Terminale ES Exercices sur les fonctions exponentielles Fiche 1 - Corrigés

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Terminale ES Exercices sur les fonctions exponentielles Fiche 1 - Corrigés"

Transcription

1 Trminal ES Exrcics sur ls fonctions xponntills Fich - Corrigés Exrcic : x+ x+ x = x+ ( x+)+ x = x+ x +x = x+ Exrcic : ) Résolvons l'inéuation x+ < x+. On sait u >, donc la fonction xponntill d bas st strictmnt croissant sur R. Donc x+ t x+ sont rangés dans l mêm ordr u x+ t x+. Ainsi, x+ < x+ x+< x+ x< x<. Or =0,. Donc S=] ;0,[, répons a) ) f st défini sur R par f (x)= x+. f (x) st donc d la form u( x), où u st un fonction défini t dérivabl sur R. Pour tout x R, u(x)= x+, donc u '(x)=. La dérivé f ' d f st donc défini sur R par f '(x)=u'(x) u(x), soit f '(x)= x+ ou ncor f '(x)= x. Répons b) Exrcic : ) Soit x un rél ulconu t un rél strictmnt positif. x x x ( x) x. On sait déjà u la répons b) convint. n'st pas égal à x pour tout x rél, puisu contrairmnt à x. st un constant n dépndant pas d x, Mais ( x ) x pour tout x rél. Donc la répons c) st corrct aussi. Ls bonns réponss sont ls réponss b) t c). ) Si f st la fonction défini sur R par f (x)= x + x, sa fonction dérivé f ' st défini par : a) f '(x)=( x+) x + x ( x+) x b) f '(x)= c) f '(x)= x+ x f st la fonction défini sur R par f (x)= x + x. f (x) st d la form u( x), où u st la fonction polynôm défini sur R par u(x)= x + x. u st dérivabl sur R t sa dérivé u' st défini sur R par u '(x)= x+. Donc f st dérivabl sur R t f '(x)=u'(x) u(x), soit f '(x)=( x+) x + x. On sait déjà u la répons a) convint. Tstons la répons b) : Pour tout x R, La répons b) convint aussi. ( x+) x =( x+) x x x+) x x=( +x = f '(x). La répons c) n convint pas car la dérivé d u n'st pas u ' mais u' u. Ls réponss corrcts sont ls réponss a) t b). TES Prmièr fich d'xrcics sur ls fonctions xponntills. - Corrigés - /7

2 Exrcic : a) ( ) = = b) 0,7 0,7=0,7 0,7 =0,7 + =0,7 0 = c) = 0 = d) ( +) =(+) = = Exrcic : >0. a) Exrcic : a) ) =( ) = ( = Donc = = b) (( ) ) =( ) 8 c) (( ) ) =( ) b) 8 =( ) = = = t =(8 ) =( ) =( ) = = =. Donc 8 = c) 7 =( ) = =, donc 7 =. d) = ( ) = t =( ) = ( ) =, donc ) =( ) = ( f) 7 =( ) = =. =. ) = = = 8. Donc = 8. 9 t ( ) =( 9 ) 9 9 =, donc 7 =( ) 9. Exrcic 7 : >0. A=( = ( 0, ) = 0, A0,. Règls utilisés :, ( a ) b ab t a =. a Autr possibilité : A=( 0,) B=( ) =( ) ( ) =( 0, ) 0, ( ) A 0, B ou B=. C= D= =( ) C D ou C=. ou D= E=( ) E ou E= F (( ) ) G= ( ) H= ( ) + + F =( ) =( ) =( 0 ) = ( ) = G= (car ( p) a a p a soit a p a =( p) a ) H I=(( 0, ) ) 0, =( 0, ) 0,, 0, I 0,8. TES Prmièr fich d'xrcics sur ls fonctions xponntills. - Corrigés - /7

3 Exrcic 8 : J= 7 K= ( ) = ( ) L= 0, = 0, =, = 7 M(x)= 7x x = 7x+ x = 8 x N(x)= 7 x 7 = 7 x 7 x x = O(x)= x+ x = ( x+) x = x x J= K= L=, M(x)= 8x 8 N(x)= x 7 8( x ) ou M(x)= O(x)= x ( x+) ou O(x)= Exrcic 9 : a) ( x +)( x )=( x ) = x, donc ( x +)( x )= x. car. b) ( x +) =( x ) + x + = x+ x + donc ( x +) = x + x +. car (a+b) =a +ab+b. c) ( x )( x +)= x x + x x = x + x + x x = x + x x. Donc ( x )( x +)= x + x x. car (a+b)(c+d )=ac+ad+bc+bd. d) x x = x+ x = x t x = x = x, donc x x = x. ) ( x x ) =( x ) x x +( x ) = x x x + x = x + x= x + x. Donc ( x x ) = x + x, car (a b) =a + ab+b. f) Dans 90 x x + = 90x x +, divisons l numératur t l dénominatur par x ui st non nul car pour tout x R, x >0. 90 ( x ) 90 x x + = x = 90 x + x x + = Donc 90 x x + x=90 x +. x x, 0, x g) 0, x + 0, x =, 0, x+ + 0, x 0, x, 0, x Donc 0, x + Donc car a= a. 0, x =, 0,x+ + 0, x 0, x =, 0, x+ +x 0, x+ =(,+x) 0, x+. 0, x+, 0, x 0, x + =(,+ x). 0, x Exrcic 0 : A= 0 B= C=. Comm, pour tout x R, x >0, A st strictmnt positif (puisu t 0 strictmnt négatifs, car <0, >0 t >0. Donc A st plus grand u B t C. l sont), t B t C sont TES Prmièr fich d'xrcics sur ls fonctions xponntills. - Corrigés - /7

4 Il rst à comparr t afin d comparr B t C. Tout l mond st cnsé savoir u =,, mais pas u,7 sans calculatric. Pour ls comparr, élvons-ls au carré : Comm t sont positifs, ils sont rangés dans l mêm ordr u lurs carrés (puisu la fonction «carré» st strictmnt croissant sur [0;+ [ ). ( ) = t ( = =9 = 8 + =,. Donc ( ) > (, ) donc, comm t sont positifs, >. Comm la fonction xponntill st strictmnt croissant, ll consrv l'ordr sur R t on a : >. Comm <0, lorsu'on multipli ls dux mmbrs d'un inégalité par, on chang l sns d ctt inégalité. Donc > <, soit C<B. Conclusion : C<B<A. ) Exrcic : A= π+ π> donc π>. B= π =π+ C=( π ) = 0π = π+π On a donc π+<π+<π+π. Comm la fonction xponntill st strictmnt croissant sur R : π+<π+<π+π π+ < π+ < π+π, soit A<B<C. Exrcic : A= π + t B= π +. =,, donc <, donc <. On souhait divisr ls dux mmbrs d ctt inégalité par π +. Pour savoir s'il faut ou non changr l sns d l'inégalité, il faut connaîtr l sign d π += π. Comm π>0, π > (d'après ls variations d la fonction xponntill t l fait u 0 = ) Donc π <0, soit π +<0. Donc < π + > π +, soit A>B. Exrcic : A= π + t B= +. On sait u,78 donc u >, donc u <0. TES Prmièr fich d'xrcics sur ls fonctions xponntills. - Corrigés - /7

