementation

Plus en détail

L énergie Maîtriser les déperditions énergétiques dans un bâtiment

L énergie Maîtriser les déperditions énergétiques dans un bâtiment L énergie Maîtriser les déperditions énergétiques dans un bâtiment Travaux Dirigés 02 Comment bien isoler une maison? Bien isoler sa maison avec Fred et Jamy Filière Scientifique - Option Sciences de l

Plus en détail

G.P. DNS07 Novembre 2012

G.P. DNS07 Novembre 2012 DNS Sujet Isolation thermique d'un tube vaporisateur...1 I.Transfert thermique dans un milieu homogène...1 II.Transferts thermiques pour un tube...2 A.Conduction ou diffusion...2 B.Conducto-convection...3

Plus en détail

L1 Santé Mécanique des fluides. Dynamique 5 ème cours

L1 Santé Mécanique des fluides. Dynamique 5 ème cours L1 Santé 2013-2014 Mécanique des fluides Dynamique 5 ème cours Fluide réel et viscosité 1 - Le phénomène 1.1 - Observations L'eau, l'huile, le miel coulent différemment : l'eau coule vite, mais avec des

Plus en détail

Analyse dimensionnelle et similitude. Plan du chapitre 5

Analyse dimensionnelle et similitude. Plan du chapitre 5 Chapitre 5 ( 4heures) Analyse dimensionnelle et similitude Plan du chapitre 5. Introduction et définitions. Analyse dimensionnelle des équations de bilan: - Forme adimensionnelle des équations de continuité

Plus en détail

Etude des fluides visqueux

Etude des fluides visqueux I Définitions préliminaires : 1. Ecoulement laminaire : Etude des fluides visqueux Définition : Un écoulement est laminaire lorsqu il est régulier (la vitesse de chaque particule de fluide reste quasiment

Plus en détail

CHAPITRE IV : DYNAMIQUE DES FLUIDES REELS INCOMPRESSIBLES. Généralité sur les fluides. Dynamique des fluides parfaits incompressibles.

CHAPITRE IV : DYNAMIQUE DES FLUIDES REELS INCOMPRESSIBLES. Généralité sur les fluides. Dynamique des fluides parfaits incompressibles. CHAPITRE IV : DYNAMIQUE DES FLUIDES REELS INCOMPRESSIBLES Pré-requis : Généralité sur les fluides. Dynamique des fluides parfaits incompressibles. Objectifs spécifiques : Au terme de ce chapitre l étudiant

Plus en détail

Mécanique des fluides

Mécanique des fluides Mécanique des fluides La statique des fluides : étude des fluides macroscopiquement au repos La dynamique des fluides : étude des fluides macroscopiquement en mouvement I. Les propriétés d'un fluide. Qu'est-ce

Plus en détail

Polytechnique Montréal Département des génies civil, géologique et des mines

Polytechnique Montréal Département des génies civil, géologique et des mines Polytechnique Montréal Département des génies civil, géologique et des mines CIV2310 MÉCANIQUE DES FLUIDES EXAMEN FINAL Hiver 2014 Date : 2 mai 2014 Heure : 13h30 à 16h00 (durée: 2h30) Pondération : 55%

Plus en détail

Phénomènes de transfert de chaleur et de masse. Prof. H.Hofmann LTP, IMX, EPFL. Matériaux 4 ième semestre

Phénomènes de transfert de chaleur et de masse. Prof. H.Hofmann LTP, IMX, EPFL. Matériaux 4 ième semestre Phénomènes de transfert de chaleur et de masse Prof. H.Hofmann LTP, IMX, EPFL Matériaux 4 ième semestre Prof. H. HOFMANN Laboratoire de Technologie des Poudres EPFL / IMX 2 PHENOMENES DE TRANSFERT I. TRANSFERT

Plus en détail

Hydraulique des terrains

Hydraulique des terrains Hydraulique des terrains Séance 5 : Comportement des liquides réels Guilhem MOLLON GEO3 2012-2013 Plan de la séance A. Notion de perte de charge 1. Mise en évidence 2. Modification du théorème de Bernoulli

Plus en détail

Etude du Transfert Thermique dans la Zone d Entrée d un Echangeur de Chaleur à Double Tubes Concentriques. F. Bencheikh et A.

