Examen d accès - 1 Octobre 2009

Dimension: px
Commencer à balayer dès la page:

Download "Examen d accès - 1 Octobre 2009"

Transcription

1 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont proposées pour chaque question (ou ensemble de questions). Il peut y avoir plusieurs bonnes réponses. Les réponses sont à inscrire dans la feuille jointe, en cochant pour chaque question la (ou les) case(s) correspondant à la (ou les) bonnes réponse(s). Toute réponse ambiguë sera considérée comme une absence de réponse. Toute réponse exacte entraîne une bonification de 1 point, toute erreur est pénalisée de 0,5 points. Q1) et sont deux événements d un espace probabilisé tels que : ( ) =1 6; ( ) =1 4 (probabilité conditionnelle de sachant que est réalisé). Combien vaut ( )? A) 2/3 B) 1/24 C) 1/12 D) 1/6 E) 1/5 Q2) et sont deux évènements indépendants tels que ( ) = 0 2 et ( ) = 0 3 alors ( ) = A) 0 06 B) 0 44 C) 0 5 D) 0 56 E) 0 24 Q3)Indiquer si les affirmations suivantes sont vraies ou fausses. 1. Si est une variable aléatoire strictement positive, (1 ) =1 ( ). R. B) 2. ( + )= ( )+ ( ) si et seulement si et sont indépendants. 1

2 Q4)Indiquer si les affirmations suivantes sont vraies ou fausses. 1Si ( )=0alors et sont indépendants. 2. Si et sont deux variables aléatoires positives, ( ) 0. Q5)Indiquer si les affirmations suivantes sont vraies ou fausses. 1. Soient et deux variables de densité et, alors la densité de + n est jamais Soit la densité d une variable aléatoire continue, alors est comprise entre 0 et 1. Q6)Indiquer si les affirmations suivantes sont vraies ou fausses. 1. ( ) = ( ) pour tout Si ( ) =0et ( ) =0alors =0. Q7)Indiquer si les affirmations suivantes sont vraies ou fausses. 1. Soit une variable aléatoire de densité alors 2 est la densité de = Soient une fonction de répartition sur R, alors 2 est également une fonction de répartition. 2

3 Q8)Indiquer si les affirmations suivantes sont vraies ou fausses. 1. Si suit une loi exponentielle de moyenne 2, alors = 2 suit une loi exponentielle de paramètre Si suit une loi de Poisson, alors ( ) = ( ). Q9)Indiquer si les affirmations suivantes sont vraies ou fausses. 1. Soient 1 et 2 deux variables indépendantes telles que 1 ( ; 1 ) et 2 ( ; 2 ),alors ( ; ). 2. Soient 1 et 2 deux variables indépendantes telles que 1 ( 1 ; ) et 2 ( 2 ; ), alors ( ; ). Q10)Un sac contient 5 jetons. On prélève au hasard et successivement et sans remise 3 jetons. Déterminer le nombre de résultats possibles (éventualités) de cette expérience aléatoire. A) 125 B) 20 C) 60 D) 50 E) 75 Q11)Un parking contient 5 places, dans lequel peuvent se garer 5 voitures. Déterminer le nombre de possibilités sachant qu aucune place ne doit être vide : A) 25 B) 60 C) 30 D) 120 E) 50 Q12)Soient et deux évenements tels que ( ) =0 2, ( ) =0 7 alors : A) ( ) =0 5 B) ( ) 0 5 C) ( ) 0 5 3