5 Or π,, donc π> π > puisu la fonction xponntill st strictmnt croissant sur R. π > π +> + n ajoutant aux dux mmbrs. t π +> + π + < + n divisant ls dux mmbrs par ui st strictmnt négatif. Donc A<B. Exrcic : Résoudr dans R ls éuations suivants : a) x =8 x = x= car la fonction xponntill d bas st bijctiv car ll st strictmnt croissant sur R. S={}. b) x = x+ x =( ) x+ x = (x+) x=(x+) x= x+ x= x=. S={ }. c) 0,8 x = 0,8 x =0,8 0 x=0. S={0}. d),9 x =,9 x =,9 0 x=0 x=0. S={0}. ) 7 x = x x = x + x = x + x= x x= x=. S=. f) x =9 x = x = x= ou x=. S={ ; } g) ( x +)( x )=0 x +=0 ou x =0 x = ou x =. D'après la courb rprésntativ ds fonctions xponntills, on sait u x >0 pour tout x R. Donc l'éuation x =, n'a pas d solution dans R. Donc ( x +)( x )=0 x = x = 0 x=0. S={0}. Autr résolution possibl : ( x +)( x )=0 ( x ) =0 x = x = 0 x=0 x=0, donc S={0}. h) x ( x )= x. Pour tout x R, x >0 donc x 0. On a donc l droit d divisr ls dux mmbrs d l'éuation par x ui st non nul. Donc x ( x )= x x = x = x = x= x=. S= { } Exrcic : a) x+ = x+ = 0 x+=0 x=. S={ }. b) x+ = x+ = x+= x=0 x=0. S={0} c) x = x x = x x= x=. S= { } d) ( x +) = ( x +) =0 ( x +) =0 ( x ++)( x + )=0 ( x +) x =0 x +=0 ou x =0 x = ou x =0. Or pour tout x, x >0, donc l'éuation n'a pas d solution. S=. TES Prmièr fich d'xrcics sur ls fonctions xponntills. - Corrigés - /7

6 Autr résolution possibl : on sait u dux nombrs ont l mêm carré si t sulmnt si ils sont soit égaux, soit opposés, donc : ( x +) = ( x +) = x += ou x += x =0 ou x =, t on conclut comm précédmmnt. ) x(x+) = x(x+) = 0 x(x+)=0 x=0 ou x+=0 x=0 ou x=. S={ ;0}. f) x = x x = x x= x=. S= { }. g) x = x + x=x + 0=x x+ =( ) (+)= =. L'éuation a dux solutions : x = ( ) = t x = +. S={ ; + }. h) x = x+ x = (x+) x = x x= x x= x=. S= { }. Exrcic : a), x <,, x <, x < car,> donc la fonction xponntill d bas, st strictmnt croissant sur R. Donc, x <, x<. S=] ; [. b), x <, x+ x<x+ car,> x< x<. S= ] ; [ c) 0,7 x 0,7 0,7 x 0,7 x car 0<0,7<. S=[;+ [. d) 0,7 x <0,7 x+ x>x+ (car 0<0,7< ) x> x>. S=] ;+ [ ) x < x+ x <( ) x+ x < ( x+) x<( x+) (car > ) x< x+ x< x> S=] ;+ [. f) 7 x x+ ( ) x x+ x x+ x x+ car >0. x x x S=] ; ]. g) (0, x +) > (0, x +) >0 (0, x ++)(0, x + )>0 car a b =(a+b)(a b). (0, x +) 0, x >0. Pour tout x R, 0, x >0 car ls fonctions xponntills sont à valurs strictmnt positivs (voir lurs courbs). Donc pour tout rél x, 0, x +>0 t 0, x >0, donc (0, x +) 0, x >0. Tout rél x st donc solution d ctt inéuation. S=R. h) (0, x +)(0, x ) 0. On vint d voir u, pour tout rél x, 0, x >0, donc 0, x +>0. D'autr part, on sait u la fonction xponntill d bas 0, st strictmnt décroissant sur R car 0<0,<, t u 0, 0 =. Donc pour tout x<0, 0, x > t pour tout x>0, 0, x <. On obtint l tablau d signs suivant : TES Prmièr fich d'xrcics sur ls fonctions xponntills. - Corrigés - /7

7 x 0 + 0, x , x + 0 (0, x +)(0, x ) + 0 L'nsmbl ds solutions d l'inéuation (0, x +)(0, x ) 0 st donc S=[0;+ [ ou S=R +. Exrcic 7 : a) x x x x (car la fonction xponntill st strictmnt croissant sur R) x S=] ;] b) x+ > x+ > 0 x+>0 x> S=] ;+ [ c) x > x > 0 x >0 x 0 car pour tout x R, x 0 avc x =0 x=0. S=] ; 0[ ]0;+ [ ou ncor S=R * d) x < x < x <0 x <0 (x+)(x )<0 x + x x 0 + (x+)(x ) S=] ;[. ) ( x +)( x )<0. Sign d x +: pour tout x R, x >0, donc x +>0. Sign d x : D'après l'étud d la fonction xponntill, on sait u x < lorsu x<0, u x = lorsu x=0 t u x > lorsu x>0. Donc x <0 x<0. On put dirctmnt conclur u, d'après la règl ds signs, S=] ; 0[. Pour cux t clls ui auraint du mal à s rprésntr dirctmnt c résultat, j'établis l tablau d signs : x 0 + x x 0 + ( x +)( x ) 0 + f) x x+ 0 x x+ x x+ x. S=[;+ [ g) x > x x x > x x 0>x x 0>x(x ) x(x )<0. S=]0;[ x 0 + x x 0 + x(x ) h) x > x x > x x > x x> x> S=] ;+ [ TES Prmièr fich d'xrcics sur ls fonctions xponntills. - Corrigés - 7/7

Exercice n 1 Déterminer des primitives des fonctions suivantes sur l'intervalle indiqué : 5 a) f (x)= (2 x+1) 3 sur I =] 1

Exercice n 1 Déterminer des primitives des fonctions suivantes sur l'intervalle indiqué : 5 a) f (x)= (2 x+1) 3 sur I =] 1 Fich Bac S n 0 Trminal S Intégration - Calcul ds primitivs Exrcic n Détrminr ds primitivs ds fonctions suivants sur l'intrvall indiqué : 5 a) f (x)= (2 x+) 3 sur I =] 2 [ ;+ b) g ( x)= ln x sur I =]0 ;+

Plus en détail

Correction du bac blanc de mathématiques

Correction du bac blanc de mathématiques Corrction du bac blanc d mathématiqus Exrcic (commun à tous ls candidats, point) Rstitution organisé d connaissancs :. Démontrr par récurrnc l inégalité d Brnoulli : pour tout x >, pour n N, (+x) n +nx.