Etude du Transfert Thermique dans la Zone d Entrée d un Echangeur de Chaleur à Double Tubes Concentriques. F. Bencheikh et A. Rev. Energ. Ren. : Chemss 17-3 Etude du Transfert Thermique dans la Zone d Entrée d un Echangeur de Chaleur à Double Tubes Concentriques Institut de Mécanique, Université de Blida, B.P. 7, Blida, Algérie

Plus en détail

-1- Version 8 mars 2005 Expérience no 9 VISCOSITE II MESURE DE LA VISCOSITE PAR ECOULEMENT CAPILLAIRE (VISCOSIMETRE D'OSTWALD)

-1- Version 8 mars 2005 Expérience no 9 VISCOSITE II MESURE DE LA VISCOSITE PAR ECOULEMENT CAPILLAIRE (VISCOSIMETRE D'OSTWALD) -1- Version 8 mars 2005 Expérience no 9 VISCOSITE II MESURE DE LA VISCOSITE PAR ECOULEMENT CAPILLAIRE (VISCOSIMETRE D'OSTWALD) A. THEORIE Définition du coefficient de viscosité η Un fluide (liquide ou

Plus en détail

Chap.2 Diffusion thermique

Chap.2 Diffusion thermique Chap.2 Diffusion thermique 1. Description de la diffusion thermique 1.1. Les trois types de transferts thermiques 1.2. Flux thermique (ou Puissance thermique) Vecteur densité de courant 1.3. Analogies

Plus en détail

Refroidissement par convection naturelle d'une plaque verticale soumise à flux de chauffage discontinu.

Refroidissement par convection naturelle d'une plaque verticale soumise à flux de chauffage discontinu. Refroidissement par convection naturelle d'une plaque verticale soumise à flux de chauffage discontinu. Saâd ZOUITENE 1,2,3*, Souad HARMAND 1,2, Laurent REMMERIE 4, Tewfik BENAZZOUZ 3, Felice CARDARELLI

Plus en détail

ρ.v.d Re ou Figure 24: Expérience de Reynolds

ρ.v.d Re ou Figure 24: Expérience de Reynolds 1/- Introduction : Un fluide réel, en mouvement, subit des pertes d'énergie dues aux frottements sur les parois de la canalisation (pertes de charges systématiques) ou sur les "accidents" de parcours (pertes

Plus en détail

V. Capteurs de débit. Généralités Débitmètre volumique Capteur de débit massif. Image et certains textes issus de

V. Capteurs de débit. Généralités Débitmètre volumique Capteur de débit massif. Image et certains textes issus de V. Capteurs de débit Généralités Débitmètre volumique Capteur de débit massif Image et certains textes issus de http://btscira.perso.sfr.fr/ Généralités Le débit Le débit est la quantité de fluide qui

Plus en détail

Lignes de courant. m = t. m en kg ; t en s ; Q m en kg/s. Il représente la masse de liquide écoulé pendant une unité de temps.

Lignes de courant. m = t. m en kg ; t en s ; Q m en kg/s. Il représente la masse de liquide écoulé pendant une unité de temps. I) Écoulement des fluides DYNAMIQUE DES FLUIDES 1) Lignes de courant Les molécules d un fluide en mouvement suivent des trajectoires appelées lignes de courant. Ces lignes de courant sont représentées

Plus en détail

DYNAMIQUE DES FLUIDES

DYNAMIQUE DES FLUIDES DYNAMIQUE DES FLUIDES I ECOULEMENT DES FLUIDES 1 Lignes de courant 2 Ecoulement permanent 3 Débit massique 4 Débit volumique 5 Conservation des débits 6 exemple a) Quelle doit être la section en 1 pour

Plus en détail

Etude numérique du transfert thermique en convection mixte pour un échangeur de chaleur air/solaire

Etude numérique du transfert thermique en convection mixte pour un échangeur de chaleur air/solaire Etude numérique du transfert thermique en convection mixte pour un échangeur de chaleur air/solaire Maxime PERIER-MUZET *, Muriel ALAPHILIPPE, Serge BLANCHER, Pascal STOUFFS Laboratoire de Thermique, Energétique