4 Q13)Soient et deux évenements tels que ( ) =0 2, ( ) =0 8, ( ) =1alors : A) et sont non seulement incompatibles, mais aussi contraires B) et sont incompatibles, mais ne sont pas contraires C) et sont ni contraires ni incompatibles. Q14)La loi de probabilité d une variable aléatoire est définie par : ( =2)=1 2 ; ( =3)= 1 3 ; ( = ) =1 6 où est un réel donné. Déterminer le nombre sachant que l espérance mathématique de cette variable aléatoire est nulle. A) 100 B) 5 C) 4 D) 12 E) 2 Q15)Soit et deux évenements indépendants alors : a) ( ) =0 B) ( ) = ( ) ( ) C) ( ) = ( ) D) ( ) = ( ) Q16)Dans une population de lycéens, 30 % font du sport hors du lycée. Parmi les sportifs, 15 % font du volley, 20 % de la natation, et 5 % font à la fois du volley et de la natation. Alors, le pourcentage de lycéens faisant : 1) du volley hors du lycée est : A) 4 5% B) 50% C) 15% 2) aucun sport hors du lycée est : D) 70% E) 65% 4

5 Q17)(suite) 3) un sport mais ni volley, ni natation est : A) 65% B) 21% C) 19 5% 4) du volley, mais pas de natation est : D) 3% E) 10% Q18)On s intéresse à la durée de vie, exprimée en années, d un appareil ménager avant la première panne. On peut modéliser cette situation par une loi de probabilité de durée de vie sans vieillissement, définie sur l intervalle [0 + [. Ainsi, la probabilité d un intervalle [0 [, notée ([0 [), est la probabilité que l appareil ménager tombe en panne avant l instant. Cette loi est telle que ([0 [) = R 0 où est un nombre réel positif représentant le nombre d années (loi exponentielle de paramètre avec 0). 1) Pour 0, la valeur exacte de ([ + [) est : A) 1 B) 2) La valeur de pour laquelle on a ([0 [) = ([ + [) est : C) ln 2 D) ln 2 E) 2 Q19)(suite) 3) Sachant que cet appareil n a connu aucune panne au cours des deux premières années après sa mise en service, la probabilité qu il ne connaisse aucune panne l année suivante est : A) ([1 + [) B) ([3 + [) C) ([2 3[) D) ([3 + [) ([0 3[) E) ([2 + [) ([0 2[) Q20) et sont deux évènements. ( ) = A) ( ) ( ) B) ( ) ( ) C) ( ) ( ) D) ( ) ( ) E) ( ) ( ) 5

6 Q21)Une urne contient 5 boules noires et 3 boules blanches. On tire successivement et sans remises 2 boules de l urne. La probabilité de l événement : «la 2ième boule tirée est noire sachant que la première l est aussi» est égale à.... A) 5 4 B) C) 5 14 D) 5 7 E) 4 7 Q22)Lors d une course équestre comportant 20 partants, la probabilité de gagner le tiercé dans le désordre est combien de fois supérieure à la probabilité de gagner le tiercé dans l ordre? A) 10 fois B) 6 fois C) 5 fois D) 3 fois E) 2 fois Q23)Dans un tiroir il y a 3 paires de chaussettes de couleurs différentes, on tire au hasard 2 chaussettes ; la probabilité qu elles appartiennent à la même paire est égale à... A) 1 3 B) 1 5 C) 1 6 D) 1 2 E) 1 4 Q24)Les questions suivantes portent sur la distribution de probabilité ci-jointe, - ( =0 =0)= ( =0; =1)=0 2 - ( =1 =0)= ( =1 =1)= ( )= ( =0)=

7 Q25)On lance trois fois de suite une pièce de monnaie. Sur chaque lancer on regarde si on obtient pile ou face, exemple de résultat possible pile, pile, face noté PPF. Déterminer le nombre de résultats possibles. A) 8 B) 6 C) 9 Q26)(suite) On appelle la variable aléatoire égale au nombre de fois ou pile apparaît sur ces trois. Déterminer la loi de probabilité de : ( =0)= A) 0 B) 1 8 C) 1 4 D) 3 8 E) 1 2 Q27)(suite) ( =1)= A) 0 B) 1 8 C) 1 4 D) 3 8 E) 1 2 Q28)(suite) ( =2)= A) 0 B) 1 8 C) 1 4 D) 3 8 E) 1 2 7