Plus en détail

Chapitre 5. La fonction exponentielle

Chapitre 5. La fonction exponentielle Ensignmnt spécifiqu Chapitr 5 La fonction ponntill I Eistnc t unicité Théorèm : Il ist un uniqu fonction f dérivabl sur tll qu : f = f t f(0) = Ctt fonction st applé fonction ponntill t noté p : Ainsi

Plus en détail

TS Exercices sur la fonction exponentielle (1)

TS Exercices sur la fonction exponentielle (1) TS Ercics sur la fonction ponntill () 4 a. 4 4 b. Simplifir ls prssions suivants : p( ) a. A = p () p () b. B = p () p ( ) c. C p( ) d. D p( ) 4 5 6 (on pourra posr X ) 4 Simplifir ls prssions suivants,

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 25 février 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. correction SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 25 février 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. correction SÉRIE S Lycé Municipal d Adults d la vill d Paris Mardi 5 févrir 04 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Duré d l épruv : 4 HEURES Ls calculatrics sont AUTORISÉES corrction obligatoir t spé L candidat doit

Plus en détail

Terminale ES Problèmes d'études de fonctions avec des logarithmes - Corrigés

Terminale ES Problèmes d'études de fonctions avec des logarithmes - Corrigés Trminal ES Problèms d'étuds d onctions avc ds logarithms - Corrigés Problèm : st déini sur [;9] par ()= 4 ln. V st la courb rprésntativ d. ) D'après l'allur du graphiqu, il smbl qu soit conv sur [;9].

Plus en détail

EXPONENTIELLE : ETUDES DE FONCTIONS. e 1

EXPONENTIELLE : ETUDES DE FONCTIONS. e 1 EXPONENTIELLE : ETUDES DE FONTIONS Pour chacun ds fonctions ci-dssous, détrminr : - l nsmbl d définition I d la fonction ; - ls limits d la fonction au borns d I ; - la dérivé t l sign d la dérivé ; -

Plus en détail

EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. 1 ln 1+ = 1. x x. x x. et sh x = e

EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. 1 ln 1+ = 1. x x. x x. et sh x = e Ercic EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. Démontrr qu : lim + ln + =. En déduir la limit suivant : lim + + [On pourra, par mpl, posr X = ] Ercic On considèr du fonctions, notés ch t sh,

Plus en détail

Corrigé - Baccalauréat blanc TS

Corrigé - Baccalauréat blanc TS Corrigé - Baccalauréat blanc TS - 00 EXERCICE 5 points Commun à tous ls candidats Parti A : Étud d un fonction On considèr la fonction f défini sur ]0 ; + [ par f = + ln On not C la courb rprésntativ d

Plus en détail

Fiche 3 : Exponentielles, logarithmes, puissances

Fiche 3 : Exponentielles, logarithmes, puissances Tous droits résrvés Studyrama 00 En partnariat avc : Fich téléchargé sur wwwstudyramacom Séri S Nº : 00 Fich Corrigés Fich : Eponntills, logarithms, puissancs Opérations élémntairs t fonction ponntill

Plus en détail

Baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé

Baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé Baccalauréat S Antills-Guyan juin 05 Corrigé A. P. M. E. P. EXERCICE Commun à tous ls candidats 6 POINTS. On put calculr par xmpl ls ordonnés ds points d absciss d cs différnts courbs : f ()=ln =0< g 0,05

Plus en détail

Exponentielles. Mr Zribi. Page 1. L.S.El Riadh. 4 ére Maths Solutions. Exercice 1 : Partie I

Exponentielles. Mr Zribi.  Page 1. L.S.El Riadh. 4 ére Maths Solutions. Exercice 1 : Partie I Eponntills 4 ér Maths Solutions Ercic : Parti I. g st défini pour tout [ ; [ par g. a Pour tout, g t g > équivaut à > > >. car la fonction p st strictmnt croissant sur R. g ' > pour tout > t g'. Il s'nsuit

Plus en détail

Exercice 1.sur 10 points Commun à tous les candidats

Exercice 1.sur 10 points Commun à tous les candidats Trminal S Bac Blanc d mathématiqus : duré 4 h Mardi 3 mars 205 Ls calculatrics sont autorisés (mais aucun formulair prsonnl). La qualité d la rédaction, la clarté d la copi,la précision ds raisonnmnts

Plus en détail

Fonctions Numériques, fonctions usuelles.

Fonctions Numériques, fonctions usuelles. Fonctions Numériqus, fonctions usulls.. Fonction constant : Soit b un rél fié. Définition : La fonction constant st la fonction qui à tout rél associ l rél b. la fonction constant st donc la fonction f

Plus en détail

TES- Correction BAC Blanc Février Mathématiques

TES- Correction BAC Blanc Février Mathématiques TES- Corrction BAC Blanc Févrir 0 - Mathématiqus EXERCICE 5 points Commun à tous ls candidats Un ntrpris pint ds jouts. Pour cla, ll utilis dux machins M t M. La machin M pint un quart d la production.

Plus en détail

Boubacar MANÉ. Série d exercices de Mathématiques : L Oasis Des Mathématiques. Étude de fonctions à variable réelle dansr : Énoncé des exercices

Boubacar MANÉ. Série d exercices de Mathématiques : L Oasis Des Mathématiques. Étude de fonctions à variable réelle dansr : Énoncé des exercices Séri d rcics d Mathématiqus : Étud d fonctions à variabl réll dansr : Énoncé ds rcics Ercic Soit la fonction numériqu f défini par : f )= 3+ 5 +. a) Détrminr l nsmbl d définition D f t ls its au borns.

Plus en détail

Fonction exponentielle

Fonction exponentielle Chapitr 7 Fonction ponntill Sommair 7. Activités......................................................... 04 7.. Eponntill................................................... 04 7.. Qulqus propriétés d

Plus en détail

Au rayon «image et son» d'un grand magasin, un téléviseur et un lecteur de DVD sont en promotion pendant une semaine.