Plus en détail

Master 1 IMM mention Ingénierie Mécanique (M1) Dynamique des Fluides réels : Td1 - Rappel

Master 1 IMM mention Ingénierie Mécanique (M1) Dynamique des Fluides réels : Td1 - Rappel Université se Caen-Basse Normandie UFR des Sciences 2009-200 Master IMM mention Ingénierie Mécanique (M) ynamique des Fluides réels : Td - Rappel Équation intégrale de la conservation de quantité de mouvement,

Plus en détail

côté : Transferts avec un fluide au repos

côté : Transferts avec un fluide au repos 1.1 Modélisation de la chaleur au voisinage des solides. Le modèle de Newton En l absence de rayonnement thermique, tout au moins en considérant que les phénomènes radiatifs sont négligeables devant les

Plus en détail

Mesure du transfert de chaleur

Mesure du transfert de chaleur Cours de 3ème année ECHNIQUES DE MESURE Mesure du transfert de chaleur Par le Laboratoire de hermique appliquée et de urbomachines (L) Magnus JONSSON mars 2006 1 SOMMAIRE Le laboratoire L Problème du transfert

Plus en détail

MECANIQUE DES FLUIDES

MECANIQUE DES FLUIDES MECANIQUE DES FLUIDES Sommaire 1. GENERALITES... 1 1.1. DEFINITION... 1 1.2. LIQUIDES ET GAZ... 2 1.3. FORCES DE VOLUME ET FORCES DE SURFACE... 2 2. DYNAMIQUE DES FLUIDES INCOMPRESSIBLES (F1)... 2 2.1.

Plus en détail

V - Dynamique du manteau

V - Dynamique du manteau V - Dynamique du manteau 1) Flux de chaleur 2) Bilan thermique 3) Géotherme 4) Convection thermique C.Grigné - UE Terre Profonde 192 Convection thermique : Transfert de chaleur par transport de matière

Plus en détail

Dans cette zone appelée couche limite, la température de l'air ainsi que sa vitesse varient rapidement en fonction de la distance à la paroi.

Dans cette zone appelée couche limite, la température de l'air ainsi que sa vitesse varient rapidement en fonction de la distance à la paroi. 3 L'air en tant qu'isolant L'air immobile possède une conductivité thermique très faible (λ = 0.024 W/mK). Cette propriété est utilisée dans tous les matériaux isolants dont la fonction principale est

Plus en détail

Ecoulements multiphasiques

Ecoulements multiphasiques Ecoulements multiphasiques 1. Principes généraux et notions de base 2. Ecoulements gaz-liquide en conduite : approche globale 3. Interfaces : propriétés et évolutions 4. Particules, gouttes et bulles 5.

Plus en détail

Pourquoi le métal semble-t-il plus froid que le bois? ( CME4)

Pourquoi le métal semble-t-il plus froid que le bois? ( CME4) Équilibre thermique des matériaux Conduction thermique Capacité thermique massique d un matériau Quantité de chaleur La résistance thermique d un matériau Pourquoi le métal semble-t-il plus froid que le

Plus en détail

TABLE DES MATIERES. page RÉSUMÉ REMERCIEMENTS

TABLE DES MATIERES. page RÉSUMÉ REMERCIEMENTS RÉSUMÉ REMERCIEMENTS TABLE DES MATIERES LISTE DES TABLEAUX LISTE DES S LISTE DES APPENDICES NOMENCLATURE TABLE DES MATIERES INTRODUCTION 1 1. TRAVAUX ANTÉRIEURS 3 2. DESCRIPTION DU FOUR DE CUISSON D'ANODES

Plus en détail

a. Déterminer la résistance électrique et thermique du dispositif. de la tige à 15 cm de son extrémité froide. EXERCICE 2

a. Déterminer la résistance électrique et thermique du dispositif. de la tige à 15 cm de son extrémité froide. EXERCICE 2 1 EXERCICE 1 1. On considère une tige en aluminium de longueur = 50 cm, de section S = 2 cm 2 possédant une conductivité thermique λ = 239 W m -1 K -1 et une résistivité électrique de 2,65µ Ω. cm. Cette

Plus en détail

TECHNIQUE DU FROID ET DU CONDITIONNEMENT DE L AIR. Séance : Bilan thermique d une chambre froide Date :