8 Q29)(suite) ( =3)= A) 0 B) 1 8 C) 1 4 D) 3 8 E) 1 2 Q30)(suite) Déterminer l espérance mathématique de A) 3 4 B) 3 2 C) 1 D) 9 8 E) 1 2 Q31)(suite) Déterminer la variance mathématique de A) 3 4 B) 3 2 C) 1 D) 2 E) 3 Q32)Un élève répond au hasard aux 10 questions d un QCM pour lequel 4 choix sont proposés pour chaque question mais un seul des choix est vrai (1 point si la réponse est juste, 0 5 si la réponse est fausse). La probabilité qu il obtienne la moyenne est environ égale à... A) 0,003 B) 0,058 C) 0,078 D) 0,0035 Q33)Il existe une seule et unique représentation graphique pour chaque sorte d étude statistique. C) Cela dépend du type de caractère D) Cela dépend de la taille de l échantillon 8

9 Q34)Un histogramme d une variable quantitative... A) n a pas d abscisse B) n a ni abscisse ni ordonnée C) n a pas d ordonnée D) est construit de telle manière à ce que les effectifs soient proportionnels à l aire de leur "rectangle" respectif. E) est construit de telle manière à ce que les effectifs soient proportionnels à la hauteur de leur "rectangle" respectif. Q35)L abscisse du point d intersection des polygones des fréquences cumulées croissantes et décroissantes correspond à... A) La moyenne B) La classe modale C) La médiane D) L effectif polygonale E) Aucune des réponses précédentes est juste. Q36)Parmi les mesures suivantes, lesquelles ne sont pas des mesures de dispersion? A) l écart interquartile B) l écart type C) le mode D) la moyenne élaguée Q37)Une fraction de la variance totale expliquée par l hétérogénéïté des moyennes entre souspopulations nulle indique que : A) toutes les sous-populations ont la même moyenne B) toutes les sous-populations ont le même écart-type C) toutes les sous-populations ont une variance nulle D) toutes les sous-populations ont la même variance E) toutes les sous-populations ont des moyennes différentes 9

10 On considère le tableau suivant Groupe A Groupe B Groupe C Moyenne des tailles Ecart-types Effectif TAB1 Q38)La moyenne générale des tailles de tous les individus répartis en trois groupes ci-dessous est égale à : A) cm B) cm C) cm D) cm E) cm Q39)(suite) La variance intra-sous-populations de la série des tailles des individus répartis en 3 groupes ci-dessous est égale à (TAB 1) : A) B) C) D) E) Q40)(suite) La variance inter-sous-populations de la série des tailles des individus répartis en 3 groupes ci-dessous est égale à (TAB 1) : A) B) C) D) E)

11 Soit la fonction définie par : pour tout R\{ 1 2} ( ) = +1 On note la courbe représentative de dans un repère orthonormé Q41) lim ( ) =+ ( ) lim 0 0 =1 Q42) 1. admet la droite d équation =1 2 pour asymptote. 2. admet la droite d équation =1pour asymptote. Q43)Soit ( ) la suite telle que, pour tout entier naturel, un =. A) Pour tout entier naturel : B) Pour tout entier naturel : C) Pour tout entier naturel : D) Pour tout entier naturel : = = =( +1) = ( +1) 2 11

12 On considère l intégrale = Z Q 44) (suite) =[ln(1+ )] 1 0 µ +1 1 =ln 2 Q 45) (suite) 1. pour tout N +1 + = 1 ( 1) 2. Pour tout N +1 Soit la fonction définie sur R par ( ) =( ) 1. On admettra que et Q46) A) lim ( ) =+ B) lim ( ) = 1 C) lim ( ) =0 D) lim ( ) = E) lim ( ) =1 12