Au rayon «image et son» d'un grand magasin, un téléviseur et un lecteur de DVD sont en promotion pendant une semaine. EXERCICE 5 points Commun tous ls candidats Au rayon «imag t son» d'un grand magasin, un télévisur t un lctur d DVD sont n promotion pndant un smain. Un prsonn s présnt : T st l'évènmnt : «la prsonn achèt

Plus en détail

2.a)Une représentation paramétrique de la droite (d) passant par O et dirigée par n est : y = -t avec t réel z = -t 1 ; 3 1 ) BH = t BC

2.a)Une représentation paramétrique de la droite (d) passant par O et dirigée par n est : y = -t avec t réel z = -t 1 ; 3 1 ) BH = t BC Corrigé baccalauréat S Amériqu du Nord 010 (raiatabac.blogspot.com) Exrcic 1 : On donn A(1 ; - ; ) t B( - ; -6 ; 5) t C(- ; 0 ; -3) 1.a) Ls vcturs AB ( -3 ; - ; 1) t AC ( -5 ; ; -) n sont clairmnt pas

Plus en détail

f n (x) = x n e x. T k

f n (x) = x n e x. T k EXERCICE 3 (7 points) Commun à tous ls candidats Pour tout ntir naturl n supériur ou égal à, on désign par f n la fonction défini sur R par : f n (x) = x n x. On not C n sa courb rprésntativ dans un rpèr

Plus en détail

Correction du devoir de vacances Les suites dans plusieurs situations

Correction du devoir de vacances Les suites dans plusieurs situations L.E.G.T.A. L Chsnoy TB2 21-211 D. Blottièr Mathématiqus Corrction du dvoir d vacancs Ls suits dans plusiurs situations Exrcic 1 : Un pas vrs ls fractals On considèr un carré F 1 d côté d longuur 1. Au

Plus en détail

France métropolitaine Enseignement spécifique

France métropolitaine Enseignement spécifique Franc métropolitain 03. Ensignmnt spécifiqu EXERCICE 7 points) commun à tous ls candidats) Sur l graphiqu ci-dssous, on a tracé, dans l plan muni d un rpèrorthonormé rprésntativ C d un fonction f défini

Plus en détail

Les trois questions de l exercice sont indépendantes.

Les trois questions de l exercice sont indépendantes. Pondichéry Avril 00 Séri S Exrcic Un urn contint 0 bouls blanchs t n bouls rougs, n étant un ntir naturl supériur ou égal à On fait tirr à un jouur ds bouls d l urn A chaqu tirag, touts ls bouls ont la

Plus en détail

TS Bac blanc n 5 Mai 2016

TS Bac blanc n 5 Mai 2016 TS Bac blanc n 5 Mai 6 Ls raisonnmnts doivnt êtr justifiés t ls calculs détaillés. L barèm st indicatif. La calculatric st autorisé mais ls échangs ntr élèvs sont intrdits. Exrcic 5 pts Parti A : Conditionnmnt

Plus en détail

Loi exponentielle. Rappels sur le chapitre précédent :

Loi exponentielle. Rappels sur le chapitre précédent : TS Loi ponntill Rappls sur l chapitr précédnt : On st parti d la loi uniform sur l intrvall [ ; ] puis sur un intrvall [a ; b] qulconqu (formul donnant la probabilité d un intrvall [ ; ] inclus dans [a

Plus en détail

TS Exercices sur la fonction exponentielle (2)

TS Exercices sur la fonction exponentielle (2) TS Ercics sur la onction ponntill () Dans ls rcics à, on dmand d détrminr ls nsmbls d déinition d t d dérivabilité d puis d calculr la dérivé d. Lundi 8--06 Délia El Chatr (TS) Ercic sur ls ponntills ()

Plus en détail

TS Fonction exponentielle (2)

TS Fonction exponentielle (2) TS Fonction ponntill () I. Limits d la fonction ponntill n + t n ) Comparaison d t On considèr la fonction f : défini sur. f st dérivabl sur comm différnc d fonctions dérivabls sur. f ' Sign d + Variation

Plus en détail

Polynésie 2012 BAC S Correction

Polynésie 2012 BAC S Correction Polynési 1 BAC S Corrction 1 / 6 Exrcic 1 1. a. L point B appartint à la courb Γ donc f() c'st-à-dir a + b Par conséqunt a + b 1 t donc a + b L point C appartint à la courb Γ donc f(5) 5 c st-à-dir 5 +

Plus en détail

Exercice 4 Amérique du Sud. Novembre Le point B est un point d'intersection de la courbe de f et de l'axe des abscisses donc f x B

Exercice 4 Amérique du Sud. Novembre Le point B est un point d'intersection de la courbe de f et de l'axe des abscisses donc f x B Ercic 4 Amériqu du Sud. Novmbr 007 La fonction f st défini sur ]0 ; [ par f = ln ln. La figur ci-dssous donn la courb rprésntativ d f. _ Absciss d B. L point B st un point d'intrsction d la courb d f t

Plus en détail

Correction du baccalauréat S (obligatoire) Polynésie 10 juin 2011

Correction du baccalauréat S (obligatoire) Polynésie 10 juin 2011 Corrction du baccalauréat S (obligatoir Polynési 0 juin 0 Exrcic Commun à tous ls candidats points Méthod : L dssin suggèr d considérr la rotation d cntr A t d angl π Son écritur complx st : z z A = i

Plus en détail

FONCTIONS EXPONENTIELLES EXERCICES CORRIGES

FONCTIONS EXPONENTIELLES EXERCICES CORRIGES Cours t rcics d mathématiqus FONCTIONS EPONENTIELLES EERCICES CORRIGES Ercic n Résoudr dans ls équations suivants + 7 9 4 4 6 + 6 + 7 ln( ln 8 9 ln Ercic n Détrminr ls racins du polynôm + P + 4 En déduir

Plus en détail

Baccalauréat S Polynésie juin 2012

Baccalauréat S Polynésie juin 2012 Baccalauréat S Polynési juin 1 EXERCICE 1 L plan st rapporté à un rpèr orthonormal On considèr ls points B 1 ; 1 t C 5 ; O ; i ; j. 5 t la droit D d équation y = x. On not f la fonction défini sur R dont

Plus en détail

CHAPITRE IV EQUATIONS DIFFERENTIELLES

CHAPITRE IV EQUATIONS DIFFERENTIELLES CHAPITRE IV EQUATIONS DIFFERENTIELLES Objctifs Un équation différntill st un équation dans laqull l inconnu st un fonction f. D plus, ctt équation fait intrvnir la fonction f ainsi qu ss dérivés, d où

Plus en détail

Corrigé de CCP PC 2008 Mathématiques 2

Corrigé de CCP PC 2008 Mathématiques 2 Corrigé d CCP PC 8 Mathématiqus PARTIE I (E s ) st un équation di érntill linéair d ordr dux, à co cints continus sur l intrvall ] [ l co cint d y" n ayant. qas d racin. D arès l théorèm d Cauchy Lischitz,

Plus en détail

Corrigé du baccalauréat S Nouvelle-Calédonie mars 2017

Corrigé du baccalauréat S Nouvelle-Calédonie mars 2017 Corrigé du baccalauréat S Nouvll-Calédoni mars 7 EXERCICE Commun à tous ls candidats 5 points On considèr la fonction f défini t dérivabl sur [ ; + [ par f (x)= x x. Parti A. On justifi ls informations

Plus en détail

Terminale ES DS n 4 Vendredi 14 décembre 2012

Terminale ES DS n 4 Vendredi 14 décembre 2012 Trminal ES DS n Vndrdi décmbr Ercic. Sur points Ls qustions sont indépndants.. Résoudr ls équation t inéquation suivants. a) b). Etudir l sign d a) b). Pour chacun ds fonctions suivants, calculr sa fonction

Plus en détail

Proposition 1. La probabilité de A est égale à 3 7. Proposition 3 P(B) = 7. Proposition 5. Si P(X = 1) = 8 P(X = 0) alors p = 2 3.