TECHNIQUE DU FROID ET DU CONDITIONNEMENT DE L AIR. Séance : Bilan thermique d une chambre froide Date : TECHNIQUE DU FROID ET DU CONDITIONNEMENT DE L AIR Tâche T1.2 : Analyser les plans d une installation Compétence C1.1 : Collecter, identifier, lister, relever des données Thème : S4 : Approche scientifique

Plus en détail

Les dalles actives. ASTECH Genève. TABS (Thermally Activated Building System) Présenté par JM Billette (Tobler System)

Les dalles actives. ASTECH Genève. TABS (Thermally Activated Building System) Présenté par JM Billette (Tobler System) TABS (Thermally Activated Building System) ASTECH Genève Présenté par JM Billette (Tobler System) 1 Présentation! Introduction.! Conception et dimensionnement.! Mise en oeuvre.! Echanges thermiques - performances.!

Plus en détail

CHAPITRE II. Lois générales de l'hydrodynamique

CHAPITRE II. Lois générales de l'hydrodynamique CHAPITRE II Lois générales de l'hydrodynamique 1- Définition: L'hydrodynamique est l'étude des relations entre les forces d'origine moléculaire et les mouvements des liquides. a- Vitesse: Au cours de l'écoulement

Plus en détail

LES ECHANGEURS THERMIQUES

LES ECHANGEURS THERMIQUES LES ECHANGEURS THERMIQUES I Présentation de l étude. Les différents rôles des échangeurs Abaisser ou augmenter la température d un fluide Effectuer un changement d état ou plusieurs. Quelques exemples

Plus en détail

La diffusion thermique

La diffusion thermique La diffusion thermique. Épaisseur d un igloo Quelle doit être l épaisseur minimale des murs d un igloo semi sphérique, contenant deu habitants, si la température etérieure est de Te = 0 C? La conductivité

Plus en détail

Phénomènes de diffusion

Phénomènes de diffusion Phénomènes de diffusion Exercice 1 Temps de réponse d un thermomètre au mercure On souhaite mesurer la température d un liquide avec un thermomètre à mercure. La partie utile du thermomètre est un cylindre

Plus en détail

eme Année Travaux Publics Travaux Dirigés N 04. Exercice N 01

eme Année Travaux Publics Travaux Dirigés N 04. Exercice N 01 Département de Génie Civil Mécanique Des Fluides 2 eme Année Travaux Publics Travaux Dirigés N 04 Exercice N 01 On veut accélérer la circulation d un fluide parfait dans une conduite de telle sorte que

Plus en détail

Première 1er 2ème 3ème COMPORTEMENT THERMIQUE DES EXERCICES NIVEAU 1 1 / 7. Enseignement transversal LES TRANSFERTS THERMIQUES EXERCICES.

Première 1er 2ème 3ème COMPORTEMENT THERMIQUE DES EXERCICES NIVEAU 1 1 / 7. Enseignement transversal LES TRANSFERTS THERMIQUES EXERCICES. 1 / 7 NIVEAU 1 Exercice 1 Soit un vitrage simple d épaisseur 5 mm, de coefficient de conductibilité λ = 1,15 W/m C. La température de surface du vitrage intérieure est 22 C, la température de surface du

Plus en détail

THERMODYNAMIQUE-DIFFUSION THERMIQUE

THERMODYNAMIQUE-DIFFUSION THERMIQUE Spé ψ 01-015 Devoir n 3 THERMODYNAMIQUE-DIFFUSION THERMIQUE Ce sujet aborde quelques aspects du fonctionnement d un avion de ligne concernant la température et la pression dans la cabine. Les données numériques

Plus en détail

Module : Physico-chimie des matériaux

Module : Physico-chimie des matériaux Licence professionnelle Génie des Matériaux et Qualité (GMQ) Module : Physico-chimie des matériaux Introduction aux transferts thermiques Importance des transferts thermiques * Le transfert thermique intervient

Plus en détail

La thermodynamique traite de l énergie et de ses transformations, en particulier chaleur travail mécanique

La thermodynamique traite de l énergie et de ses transformations, en particulier chaleur travail mécanique 5. THERMODYNAMIQUE 5.1 Introduction La thermodynamique traite de l énergie et de ses transformations, en particulier chaleur travail mécanique Les principes thermodynamiques expriment des restrictions

Plus en détail

Ecoulements multiphasiques

Ecoulements multiphasiques Ecoulements multiphasiques 1. Principes généraux et notions de base 2. Ecoulements gaz-liquide en conduite : approche globale 3. Interfaces : propriétés et évolutions 4. Particules, gouttes et bulles 5.