13 Q47)(suite) A) 0 ( ) =(2 +1) B) 0 ( ) = (2 +1) C) 0 ( ) =( 2 ) D) 0 ( ) =( ) E) 0 ( ) =(2 +1) 1 Q48)(suite) A) est décroissante sur R B) est croissante sur ] ; 0 5] et décroissante sur [ 0 5; + [ C) est croissante sur ] ; 2] et sur [ 1; + [ et décroissante sur [ 2; 1] D) est décroissante sur ] ;0] et sur [1; + [ et croissante sur [0; 1] Q49)(suite) A) L équation ( ) =0n admet aucune solution B) L équation ( ) =0admet 1 solution C) L équation ( ) =0admet 2 solutions D) L équation ( ) =0admetplusde3solutions Q50) A) est négative sur l intervalle [2; + [ B) est positive sur l intervalle [0; 2] C) est négative sur l intervalle [0; + [ D) est positive sur l intervalle ] ;1] 13

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Exercices : Probabilités

Exercices : Probabilités Exercices : Probabilités Partie : Probabilités Exercice Dans un univers, on donne deux événements et incompatibles tels que =0, et =0,7. Calculer,, et. Exercice Un dé (à faces) est truqué de la façon suivante

Plus en détail

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3]. 1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Exercices sur les lois de probabilités continues

Exercices sur les lois de probabilités continues Terminale S Exercices sur les lois de probabilités continues Exercice n 1 : X est la variable aléatoire de la loi continue et uniforme sur [0 ; 1]. Donner la probabilité des événements suivants : a. b.

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Commun à tous les candidats

Commun à tous les candidats BACCALAURÉAT GÉNÉRAL SESSION 213 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

Nouveaux programmes de terminale Probabilités et statistiques

Nouveaux programmes de terminale Probabilités et statistiques Nouveaux programmes de terminale Probabilités et statistiques I. Un guide pour l'année II. La loi uniforme : une introduction III. La loi exponentielle IV. De la loi binomiale à la loi normale V. Échantillonnage

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité)

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité) BACCALAURÉAT BLANC DE MATHÉMATIQUES Terminales ES (Spécialité) Vendredi 7 février 0 8h - h coefficient : 7 Les calculatrices sont autorisées Le sujet est composé de exercices indépendants. Le candidat

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Baccalauréat ES Polynésie 7 juin 2013

Baccalauréat ES Polynésie 7 juin 2013 Baccalauréat ES Polnésie 7 juin 2013 EXERCICE 1 Cet exercice est un questionnaire à choix multiples. Pour chaque question, une seule des quatre réponses proposées est correcte. Une réponse juste rapporte

Plus en détail

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Les trois parties A, B et C sont indépendantes Une fabrique de desserts glacés

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Baccalauréat ES Amérique du Nord 4 juin 2008

Baccalauréat ES Amérique du Nord 4 juin 2008 Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation

Plus en détail

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités Chapitre II : Espaces probabilisés 1 Notions d événements 1.1 Expérience

Plus en détail

EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes)

EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes) EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes) Les corrigés sont en seconde partie de ce fichier (pages 4 à 8). Exercice 1: A la sortie d un hypermarché, on

Plus en détail

2010 My Maths Space Page 1/6

2010 My Maths Space Page 1/6 A. Des statistiques aux probabilités 1. Statistiques descriptives, analyse de données. Vocabulaire des statistiques : Population : c'est l'ensemble étudié. Individu : c'est un élément de la population.

Plus en détail

Probabilités Loi exponentielle Exercices corrigés

Probabilités Loi exponentielle Exercices corrigés Probabilités Loi exponentielle Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : densité de probabilité Exercice 2 : loi exponentielle de paramètre

Plus en détail

Lycée Cassini BTS CGO 2014-2015. Test de début d année

Lycée Cassini BTS CGO 2014-2015. Test de début d année Lycée assini BTS GO 4-5 Exercice Test de début d année Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes. On a mesuré, en continu pendant quatre heures, la concentration

Plus en détail

STATISTIQUES À UNE VARIABLE

STATISTIQUES À UNE VARIABLE STATISTIQUES À UNE VARIABLE Table des matières I Méthodes de représentation 2 I.1 Vocabulaire.............................................. 2 I.2 Tableaux...............................................