Proposition 1. La probabilité de A est égale à 3 7. Proposition 3 P(B) = 7. Proposition 5. Si P(X = 1) = 8 P(X = 0) alors p = 2 3. Polynési sptmbr 009 EXERCICE points Commun à tous ls candidats On considèr l cub OABCDEFG d'arêt d longuur rprésnté ci-dssous. Il n'st pas dmandé d rndr l graphiqu complété avc la copi. Soint ls points

Plus en détail

Cha h p a i p tr t e r e 2 Rep e r p é r s é en e t n a t t a i t on o n d e d s e f o f n o c n ti t on o s n log o i g qu q e u s e

Cha h p a i p tr t e r e 2 Rep e r p é r s é en e t n a t t a i t on o n d e d s e f o f n o c n ti t on o s n log o i g qu q e u s e Chapitr 2 Rprésntation ds fonctions logiqus 26..9 Ch 2 : Rprésntation ds fonctions logiqus Réalisation avc ds intrrupturs : a b +5 V Intrruptur a ouvrt (inactif) : a Intrruptur b frmé (actif) : b a Intrruptur

Plus en détail

Baccalauréat S (obligatoire) Antilles-Guyane septembre 2010

Baccalauréat S (obligatoire) Antilles-Guyane septembre 2010 Baccalauréat S obligatoir) Antills-Guyan sptmbr 00 EXERCICE Commun à tous ls candidats 7 points PARIE A - Rstitution organisé ds connaissancs Soit > 0. Considérons la fonction [ p) ] =. En dérivant cs

Plus en détail

Mathématiques Bac Blanc TES du jeudi 28 mars 2013

Mathématiques Bac Blanc TES du jeudi 28 mars 2013 Mathématiqus Bac Blanc TES du judi 8 mars 03 (3 hurs) Ls calculatrics sont autorisés (mais aucun formulair prsonnl). La qualité d la rédaction, la clarté d la copi t la précision ds raisonnmnts ntrront

Plus en détail

CINÉTIQUE FORMELLE DES RÉACTIONS COMPOSÉES

CINÉTIQUE FORMELLE DES RÉACTIONS COMPOSÉES CINÉTIQUE FORMELLE DES RÉACTIONS COMPOSÉES I OBTENTION GÉNÉRALE DE L ÉQUATION DIFFÉRENTIELLE Dans un réactur, ont liu plusiurs réactions mttant n ju plusiurs spècs Soit A un spèc On va voir sur da un xmpl

Plus en détail

Introduction à la fonction exponentielle

Introduction à la fonction exponentielle CHAPITRE 6 FONCTIONS EXPONENTIELLES ET PUISSANCES Introduction à l fonction ponntill. Éqution différntill On ppll éqution différntill un églité dns lqull figurnt un fonction t ss dérivés succssivs. Ls

Plus en détail

Contrôle du mardi 7 mars 2017 (50 minutes) 1 ère S1. III. (7 points : 1 ) 4 points ; 2 ) 3 points)

Contrôle du mardi 7 mars 2017 (50 minutes) 1 ère S1. III. (7 points : 1 ) 4 points ; 2 ) 3 points) 1 èr S1 ontrôl du mardi 7 mars 017 (50 minuts) Prénom t nom :... Not :.. / 0 III. (7 points : 1 ) 4 points ; ) points) On considèr un résau pointé dont la maill élémntair st un triangl équilatéral d côté

Plus en détail

c. une infinité de solutions dont les points images dans le plan complexe sont situés sur une droite.

c. une infinité de solutions dont les points images dans le plan complexe sont situés sur une droite. Trminal S - ACP Révisions Nombrs complxs (Asi 013) Dans ls qustions 1. t., l plan st rapporté au rpèr orthonormal dirct ; ;. On considèr ls points A, B, C, D t E d affixs rspctivs : =+ = 3+ =1+ 3 = 1+

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction ponntill A) Fonctions ponntills d bas q Fonction () = q, avc q > 0 Déinition : Soit q un nombr strictmnt positi donné La suit déini, pour tout ntir naturl n, par : n u n = q st un suit géométriqu

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE PSI MATHEMATIQUES 1. n N, α n N.

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE PSI MATHEMATIQUES 1. n N, α n N. SESSION 7 CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE PSI MATHEMATIQUES I Ls suits α t β I. Etud d la suit α I.. α =, α = α =, α = α + =, α 3 = 3α = t α 4 = 4α 3 + = 9. α =, α =, α = α 3 =

Plus en détail

LOI EXPONENTIELLE EXERCICES. La durée T, en minutes, d une conversation téléphonique suit une loi exponentielle de moyenne 4 minutes.

LOI EXPONENTIELLE EXERCICES. La durée T, en minutes, d une conversation téléphonique suit une loi exponentielle de moyenne 4 minutes. EXERIES 3 La duré T, n minuts, d un convrsation téléphoniqu suit un loi xponntill d moynn 4 minuts. ) alculr P(T>5) ) alculr P( < T < 8). Pour un variabl T, xprimé n minuts, qui rprésnt un duré d vi t

Plus en détail

2.4 Logarithme Népérien et fonction exponentielle

2.4 Logarithme Népérien et fonction exponentielle 6 2.4 Logarithm Népérin t fonction ponntill Définition 20 (Logarithm Népérin). On appll Logarithm Népérin, noté ln, l uniqu fonction défini sur R + = ]0, + [ qui vaut 0 n = t dont la dérivé sur ]0, + [

Plus en détail

Corrigé du baccalauréat S Pondichéry 13 avril 2011

Corrigé du baccalauréat S Pondichéry 13 avril 2011 Corrigé du baccalauréat S Pondichéry avril EXERCICE Commun à tous ls candidats Parti I points. L ax ds ordonnés st asymptot à C au voisinag d ; la fonction étant décroissant sur ] ; + [, la limit quand

Plus en détail

MODÉLISATION TEMPORELLE DES SYSTÈMES LINÉAIRES

MODÉLISATION TEMPORELLE DES SYSTÈMES LINÉAIRES MODÉLISATION TEMPORELLE DES SYSTÈMES LINÉAIRES Mis n équation ds systèms linéairs. systèms du prmir ordr équation d la maill: u (t) = u R (t) + u C (t) mpl élctriqu: R i(t) = C du C u R (t) = RC du C u

Plus en détail

CH V : Fonction exponentielle

CH V : Fonction exponentielle TSTID CH V : Fonction ponntill A la décovrt d n novll fonction d référnc Ls calclatrics possèdnt n toch On not ctt fonction : p. L imag d n rél par la fonction ponntill st noté qi corrspond à n fonction