Plus en détail

Fluides réels, écoulements permanents et pertes de charge

Fluides réels, écoulements permanents et pertes de charge Fluides réels, écoulements permanents et pertes de chare Viscosité d un fluide Obserations - Conclusions Formalisation Réimes d écoulement Pertes de chare réulières Notion de pertes de chare réulières

Plus en détail

Modélisation numérique des échanges thermiques dans des faisceaux de barres à faibles nombres de Reynolds.

Modélisation numérique des échanges thermiques dans des faisceaux de barres à faibles nombres de Reynolds. Modélisation numérique des échanges thermiques dans des faisceaux de barres à faibles nombres de Reynolds. Gabriel GAMRAT *, Michel FAVRE-MARINET, Stéphane LE PERSON Laboratoire des Ecoulements Géophysiques

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

TRANSFERT THERMIQUE. Compréhension et description des flux de chaleurs et des champs de température. Déplacement. Chaleur Sortante Q

TRANSFERT THERMIQUE. Compréhension et description des flux de chaleurs et des champs de température. Déplacement. Chaleur Sortante Q TRANSFERT THERMIQUE I) Préambule : Compréhension et description des flu de chaleurs et des champs de température. Déplacement ) Fondements : a) Principe de la thermique : conservation de l énergie aleur

Plus en détail

Table des matières. Introduction. 1 La convection. 1.1 Convection naturelle et convection forcée

Table des matières. Introduction. 1 La convection. 1.1 Convection naturelle et convection forcée Principes physiques des échanges de chaleur par convection avec et sans changement de phase liquide-vapeur. Applications au refroidissement des convertisseurs de l électronique de puissance. RÉMI SIESKIND

Plus en détail

Modélisation de l interaction convection naturelle - rayonnement surfacique dans une cheminée verticale obstruée et ventilée

Modélisation de l interaction convection naturelle - rayonnement surfacique dans une cheminée verticale obstruée et ventilée Modélisation de l interaction convection naturelle - rayonnement surfacique dans une cheminée verticale obstruée et ventilée Nadia DIHMANI, Samir AMRAQUI, Ahmed MEZRHAB * Faculté des Sciences, Département

Plus en détail

VIII ECOULEMENTS EN CONDUITES

VIII ECOULEMENTS EN CONDUITES Mécanique / Mathématiques VIII ECOUEMENTS EN CONDUITES objectif de ce chapitre est d expliciter les pertes de charge en fonction des propriétés du fluide en déplacement, des caractéristiques de l écoulement

Plus en détail

Chapitre 5.5 L écoulement des liquides avec viscosité

Chapitre 5.5 L écoulement des liquides avec viscosité Chapitre 5.5 L écoulement des liquides avec viscosité Théorème de la l écoulement horizontal des fluides Le théorème de l écoulement horizontal dans un système subissant une variation de pression s énonce

Plus en détail

8. Convection. On peut exprimer la quantité de chaleur transmise par convection entre une paroi solide et un fluide au moyen de l équation (1.

8. Convection. On peut exprimer la quantité de chaleur transmise par convection entre une paroi solide et un fluide au moyen de l équation (1. Phénomène de transert 8. Convection 8. Convection La convection est un mode de transport d énergie par l action combinée de la conduction, de l accumulation de l énergie et du mouvement du milieu. La convection

Plus en détail

ECOULEMENT DE FLUIDES VISQUEUX

ECOULEMENT DE FLUIDES VISQUEUX Fl5 ECOULEMENT DE FLUIDES VISQUEUX Nous étudierons dans cette expérience l écoulement, dans un tube, de fluides réels, en tenant compte du frottement interne qui existe dans ces fluides. Cette propriété