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Baccalauréat STI Génie civil Métropole 16 septembre 2010

Baccalauréat STI Génie civil Métropole 16 septembre 2010 Durée : 4 heures Baccalauréat STI Génie civil Métropole 16 septembre 010 L utilisation d une calculatrice est autorisée pour cette épreuve. Le candidat doit traiter les deux exercices et le problème. EXERCICE

Plus en détail

BACCALAURÉAT PROFESSIONNEL SUJET

BACCALAURÉAT PROFESSIONNEL SUJET SESSION 2013 Antilles - Guyane - Polynésie BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)

Plus en détail

Feuille d exercices 1

Feuille d exercices 1 Université Paris 7 - Denis Diderot L2 - Probabilités PS4 Année 2014-2015 Feuille d exercices 1 Exercice 1 Combien y a-t-il de paires d entiers non consécutifs compris entre 1 et n (n 1)? Exercice 2 1.

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord EXERCICE 1 : 5 points On se place dans l espace muni d un repère orthonormé. On considère les points,, et. 1. Démontrer que les points,

Plus en détail

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J.

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J. Année 2013-2014 UNIVERSIÉ DE CERGY LICENCE d ÉCONOMIE et FINANCE LICENCE de GESION Seconde année - Semestre 3 PROBABILIÉS Cours de M. J. Stéphan ravaux Dirigés de Mme M. Barrié, M. J-M. Chauvet et M. J.

Plus en détail

Baccalauréat S Asie 18 juin 2013

Baccalauréat S Asie 18 juin 2013 Baccalauréat S Asie 18 juin 2013 Dans l ensemble du sujet, et pour chaque question, toute trace de recherche même incomplète, ou d initiative même non fructueuse, sera prise en compte dans l évaluation

Plus en détail

Baccalauréat SMTG Pondichéry 8 avril 2014 Sciences et technologies du management et de la gestion correction

Baccalauréat SMTG Pondichéry 8 avril 2014 Sciences et technologies du management et de la gestion correction Baccalauréat SMTG Pondichéry 8 avril 0 Sciences et technologies du management et de la gestion correction EXERCICE points Les deux parties de cet exercice peuvent être traitées de manière indépendante.

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Représentation d une distribution

Représentation d une distribution 5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS ONDITIONNELLES Exercice 01 On considère une roue partagée en 15 secteurs angulaires numérotés de 1 à 15. es secteurs sont de différentes couleurs. On fait tourner la roue qui s'arrête sur

Plus en détail

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Calculatrice autorisée conformément à la circulaire n o 99-186 du 16 novembre 1999. Le candidat doit traiter les quatre exercices. Il

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire STATISTIQUES I. Un peu de vocabulaire Toute étude statistique s'appuie sur des données. Dans le cas où ces données sont numériques, on distingue les données discrètes (qui prennent un nombre fini de valeurs

Plus en détail

Probabilité mathématique et distributions théoriques

Probabilité mathématique et distributions théoriques Probabilité mathématique et distributions théoriques 3 3.1 Notion de probabilité 3.1.1 classique de la probabilité s Une expérience ou une épreuve est dite aléatoire lorsqu on ne peut en prévoir exactement

Plus en détail

Terminale ES BAC blanc N 1 ( janvier 2014)

Terminale ES BAC blanc N 1 ( janvier 2014) Terminale ES BAC blanc N 1 ( janvier 2014) Epreuve de mathématiques N anonymat :... Durée : 3 heures Calculatrice autorisée Exercice 1 ( pour tous les candidats ) Cet exercice est un QCM Une seule bonne

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Épreuve de mathématiques Terminale ES 200 minutes

Épreuve de mathématiques Terminale ES 200 minutes Examen 2 Épreuve de mathématiques Terminale ES 200 minutes L usage de la calculatrice programmable est autorisé. La bonne présentation de la copie est de rigueur. Cet examen comporte 7 pages et 5 exercices.

Plus en détail

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Exercice 1 : 4 points Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte 1 point.

Plus en détail

Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne :

Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne : Chapitre 6 : Statistiques I Premières définitions - Etablir une statistique, c est relever pour tous les individus d une population les valeurs d une grandeur X, appelée caractère ou variable statistique.