Plus en détail

, x étant strictement positif. 5ln( x ) + 1

, x étant strictement positif. 5ln( x ) + 1 Lycé Dnis-d-Rougmont Eamn d Maturité Nuchâtl t Flurir Sssion 008 Mathématiqus nivau Problèm (poids 3) 5 a) Résoudr l équation différntill y' + y =, étant strictmnt positif 5ln( ) + On considèr la fonction

Plus en détail

Correction feuille TD 3 : probabilités conditionnelles, indépendance

Correction feuille TD 3 : probabilités conditionnelles, indépendance Univrsité d Nic-Sophia Antipolis -L2 MASS - Probabilités Corrction fuill TD 3 : probabilités conditionnlls, indépndanc Exrcic Dans ct xrcic, nous supposons pour simplir qu ls yux d'un êtr humain sont soit

Plus en détail

Les systèmes asservis linéaires. échantillonnés. Mohamed AKKARI

Les systèmes asservis linéaires. échantillonnés. Mohamed AKKARI Ministèr d l Ensignmnt Supériur, d la Rchrch Scintifiqu Univrsité Virtull d Tunis Ls systèms assrvis linéairs échantillonnés Echantillonnag instantané d un signal Mohamd AKKARI Attntion! C produit pédagogiqu

Plus en détail

air p (t) T ext = 2 C V = m 3 h = 10 m l = 30 m

air p (t) T ext = 2 C V = m 3 h = 10 m l = 30 m Problèm : Stockag intr saisonnir d chalur. (Thèm : équation différntill du 1 r ordr, résolution xact t avc GoGbra) L résau d chalur d la vill d Marstal au Danmark utilis 33 000 m² d capturs solairs thrmiqus

Plus en détail

3) Conclusion : Il y a 24 oiseaux sur le pommier, 30 (24 + 6) sur le poirier et 60 (2 30) sur le cerisier.

3) Conclusion : Il y a 24 oiseaux sur le pommier, 30 (24 + 6) sur le poirier et 60 (2 30) sur le cerisier. CHAPITRE 1 EQUATIONS, INEQUATIONS, SYSTEMES DU PREMIER DEGRE I. EQUATIONS A. RESOLUTION DE QUELQUES EQUATIONS Voir fin de chapitre. B. EXEMPLE DE PROBLEME Enoncé : 114 oiseaux sont perchés sur 3 arbres.

Plus en détail

Etude du circuit RLC. (5,5 points) de plus i = ; on obtient donc : = 0 (1) m /T 2 *cos(2πt/t) Q m* cos(2πt/ T 0 ) = 0 (2)

Etude du circuit RLC. (5,5 points) de plus i = ; on obtient donc : = 0 (1) m /T 2 *cos(2πt/t) Q m* cos(2πt/ T 0 ) = 0 (2) Exrcic I (7 points) Parti A Étud comparativ ds dipôls RL, RC t RLC séri. (1,5 point) Q1 a) Captur + Intrfac + ordinatur ou oscillo à mémoir. Pour visualisr la tnsion u R aux borns du conductur ohmiqu,

Plus en détail

1. Nombres complexes en électrotechnique

1. Nombres complexes en électrotechnique MAHE E(F. Nombrs complxs n élctrotchniqu. Nombrs complxs n élctrotchniqu. ntroduction condition pour pouvoir résoudr un problèm dns un circuit étit usqu à présnt d pouvoir trcz un digrmm vctoril (dut.:

Plus en détail

Correction du devoir sur les situations de conjectures

Correction du devoir sur les situations de conjectures Corrction du dvoir sur ls situations d conjcturs no 1. n étant un nombr ntir... a. n + 1 b. n - 1 c. n d. n + 1. (n + 1) f. 5n + (5n + 5) g. 4 possibilités : i. n + 1 t n + 11 ii. n - 1 t n + 9 iii. n

Plus en détail

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I L sujt comport 8 pags numérotés d 2 à 9 Il faut choisir t réalisr sulmnt trois ds quatr xrcics proposés Parti A EXERCICE I Donnr ls réponss à ct xrcic dans l cadr prévu à la pag 3 On considèr la fonction

Plus en détail

Contrôle du mardi 17 mai 2016 (50 min) TS1. Partie 1 (5 points : 1 ) 1 point ; 2 ) 4 points)

Contrôle du mardi 17 mai 2016 (50 min) TS1. Partie 1 (5 points : 1 ) 1 point ; 2 ) 4 points) TS Contrôl du mardi 7 mai 206 (50 min) rénom : Nom : Not :. / 20 arti (5 points : ) point ; 2 ) 4 points) L tmps d incubation, xprimé n hurs, du irus put êtr modélisé par un ariabl aléatoir X suiant un

Plus en détail

PRIMITIVES EXERCICES CORRIGES

PRIMITIVES EXERCICES CORRIGES Cours t rcics d mathématiqus Ercic n. Dérivé t primitivs ) Calculz la dérivé d la fonction f défini par PRIMITIVES EXERCICES CORRIGES f 9+. ) Déduisz-n du primitivs d la fonction g défini par g ) Détrminr

Plus en détail

Leçon 8. Fiche n 19 Fonctions et économie. Elève : Classe : On veut étudier le coût moyen de fabrication, C M (q) =. Expliciter cette fonction C M.

Leçon 8. Fiche n 19 Fonctions et économie. Elève : Classe : On veut étudier le coût moyen de fabrication, C M (q) =. Expliciter cette fonction C M. Leçon 8 Lycée Elève : Classe : Fiche n 19 Fonctions et économie Première STG Eercice 1 Dans une entreprise, le coût total en K, en fonction du nombre d objets fabriués, est donné par la fonction suivante

Plus en détail

Première ES-L IE2 dérivation S1. a) Déterminer le taux d accroissement de la fonction f définie sur par : f(x) = 2x² - 3 en 1.

Première ES-L IE2 dérivation S1. a) Déterminer le taux d accroissement de la fonction f définie sur par : f(x) = 2x² - 3 en 1. Première ES-L IE2 dérivation 205-206 S Exercice : taux d accroissement (2 points) a) Déterminer le taux d accroissement de la fonction f définie sur par : En déduire le nombre dérivé de f en. f(x) 2x²

Plus en détail

Théorie des machines thermiques

Théorie des machines thermiques héori ds machins thrmiqus I 7 éfrigératur trithrm, d'après concours Icar 997 ) Définir la notion d machin thrmiqu dans l langag d la thrmodynamiqu ) applr sans démonstration l théorèm d arnot régissant

Plus en détail

Equations et inéquations du premier degré

Equations et inéquations du premier degré Equations et inéquations du premier degré I) Equation du premier degré à une inconnue 1) définitions Définition 1 : Une équation du premier degré à une inconnue est une égalité comprenant un nombre inconnu

Plus en détail

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction On dit qu une fonction est dérivable sur un intervalle I si elle est définie sur I et admet en chaque point de I un nombre dérivé.