Plus en détail

Mécanique des Fluides EPFL/ENAC examen GC-BA 4 1

Mécanique des Fluides EPFL/ENAC examen GC-BA 4 1 Correction de l examen du 12 avril 2010 Professeur responsable : Christophe CEY Documentation autorisée : aucune documentation sauf formulaire A4 Matériel autorisé : tout matériel sauf appareil de transmission

Plus en détail

Transferts thermiques avec changement d état liquide-solide

Transferts thermiques avec changement d état liquide-solide Transferts thermiques avec changement d état liquide-solide Aspects fondamentau Thermodynamique Equilibre de phases Variance et règle des phases w C r 2 C nombre de constituants, r nombre de réactions

Plus en détail

Transferts d énergie thermique

Transferts d énergie thermique Transferts d énergie thermique Notions et contenus Transferts d énergie entre systèmes macroscopiques Notions de système et d énergie interne. Interprétation microscopique. Capacité thermique. Transferts

Plus en détail

Dimensionnement des installations de chauffage Partie 2

Dimensionnement des installations de chauffage Partie 2 Dimensionnement des installations de chauage Partie Jean-Marie SEYNHAEVE Pertes de charge Pompe - circulateur : puissance et rendement Dimensionnement d un réseau bi-tubes AMCO 363 - Dimensionnement chauage

Plus en détail

PC - Effet des forces de viscosité sur l écoulement d un fluide newtonien

PC - Effet des forces de viscosité sur l écoulement d un fluide newtonien PC - Effet des forces de viscosité sur l écoulement d un fluide newtonien Figure 1 Ecoulement d eau à la sortie d un robinet Figure 2 Un surfeur 1 Forces de viscosité 1.1 Contraintes tangentielles dans

Plus en détail

CHAPITRE III : DYNAMIQUE DES FLUIDES PARFAITS INCOMPRESSIBLES

CHAPITRE III : DYNAMIQUE DES FLUIDES PARFAITS INCOMPRESSIBLES CHAPITRE III : DYNAMIQUE DE FLUIDE PARFAIT INCOMPREIBLE Pré-requis : Généralités sur les fluides et l hydrostatique. Théorème de l énergie cinétique Objectifs spécifiques : A la fin de ce chapitre l étudiant

Plus en détail

0,06 L.min -1 = 60 ml.min -1 = 0, m 3.min -1 = m 3.min -1 = L.s -1 = 1 ml.s -1 = 10-6 m 3.s -1 = 10-6 USI

0,06 L.min -1 = 60 ml.min -1 = 0, m 3.min -1 = m 3.min -1 = L.s -1 = 1 ml.s -1 = 10-6 m 3.s -1 = 10-6 USI Exercice 1 On maintient un organe dans des conditions de survie artificielle grâce à un circuit de perfusion actionné par une pompe. Le tuyau reliant la pompe à l organe à une longueur totale de mètres

Plus en détail

Une équation fondamentale en mécanique des fluides : l équation de Navier - Stokes

Une équation fondamentale en mécanique des fluides : l équation de Navier - Stokes Une équation fondamentale en mécanique des fluides : l équation de Navier - Stokes Une équation fondamentale en mécanique des fluides : l équation de Navier - Stokes Les diverses couches d'un fluide en

Plus en détail

DS SCIENCES PHYSIQUES MATHSPÉ

DS SCIENCES PHYSIQUES MATHSPÉ DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 2 heures Sujet Thermodynamique appliquée au corps humain...2 I.Équation de diffusion thermique...2 II.Résistances thermiques...2 A.Résistance

Plus en détail

CONVECTION MIXTE DANS UNE CAVITE A PAROIS LATERALES MOBILES ET DONT UNE PARTIE DE LA PAROI INFERIEURE EST SOUMISE A UN FLUX DE CHALEUR FIXE

CONVECTION MIXTE DANS UNE CAVITE A PAROIS LATERALES MOBILES ET DONT UNE PARTIE DE LA PAROI INFERIEURE EST SOUMISE A UN FLUX DE CHALEUR FIXE Third International Conference on Energy, Materials, Applied Energetics and Pollution ICEMAEP2016, October 30-31, 2016, Constantine,Algeria CONVECTION MIXTE DANS UNE CAVITE A PAROIS LATERALES MOBILES ET

Plus en détail

Comprendre-cours 3 TS - programme Travail et énergie

Comprendre-cours 3 TS - programme Travail et énergie Comprendrecours 3 TS programme 2012 Introduction : Travail et énergie L énergétique est la partie de la mécanique qui étudie les travaux et les puissances mises en oeuvres dans les déplacements des solides.