Plus en détail

Baccalauréat ES/L Métropole 12 septembre 2014 Corrigé

Baccalauréat ES/L Métropole 12 septembre 2014 Corrigé Baccalauréat ES/L Métropole 12 septembre 2014 orrigé A. P. M. E. P. Exercice 1 6 points ommun à tous les candidats Avant de réaliser une opération marketing en début de saison, un revendeur de piscines

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Terminale S - ACP Ex1 : Partie A - Restitution organisée des connaissances Partie B : 1. a. 1. b. 1. c. 2. a. 2. b. Ex2 :

Terminale S - ACP Ex1 : Partie A - Restitution organisée des connaissances Partie B : 1. a. 1. b. 1. c. 2. a. 2. b. Ex2 : Terminale S - ACP Ex1 : Antilles Septembre 2006 Partie A - Restitution organisée des connaissances On suppose connu le résultat suivant : Si est une variable aléatoire qui suit une loi exponentielle de

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Exercice 1 : 4 points et exercice est un questionnaire à choix multiples. Chaque question ci-après comporte quatre réponses possibles.

Plus en détail

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive U.P.S. I.U.T. A, Département d Informatique Année 2008-2009 Probabilités et Statistiques Emmanuel PAUL Chapitre 1 : Statistique descriptive 1 Objectifs des statistiques. Il s agit d étudier un ou plusieurs

Plus en détail

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde.

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde. Simuler des expériences aléatoires avec une calculatrice Niveau Seconde. Situation étudiée Différentes selon les séances : Séance 1 : Jeu de pile ou face, tirages de boule dans une urne avec des proportions

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12 TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles

Plus en détail

Correction Baccalauréat STMG Antilles Guyane 18 juin 2015

Correction Baccalauréat STMG Antilles Guyane 18 juin 2015 Durée : 3 heures Correction Baccalauréat STMG Antilles Guyane 18 juin 2015 EXECICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Le candidat recopiera sur sa copie le numéro de

Plus en détail

Variables aléatoires continues

Variables aléatoires continues IUT Aix-en-Provence Année 204-205 DUT Informatique TD Probabilités feuille n 6 Variables aléatoires continues Exercice (La station-service) Dans une station-service, la demande hebdomadaire en essence,

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

BAC BLANC DE MATHÉMATIQUES TERMINALES ES et L CORRECTION SUCCINCTE. Coefficients 5, 7 ou 4. Année scolaire 2013-2014

BAC BLANC DE MATHÉMATIQUES TERMINALES ES et L CORRECTION SUCCINCTE. Coefficients 5, 7 ou 4. Année scolaire 2013-2014 BA BLAN DE MATHÉMATIQUES TERMINALES ES et L ORRETION SUINTE oefficients, ou Année scolaire - Durée heures Page sur 8 pages Année EXERIE. ommun à tous les candidats sur points Un club de remise en forme

Plus en détail

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES STATISTIQUES A UNE VARIALE EXERCICES CORRIGES Exercice n Les élèves d une classe ont obtenu les notes suivantes lors d un devoir : Note 4 5 8 0 4 5 8 0 Effectif 4 7 6 4 ) Déterminer l étendue et le mode

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de Terminale ES 2 Table des matières 1 Équations de droites. Second degré 7 1.1 Équation de droite.................................. 7 1.2 Polynôme du second degré..............................

Plus en détail

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée, conformément

Plus en détail

COURS DE MATHEMATIQUES TERMINALE STG

COURS DE MATHEMATIQUES TERMINALE STG COURS DE MATHEMATIQUES TERMINALE STG Chapitre 1. TAUX D EVOLUTION... 5 1. TAUX D EVOLUTION ET COEFFICIENTS MULTIPLICATEURS... 5 a. Taux d évolution... 5 b. Coefficient multiplicateur... 5 c. Calcul d une

Plus en détail

Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice)

Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice) Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice) Exercice 1 : Activité mentale Temps estimé : 4 min Dicter chaque calcul deux fois, ou l écrire au tableau et l effacer après 10 secondes.