Plus en détail

Inéquations - Système d'équations

Inéquations - Système d'équations Chapitre 6 Inéquations - Système d'équations I inéquation du premier degré à une inconnue I - 1) eet d'une mulitplication ou d'une division sur une inégalité règles Si on mulitplie ou divise une inéquation

Plus en détail

Pour démarrer la classe de seconde. Paul Milan

Pour démarrer la classe de seconde. Paul Milan Pour démarrer la classe de seconde Tout ce qu il faut savoir Paul Milan DERNIÈRE IMPRESSION LE 1 juin 014 à 1:7 Table des matières 1 Calcul 1 Calcul sur les fractions................................ Calcul

Plus en détail

Exercices de 3 ème Chapitre 2 Calcul littéral Énoncés. C = (2x 5)(3x 7) D = (2x 5)(3x 2) c] (6x +...)(...) = d] ( )² =...

Exercices de 3 ème Chapitre 2 Calcul littéral Énoncés. C = (2x 5)(3x 7) D = (2x 5)(3x 2) c] (6x +...)(...) = d] ( )² =... Énoncés Exercice 1 Développer, réduire et ordonner les expressions suivantes : A = 3(4x 7) 4(2x 9) B = 7x(2x 5) x(2x 5) C = (2x 5)(3x 7) D = (2x 5)(3x 2) Exercice 2 Développer, réduire et ordonner les

Plus en détail

noyau aimant enroulement

noyau aimant enroulement hapitr 2 : Théori général ds convrtissurs élctromagnétiqus Laboratoir virtul : Étud un haut-parlur élctrodynamiqu La figur donn un vu n coup d'un haut-parlur élctrodynamiqu. dispositif, qui présnt un symétri

Plus en détail

Exercices d entrainement pour le chapitre 02 (récurrence et suites)

Exercices d entrainement pour le chapitre 02 (récurrence et suites) Exercices d entrainement pour le chapitre 0 récurrence et suites 0. Énoncés Exercice. Démontrer l inégalité n > n pour tout entier naturel n. Exercice. On définit, pour tout entier n, le n ième nombre

Plus en détail

Traitement du Signal - Travaux Dirigés - Sujet n 3 : "Echantillonnage, Transformée de Fourier d un signal échantillonné"

Traitement du Signal - Travaux Dirigés - Sujet n 3 : Echantillonnage, Transformée de Fourier d un signal échantillonné raitmnt du Signal - ravaux Dirigés - Sujt n 3 : "Echantillonnag, ransormé d Fourir d un signal échantillonné" Exrcic : Sur-échantillonnag L objcti d ct xrcic st d mttr n évidnc l intérêt qu il put y avoir

Plus en détail

Baccalauréat S Métropole 20 juin 2013

Baccalauréat S Métropole 20 juin 2013 Baccalauréat S Métropol 0 juin 0 EXERCICE Commun à tous ls candidats 4 points Puisqu l choix d l arbr s fait au hasard dans l stock d la jardinri, on assimil ls proportions donnés à ds probabilités.. a.

Plus en détail

Dérivation - Correction

Dérivation - Correction Dérivation - Correction Exercice 1 1. La fonction f(x) = 2x 3 est-elle dérivable en 0? f(x) f(0) x 0 = 2x 3 + 3 x Donc, la fonction f(x) = 2x 3 est dérivable en 0 et vaut 2. = 2x x = 2 2. La fonction g(x)

Plus en détail

Corrigé du devoir maison des vacances de Toussaint

Corrigé du devoir maison des vacances de Toussaint Corrigé du devoir maison des vacances de Toussaint APpage 60 Etudier le signe d'une expression. Signe d'une fonction affine ou d'un polynôme du second degré Pour une fonction affine de la forme f ( x )=mx+

Plus en détail

Fonction exponentielle. Définition Pour tout réel a, on appelle exponentielle de a et on note exp(a), l'unique réel b tel que ln b=a.

Fonction exponentielle. Définition Pour tout réel a, on appelle exponentielle de a et on note exp(a), l'unique réel b tel que ln b=a. Chapitre 6 Fonction exponentielle I. DEFINITION Définition Pour tout réel a, on appelle exponentielle de a et on note exp(a), l'unique réel b tel que ln b=a. Remarques On a donc ln(exp( a))=a. ln(1)=0

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction ponntill A) Fonctions ponntills d bas q Fonction () = q, avc q > 0 Déinition : Soit q un nombr strictmnt positi donné La suit déini, pour tout ntir naturl n, par : n un q st un suit géométriqu

Plus en détail

Corrigé du baccalauréat S Amérique du Sud novembre 2004

Corrigé du baccalauréat S Amérique du Sud novembre 2004 Corrigé du baccalauréat S Amériqu du Sud novmbr 200 EXERCICE 7points Parti A. a. Pour tout x, f (x) = x x = x.or lim =+ donc lim = 0. x x + x x + x x x Donc lim f (x) = 0. x + b. La fonction f produit

Plus en détail

Pour démarrer la classe de terminale S. Tout ce qu il faut savoir de la 1 re S. Paul Milan

Pour démarrer la classe de terminale S. Tout ce qu il faut savoir de la 1 re S. Paul Milan Pour démarrer la classe de terminale S Tout ce qu il faut savoir de la 1 re S Paul Milan 8 novembre 015 Table des matières 1 Second degré 7 1 Forme canonique............................. 7 Racines du

Plus en détail

ANALYSE MATHEMATIQUE DU DOMAINE OSCILLANT DE LA REACTION BRAY-LIEBHAFSKY

ANALYSE MATHEMATIQUE DU DOMAINE OSCILLANT DE LA REACTION BRAY-LIEBHAFSKY ANALYSE MATHEMATIQUE DU DOMAINE OSCILLANT DE LA REACTION BRAY-LIEBHAFSKY Rodica Vilcu *, A. Dobrscu abstract: Ctt publication st consacré à l établissmnt d un modèl adéquat du domain oscillant d la réaction

Plus en détail

1) Existe-t-il une position de M telle que l aire de la surface rose pale soit

1) Existe-t-il une position de M telle que l aire de la surface rose pale soit Exercice 1 : On considère un demi-cercle de diamètre AB = 5. M est un point du segment [AB]. On construit les demi-cercles de diamètres [AM] et [MB] comme l indique la figure ci-dessous. 1) Existe-t-il

Plus en détail

Fiche 3 : Exponentielles, logarithmes, puissances

Fiche 3 : Exponentielles, logarithmes, puissances Fich Ercics Fich 3 : Eponntills, logarithms, pissancs Opérations élémntairs t fonction ponntill on appliq ls égalités rmarqabls pis ls propriétés ds ponntills L prodit ds ponntills d d réls st égal à l

Plus en détail

Psy1004 Section 9: Plans à plusieurs facteurs. Varia. Rappel: le TP3 est arrivé

Psy1004 Section 9: Plans à plusieurs facteurs. Varia. Rappel: le TP3 est arrivé Psy1004 Sction 9: Plans à plusiurs facturs Plan du cours: Varia 9.0: Idé général ds plans factorils 9.1: Nomnclatur ds plans factoril 9.2: Typ d résultats possibls 9.3: Répartition d la SC t ds DL 9.4:

Plus en détail

Chapitre 3. Continuité, dérivation et limite d une fonction

Chapitre 3. Continuité, dérivation et limite d une fonction Chapitre 3. Continuité, dérivation et limite d une fonction I. Continuité Définition : Continuité d une fonction Dire que f est continue en a signifie que f a une limite finie en a ; cette limite est alors

Plus en détail

Terminale T08 Feuille d exercices sur le chapitre «Fonction exponentielle» Page 1 / 6. C = exp 2 5 exp 2 2. x x f x e e

Terminale T08 Feuille d exercices sur le chapitre «Fonction exponentielle» Page 1 / 6. C = exp 2 5 exp 2 2. x x f x e e Trminal T08 Fuill d rcics sur l chapitr «Fonction ponntill» Pag / 6 Ercic : Eprimr à l aid du nombr : p( 8) A = p( 4) C = p 5 p p 08 B = ( ) ( ) ( ) Ercic : Dans chacun ds cas, simpliir l écritur d ( )

Plus en détail

Chapitre 3 - La fonction exponentielle.doc 1/6 Chapitre 3.: La fonction exponentielle. 1

Chapitre 3 - La fonction exponentielle.doc 1/6 Chapitre 3.: La fonction exponentielle. 1 Chapitr 3 - La foctio potilldoc /6 Chapitr 3: La foctio potill I Défiitios t propriétés II L ombr t la otatio puissac III Etud d la foctio potill 3 / Ss d variatio, tagts t approimatio affi 3 / Limits

Plus en détail

Fonction racine carrée Fonction cube

Fonction racine carrée Fonction cube CHAPITRE 2 Fonction racine carrée Fonction cube. Manipuler des racines carrées La racine carrée d'un nombre réel positif est l'unique nombre réel positif, noté tel que ( ) 2 =. Si et y sont des nombres

Plus en détail

Mathématique 306 ALGÉBRIQUE. Section 2.1 Rappel sur les expréssions algébriques. Section 2.2 Les opérations sur les monômes et les polynômes

Mathématique 306 ALGÉBRIQUE. Section 2.1 Rappel sur les expréssions algébriques. Section 2.2 Les opérations sur les monômes et les polynômes Mathématique 306 Chapitre 2 LA MANIPULATION ALGÉBRIQUE Section 2.1 Rappel sur les expréssions algébriques Section 2.2 Les opérations sur les monômes et les polynômes Section 2.3 Le développement et la

Plus en détail

Chapitre 3 Étude de fonctions

Chapitre 3 Étude de fonctions Chapitre 3 Étude de fonctions I. Fonctions de référence 1) Variations d'une fonction Définitions : Soit f une fonction définie sur un intervalle I. f est croissante (respectivement strictement croissante)

Plus en détail

La fonction exponentielle

La fonction exponentielle 1 et définition La fonction exponentielle Il existe une unique fonction f dérivable sur R telle que :.................. Définition Cette fonction est appelée............................ On note : Ainsi

Plus en détail

FONCTIONS EXPONENTIELLES

FONCTIONS EXPONENTIELLES FONCTIONS EXPONENTIELLES I. Fonction eponentielle de base ) Définition On considère la suite géométriue de raison n définie par u. n Elle est définie pour tout entier naturel n. En prolongeant son ensemble

Plus en détail

Master1 Mesures, Instrumentation et Procédés U.E. M105 : Capteurs, Chaînes de mesure 2 ème session Jeudi 18 Juin H00

Master1 Mesures, Instrumentation et Procédés U.E. M105 : Capteurs, Chaînes de mesure 2 ème session Jeudi 18 Juin H00 Mastr1 Msurs, Instrumntation t Procédés U.E. M15 : Capturs, Chaîns d msur 2 èm sssion Judi 18 Juin 29-9H Anné Univrsitair 28-29 Duré : 2H Documnts t calculatric autorisés Ls 2 partis sont indépndants t

Plus en détail

Dérivation, cours pour la classe de Terminale STG

Dérivation, cours pour la classe de Terminale STG Dérivation, cours pour la classe de Terminale STG F.Gaudon 7 novembre 2007 Table des matières 1 Fonction dérivée 2 2 Dérivées usuelles 3 3 Opérations sur les fonctions dérivables 4 3.1 Somme...............................

Plus en détail

1 ère L Exercices de statistiques

1 ère L Exercices de statistiques 1 èr L Exrcics d statistiqus 1 Détrminr la médian d chacun ds séris suivants n rédigant a) b) x i 8 10 1 15 x i 150 160 140 130 n i 1 4 3 n i 1000 100 1100 1050 Pour chaqu séri indiqué, calculr, sans utilisr

Plus en détail

Vision et images -12,0-15,0-18,0-20,0-25,0-30,0-40,0-50,0 61,0 30,5 22,5 20,0 16,5 15,5 13,5 12,5

Vision et images -12,0-15,0-18,0-20,0-25,0-30,0-40,0-50,0 61,0 30,5 22,5 20,0 16,5 15,5 13,5 12,5 Séanc n 2 Vision t iags Exrcic n Rlation d conjugaison Un objt AB st placé dvant un lntill convrgnt d cntr optiqu O. L point A st situé sur l ax optiqu d la lntill. L iag A B st foré sur un écran. On donn

Plus en détail

Une extension pleine de tendresse par Antoine Bauza & Corentin Lebrat

Une extension pleine de tendresse par Antoine Bauza & Corentin Lebrat Un xtnsion plin d tndrss par Antoin Bauza & Corntin Lbrat CHIBIS_rgls_09032015.indd 1 13/03/2015 15:44:50 P L t M REPRODUCTION DES PANDAS La saison ds accouplmnts ds pandas s étal d mars à mai. En captivité

Plus en détail

Corrigé. Premier problème. e + 1. Lorsque x tend vers 0 par valeurs négatives, +, e 1. + et x

Corrigé. Premier problème. e + 1. Lorsque x tend vers 0 par valeurs négatives, +, e 1. + et x Autur du Sujt : M. OURY ; Lycé Victor HUGO - Bsaço Corrigé Prmir problèm. Lorsqu td vrs par valurs égativs,,, t f (. La foctio f st pas cotiu à gauch, doc st pas dérivabl à I gauch..lorsqu, il y a idétrmiatio

Plus en détail

DÉRIVATION. Vidéos https://www.youtube.com/playlist?list=plvudmbpupcaoy7qihla2dhc9-rbgvrgwj

DÉRIVATION. Vidéos https://www.youtube.com/playlist?list=plvudmbpupcaoy7qihla2dhc9-rbgvrgwj DÉRIVATION I. Rappels Vidéos ttps://www.youtube.com/playlist?listplvudmbpupcaoy7qiladhc9-rbgvrgwj ) Fonction dérivable Définition : On dit que la fonction f est dérivable en a s'il existe un nombre réel

Plus en détail