Plus en détail

Hydraulique des terrains

Hydraulique des terrains Hydraulique des terrains Séance 6 : Calcul des pertes de charges Guilhem MOLLON GEO3 2012-2013 Plan de la séance A. Régime laminaire 1. Profil de vitesse 2. Calcul de débit 3. Pertes de charge B. Régime

Plus en détail

Chap.2 Dynamique des fluides visqueux Equations locales

Chap.2 Dynamique des fluides visqueux Equations locales Chap.2 Dynamique des fluides visqueux Equations locales 1. Préalable mathématique : laplaciens 1.1. Laplacien d un champ scalaire 1.2. Laplacien d un champ vectoriel 2. Forces exercées sur une particule

Plus en détail

RAPPORT D'ESSAI N LTH 01/10 CARACTERISTIQUES THERMOPHYSIQUES

RAPPORT D'ESSAI N LTH 01/10 CARACTERISTIQUES THERMOPHYSIQUES Laboratoire de Thermique et d Energétique des Bâtiments LATEB RAPPORT D'ESSAI N LTH 01/10 CARACTERISTIQUES THERMOPHYSIQUES DEMANDEUR : POLYCOQ TUNISIE s.a AFFAIRE N : 002/10 Fabricant / fournisseur : POLYCOQ

Plus en détail

Chapitre décembre 2015

Chapitre décembre 2015 Chapitre 4 Groupe scolaire La Sagesse Lycée qualifiante 21 décembre 2015 1 (2015-2016) 1ere Bac SM Sommaire 1 2 3 2 (2015-2016) 1ere Bac SM Sommaire 1 2 3 2 (2015-2016) 1ere Bac SM Sommaire 1 2 3 2 (2015-2016)

Plus en détail

Cours I. Concepts pour la dispersion de polluants et particules

Cours I. Concepts pour la dispersion de polluants et particules Cours I. Concepts pour la dispersion de polluants et particules Concepts de convection (ou advection) Concepts de diffusion moléculaire Concept de diffusion turbulente Equation du bilan de masse d un gaz

Plus en détail

Echangeur de chaleur

Echangeur de chaleur Echangeur de chaleur I. Technologie 1. Echangeur tubulaire simple a. Qu est-ce qu un échangeur de chaleur? Un échangeur de chaleur est un système qui permet de transférer un flux de chaleur d un fluide

Plus en détail

TD 15 : transferts thermiques

TD 15 : transferts thermiques TD 15 : transferts thermiques Exercice 1 : La sensation de chaud ou de froid Tout l'exercice est à une dimension : x et les transferts thermiques sont purement conductifs. On s'intéresse à deux cylindres

Plus en détail

Transferts thermiques Cours et 55 exercices corrigés. Yves Jannot & Christian Moyne

Transferts thermiques Cours et 55 exercices corrigés. Yves Jannot & Christian Moyne Yves Jannot & Christian Moyne Transferts thermiques Cours et 55 exercices corrigés Préambule Outre son intérêt évident que la transition énergétique actuelle ne démentira sûrement pas, la thermique a

Plus en détail

PLAN DE LECON DYNAMIQUE

PLAN DE LECON DYNAMIQUE PLAN DE LECON DYNAMIQUE Objectifs spécifiques : A la fin de la séance l étudiant doit être capable de : Déterminer le torseur Dynamique d un solide en mouvement par rapport à un repère. Appliquer le principe

Plus en détail

5 ÉCHANGEURS DE CHALEUR

5 ÉCHANGEURS DE CHALEUR 5 ÉCHANGEURS DE CHALEUR Les échangeurs de chaleurs sont des appareils permettant de transférer de la chaleur entre deux fluides à des températures différentes. Dans la plupart des cas, les deux fluides

Plus en détail

Mécanique des fluides en 20 fiches

Mécanique des fluides en 20 fiches Mécanique des fluides en 20 fiches Pascal Bigot Professeur en BTS au lycée Marie Curie (Nogent-sur-Oise) Richard Mauduit Professeur en BTS au lycée Robert Schuman (Le Havre) Eric Wenner Professeur en

Plus en détail

Rhéologie des fluides complexes Chapitre 1 Fluides newtoniens USTOMB

Rhéologie des fluides complexes Chapitre 1 Fluides newtoniens USTOMB Définition de la rhéologie La rhéologie vient du grec RHEO :Couler et LOGOS: étude. Donc la rhéologie: Etude du comportement des matériaux fluides soumis à une contrainte ou déformation. 1.1. Mouvement

Plus en détail

UE3B - ED : Mécanique des fluides

UE3B - ED : Mécanique des fluides UE3B - ED : Mécanique des fluides Formulaire : Equation de Bernoulli P + Loi de Poiseuille Q = Nombre de Reynolds R E 1 v + g z = Cte ΔP. 8r 4 Δl vr Exercice 1 Considérons un tube horizontal, de section

Plus en détail

Equation de continuité

Equation de continuité DYNAMIQUE DES FLUIDES 1/5 g =9,81 m/s² pour tous les exercices Equation de continuité Exercice 1 Lors de l étude d un canal d irrigation on mesure, dans une partie horizontale, ces différentes grandeurs

Plus en détail

PARTIEL DE THERMODYNAMIQUE

PARTIEL DE THERMODYNAMIQUE I.P.S.A. 5 / 9 rue Maurice Grandcoing 94200 Ivry Sur Seine Tél. : 01.56.20.60.71 Classe : Date de l'epreuve : 28 mars 2015 AERO.2- C, D et E Corrigé PARTIEL THERMODYNAMIQUE Professeur : BOUGUECHAL Durée

Plus en détail

1. THEORIE. 1.1 Viscosité d'un fluide

1. THEORIE. 1.1 Viscosité d'un fluide MVi 1 1. THEORIE 1.1 Viscosité d'un fluide La viscosité procède de l'expérience quotidienne: c'est elle qui ralentit l'écoulement du miel hors de la cuiller. Les substances gluantes sont normalement visqueuses

Plus en détail

DYNAMIQUE DES FLUIDES

DYNAMIQUE DES FLUIDES YNAMIQUE ES FLUIES I) éfinition : C est l étude du mouvement de masses fluides compte tenu des causes de ce mouvement : gravité, frottements, actions des parois : Rappels : - Fluides réels : fluides visqueux

Plus en détail

Formulaire de Mécanique appliquée

Formulaire de Mécanique appliquée Formulaire de Mécanique appliquée Ce formulaire est un document de travail. Il ne peut en aucun cas remplacer le cours de mécanique. Tout le référentiel de mécanique ne s y trouve pas. (mécanique graphique,

Plus en détail

Thermique (2) Module «Géothermie 3A/M2 2016/2017

Thermique (2) Module «Géothermie 3A/M2 2016/2017 Thermique (2) Module «Géothermie 3A/M2 2016/2017 Plan Quelques éléments de thermo mécanique La dilatation thermique Les contraintes thermiques Loi Darcy, conductivité hydraulique, perméabilité, viscosité

Plus en détail

MECANIQUE DES FLUIDES. Première évaluation : QCM 2 Coefficient 0,5 DUREE 30 MINUTES

MECANIQUE DES FLUIDES. Première évaluation : QCM 2 Coefficient 0,5 DUREE 30 MINUTES Année scolaire 2004-2005 Promotion de deuxième année MECANIQUE DES FLUIDES Première évaluation : QCM 2 Coefficient 0,5 DUREE 30 MINUTES Ce test est composé de 20 questions se reportant aux chapitres dynamyque

Plus en détail

Echanges convectifs locaux autour d un arbre aileté en rotation

Echanges convectifs locaux autour d un arbre aileté en rotation Echanges convectifs locaux autour d un arbre aileté en rotation Benjamin LATOUR 1,*, Pascale BOUVIER 1,, Souad HARMAND 1 1 Laboratoire de Mécanique et d Energétique Le Mont HOUY - 59313 Valenciennes cedex

Plus en détail