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés

Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Classe : TES1 Le 12/05/2003 MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Durée : 3h Exercice 1: (5 points) Le tableau suivant donne l évolution du prix d un paquet de café

Plus en détail

BACCALAURÉAT PROFESSIONNEL SUJET

BACCALAURÉAT PROFESSIONNEL SUJET SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)

Plus en détail

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples 36 Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples (Ω, B, P est un espace probabilisé. 36.1 Définition et propriétés des probabilités conditionnelles Définition 36.1

Plus en détail

Baccalauréat STG Pondichéry 17 avril 2015 Sciences et technologies du management et de la gestion

Baccalauréat STG Pondichéry 17 avril 2015 Sciences et technologies du management et de la gestion Baccalauréat ST Pondichéry 17 avril 015 Sciences et technologies du management et de la gestion Correction EXERCICE 1 6 points Le tableau ci-dessous, extrait d une feuille de calcul, donne le revenu disponible

Plus en détail

Seconde DS de Mathématiques 29 mars 2010 1 H

Seconde DS de Mathématiques 29 mars 2010 1 H Seconde DS de Mathématiques 29 mars 2010 1 H NOM : A traiter directement sur l énoncé EXERCICE I ( 4 poiuts ) On lance deux dés ( bien équilibrés et à 6 faces numérotées de 1 à 6) et on fait le produit

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

Mois J F M A M J J A S O N D Masse (en kg) 40 25 20 15 24 30 32 28 36 24 35 51

Mois J F M A M J J A S O N D Masse (en kg) 40 25 20 15 24 30 32 28 36 24 35 51 Statistiques e Exercice n : Lors d un stage de basket, on a mesuré les adolescents. Les tailles sont données en cm. On obtient la série suivante : 65 ; 75 ; 87 ; 65 ; 70 ; 8 ; 74 ; 84 ; 7 ; 66 ; 78 ; 77

Plus en détail

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES STATISTIQUES I. Séries statistiques simples... 1 A. Définitions... 1 1. Population... 1 2. Caractère statistique... 1 B. Séries classées / représentations graphiques.... 2 1. Séries classées... 2 2. Représentations

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S Lycée Municipal d Adultes de la ville de Paris Mardi avril 014 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 4 HEURES Les calculatrices sont AUTRISÉES obligatoire Coefficient : 7 Le

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

I. Cas de l équiprobabilité

I. Cas de l équiprobabilité I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006 ESSEC M B A CONCOURS D ADMISSION Option économique MATHEMATIQUES III Année 2006 La présentation, la lisibilité, l orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront

Plus en détail

Statistiques: rappels et compléments

Statistiques: rappels et compléments Statistiques: rappels et compléments I) Vocabulaire élémentaire Population: Ensemble étudié. Individus: Éléments de la population. Caractère étudié ou variable statistique: Propriété étudiée dans la population.

Plus en détail

1ES Février 2013 Corrigé

1ES Février 2013 Corrigé 1ES Février 213 Corrigé Exercice 1 Le tableau ci-dessous renseigne sur les besoins en eau dans le monde : Population mondiale (Milliards d habitants) Volume moyen par habitant ( ) 195 2,5 4 1 197 3,6 5

Plus en détail

CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE

CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE ÉCOLE NATIONALE DE L AVIATION CIVILE ANNÉE 2006 CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE ÉPREUVE DE MATHÉMATIQUES Durée : 2 Heures Coefficient : 1 Ce sujet comporte (dans l énoncé d origine, pas

Plus en détail

Devoir Commun : 3 heures -27.01.10- Terminales ES - Lycée Newton - Y. Angeli et L. Arab

Devoir Commun : 3 heures -27.01.10- Terminales ES - Lycée Newton - Y. Angeli et L. Arab Exercice Devoir Commun : 3 heures -7..- Terminales ES - Lycée Newton - Y. Angeli et L. Arab Soient f : R { } R, x x3 + x + x + (x + ), et C la courbe de f dans un repère orthonormé d unité, 5cm.. Limites.

Plus en détail

Université Jinan Faculté de Gestion Tripoli - Liban. Statistiques. Examen Préparatoire. Version 1

Université Jinan Faculté de Gestion Tripoli - Liban. Statistiques. Examen Préparatoire. Version 1 Université Jinan Faculté de Gestion Tripoli - Liban Statistiques Examen Préparatoire Version 1 2011-2010 Statistiques Université de Jinan Faculté de Gestion Table des matières 1 Analyse statistique d'une

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Baccalauréat STMG Nouvelle-Calédonie 14 novembre 2014 Correction

Baccalauréat STMG Nouvelle-Calédonie 14 novembre 2014 Correction Baccalauréat STMG Nouvelle-alédonie 14 novembre 014 orrection EXERIE 1 7 points Dans cet exercice, les parties A, B et sont indépendantes. Le tableau suivant donne le prix moyen d un paquet de cigarettes

Plus en détail

Les statistiques descriptives et les intervalles de confiance

Les statistiques descriptives et les intervalles de confiance Les statistiques et les intervalles de Yohann.Foucher@univ-nantes.fr Equipe d Accueil 4275 "Biostatistique, recherche clinique et mesures subjectives en santé", Université de Nantes Master 2 - Cours #2

Plus en détail

Baccalauréat ES Amérique du Nord 30 mai 2013

Baccalauréat ES Amérique du Nord 30 mai 2013 Baccalauréat ES Amérique du Nord 30 mai 03 EXERCICE 4 points Cet exercice est un questionnaire à choix multiples. Chaque question ci-après comporte quatre réponses possibles. Pour chacune de ces questions,

Plus en détail

TUTORAT UE 4 2014-2015 Biostatistiques Séance n 3 Semaine du 06/10/2014

TUTORAT UE 4 2014-2015 Biostatistiques Séance n 3 Semaine du 06/10/2014 TUTORAT UE 4 2014-2015 Biostatistiques Séance n 3 Semaine du 06/10/2014 Séance d entrainement M. Dujols M. Sabatier Séance préparée par les TS de l ATM² QCM n 1 : Une population comporte 94750 individus

Plus en détail

Probabilités, cours pour la classe de Terminale STG

Probabilités, cours pour la classe de Terminale STG Probabilités, cours pour la classe de Terminale STG F.Gaudon 16 février 2008 Table des matières 1 Probabilités (rappels) 2 2 Événements 3 3 Calculs de probabilités 4 4 Probabilités conditionnelles 5 4.1

Plus en détail

Corrigé, bac S, mathématiques

Corrigé, bac S, mathématiques Corrigé, bac S, mathématiques jeudi juin 0 Eercice 4 points Le plan est muni d un repère orthonormé (O; ı ; j) On considère une fonction f dérivable sur l intervalle [ 3; ] On dispose des informations

Plus en détail

Baccalauréat CGRH Antilles Guyane 13 septembre 2013 Correction

Baccalauréat CGRH Antilles Guyane 13 septembre 2013 Correction Durée : 2 heures Baccalauréat CRH Antilles uyane 3 septembre 203 Correction EXERCICE 7 points Un concessionnaire automobile s est spécialisé dans la vente de deux types de véhicules uniquement : les coupés

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Baccalauréat SMS 2008 L intégrale de juin à septembre 2008

Baccalauréat SMS 2008 L intégrale de juin à septembre 2008 Baccalauréat SMS 2008 L intégrale de juin à septembre 2008 Métropole juin 2008..................................... 3 La Réunion 18 juin 2008................................. 6 Polynésie juin 2008......................................

Plus en détail

Exercice 1 Métropole juin 2014 5 points

Exercice 1 Métropole juin 2014 5 points Le sujet comporte 6 pages. Seule l annexe est à rendre avec la copie. BAC BLANC MATHÉMATIQUES TERMINALE STMG Durée de l épreuve : 3 heures Les calculs doivent être détaillés. Les calculatrices sont autorisées,

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail