j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1"

Transcription

1 Lcée JNSON DE SILLY 5 septembre 06 DÉRIVTION, ÉTUDE DE FONCTIONS T le STID I TNGENTE À UNE COURBE Soit f une fonction définie sur un intervalle I, dérivable en a où a est un réel de I, et C f sa courbe représentative dans un repère du plan. La droite passant par le point (a; f(a)) de la courbe C f et de coefficient directeur f (a) est appelée la tangente à la courbe C f au point d abscisse a. f(a) j 0 i a x Soit f une fonction définie sur un intervalle I, dérivable en a où a est un réel de I, et C f représentative dans un repère du plan. L équation réduite de la tangente à la courbe C f au point d abscisse a est : sa courbe = f (a) (x a)+ f(a) II DÉRIVÉES DES FONCTIONS DE RÉFÉRENCE f définie sur... f (x) f dérivable sur... Ê k 0 Ê Ê ax+b a Ê Ê x n nx n Ê pour n entier n Ê x Ê x n [0; + [ x n x n+ x x Ê Ê pour n entier n ]0; + [ Ê cosx sinx Ê Ê sinx cosx Ê III DÉRIVÉES ET OPÉRTIONS u et v sont deux fonctions dérivables sur un intervalle I : (u+v) = u + v (ku) = k u (uv) = u v+uv ( u ) = uu Si n est un entier non nul, (u n ) = nu n u Si la fonction v ne s annule pas sur l intervalle I (si v(x) 0 sur I) ( ) = v ( u ) u v uv v v = v v Page sur 5

2 Lcée JNSON DE SILLY 5 septembre 06 DÉRIVTION, ÉTUDE DE FONCTIONS T le STID IV DÉRIVÉE ET VRITIONS D UNE FONCTION THÉORÈME Soit f une fonction dérivable et monotone sur un intervalle I de Ê. Si f est constante sur I, alors pour tout réel x appartenant à I, f (x)= 0. Si f est croissante sur I, alors pour tout réel x appartenant à I, f (x) 0. Si f est décroissante sur I, alors pour tout réel x appartenant à I, f (x) 0. Le théorème suivant, permet de déterminer les variations d une fonction sur un intervalle suivant le signe de sa dérivée. THÉORÈME Soit f une fonction dérivable sur un intervalle I de Ê et f la dérivée de f sur I. Si f est nulle sur I, alors f est constante sur I. Si f est strictement positive sur I, sauf éventuellement en un nombre fini de points où elle s annule, alors f est strictement croissante sur I. Si f est strictement négative sur I, sauf éventuellement en un nombre fini de points où elle s annule, alors f est strictement décroissante sur I. THÉORÈME Soit f une fonction dérivable sur un intervalle ouvert I de Ê et x 0 un réel appartenant à I.. Si f admet un extremum local en x 0, alors f (x 0 )=0.. Si la dérivée f s annule en x 0 en changeant de signe, alors f admet un extremum local en x 0. x a x 0 b f (x) 0 + minimum x a x 0 b f (x) + 0 maximum REMRQUES. Dans la proposition. du théorème l hpothèse en changeant de signe est importante. Considérons la fonction cube définie sur Ê par =x qui a pour dérivée la fonction f définie sur Ê par f (x)=x. f (0)=0 et pour tout réel x non nul, f (x)>0. La fonction cube est strictement croissante sur Ê et n admet pas d extremum en 0. 0 x. Une fonction peut admettre un extremum local en x 0 sans être nécessairement dérivable. Considérons la fonction valeur absolue { f définie sur Ê par = x. x si x 0 f est définie sur Ê par : = x si x<0. f admet un minimum f(0) = 0 or f n est pas dérivable en 0. 0 x Page sur 5

3 Lcée JNSON DE SILLY 5 septembre 06 DÉRIVTION, ÉTUDE DE FONCTIONS T le STID EXEMPLE : ÉTUDE D UNE FONCTION Soit f la fonction définie sur Ê par = 4x x +.. Étude des limites. Par conséquent, 4x lim lim x + = lim =. De même, lim 4x x = lim =. x + 4 x = 0 d où lim 4x x + =. Calcul de la dérivée f (x). Sur Ê la fonction f est dérivable comme somme et quotient de deux fonctions dérivables. f = u v d où f = u v uv v. vec pour tout réel x, Soit pour tout réel x, u(x)=4x d où u (x)=4 v(x)=x + d où v (x)=x f (x)= 4(x + ) x(4x ) (x + ) = 4x + 4 8x + 6x (x + ) = 4x 6x 4 (x + ) insi, f est la fonction définie sur Ê par f (x)= 4x 6x 4 (x + ). Étude des variations de la fonction f Les variations de la fonction f se déduisent du signe de sa dérivée. Étudions le signe de f (x)= 4x 6x 4 (x + ) : Pour tout réel x, (x + ) > 0. Par conséquent, f (x) est du même signe que le polnôme du second degré 4x 6x 4 avec a=4, b= 6 et c= 4. Le discriminant du trinôme est =b 4ac Soit Comme >0, le trinôme admet deux racines : =( 6) 4 4 ( 4)=00 x = b a Soit x = = et x = b+ Soit x = 6+0 = a 8 Un polnôme du second degré est du signe de a sauf pour les valeurs comprises entre les racines. Nous pouvons déduire le tableau du signe de f (x) suivant les valeurs du réel x ainsi que les variations de la fonction f : x + f (x) Page sur 5

4 Lcée JNSON DE SILLY 5 septembre 06 DÉRIVTION, ÉTUDE DE FONCTIONS T le STID EXERCICE Soit f la fonction définie sur l intervalle ] [ ;+ par = 8x x 9 x+. On note C f sa courbe représentative dans le plan muni d un repère orthogonal.. a) Déterminer lim, qu en déduit-on pour la courbe C f? x + b) Déterminer lim x +.. On note f la dérivée de la fonction f. Montrer que f (x)= 8x( 8x + x+5 ). Étudier les variations de la fonction f. (x+). EXERCICE La courbe C f ci-dessous représente une fonction f définie et dérivable sur Ê. On note f la fonction dérivée de la fonction f. On sait que : la courbe coupe l axe des abscisses au point et la tangente à la courbe au point passe par le point de coordonnées (0; ); la courbe admet au point B d abscisse une tangente parallèle à l axe des abscisses; la courbe admet pour asmptote l axe des abscisses. C f x - - B. À partir du graphique et des renseignements fournis : a) Déterminer lim x +. b) Déterminer f ( ) et f ().. Une des trois courbes ci-dessous est la représentation graphique de la fonction f. Déterminer laquelle x x x - - courbe C courbe C courbe C Page 4 sur 5

5 Lcée JNSON DE SILLY 5 septembre 06 DÉRIVTION, ÉTUDE DE FONCTIONS T le STID EXERCICE Soit f la fonction définie sur Ê par : = x x+4 x +. On note C f sa courbe représentative dans le plan muni d un repère.. a) Déterminer lim et lim. x + b) La courbe représentative de la fonction f admet-elle des asmptotes?. Calculer la dérivée de la fonction f.. Étudier les variations de f. 4. Donner une équation de la tangente T à la courbe C f au point d abscisse. EXERCICE 4 La courbe C f ci-dessous représente une fonction f strictement positive et dérivable sur Ê. 4 d B C f d x On sait que : la courbe admet pour asmptote l axe des abscisses en et en +. Les droites d et d sont tangentes à la courbe aux points et B d abscisses respectives et ; La tangente T à la courbe au point d abscisse a pour équation = x +. On note f la dérivée de la fonction f.. Tracer la droite T puis, déterminer f( ) et f ( ).. À partir du graphique et des renseignements fournis, déterminer f () et f ().. Soit g la fonction définie sur Ê par g(x)=. a) Déterminer lim g(x) et lim g(x). x + b) Donner le tableau des variations de la fonction g. c) Déterminer une équation de la tangente à la courbe représentative de la fonction g au point d abscisse. EXERCICE 5 Soit f la fonction définie ] [ ;+ par = x x x. On note f sa dérivée. x+. Étudier les limites de la fonction f aux bornes de son intervalle de définition. Que peut-on en déduire pour la courbe C f?. Calculer f (x).. Donner le tableau des variations de la fonction f. 4. Déterminer le nombre de solutions de l équation = 0. À l aide de la calculatrice, donner la valeur arrondie à 0 près, des solutions de l équation =0. Page 5 sur 5

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction On dit qu une fonction est dérivable sur un intervalle I si elle est définie sur I et admet en chaque point de I un nombre dérivé.

Plus en détail

Si f est décroissante sur un intervalle, alors f (x 0 ) <0 sur cet intervalle. ) = 0 et f change de signe en x 0

Si f est décroissante sur un intervalle, alors f (x 0 ) <0 sur cet intervalle. ) = 0 et f change de signe en x 0 Théorème : Soit f une fonction définie sur un intervalle de IR, C la courbe représentative de f et x un élément de I. Si f est croissante sur un intervalle, alors f (x )> sur cet intervalle. Si f est décroissante

Plus en détail

MATHÉMATIQUES TERMINALE ES A. YALLOUZ

MATHÉMATIQUES TERMINALE ES A. YALLOUZ MATHÉMATIQUES TERMINALE ES A. YALLOUZ Ce polcopié regroupe les documents distribués aux élèves en cours d année. Il ne s agit pas d un manuel, certains chapitres du programme n étant pas rédigés. Année

Plus en détail

APPLICATIONS DE LA DERIVATION

APPLICATIONS DE LA DERIVATION APPLICATIONS DE LA DERIVATION 1 I. Sens de variation d une fonction ; extréma : 1) Cas d une fonction constante : On a vu que si f est une fonction constante définie sur un intervalle I de IR alors f (x)

Plus en détail

Dérivation Continuité

Dérivation Continuité Dérivation Continuité Christophe ROSSIGNOL Année scolaire 2009/2010 Table des matières 1 Nombre dérivé Fonction dérivé 2 1.1 Nombre dérivé.......................................... 2 1.2 Fonction dérivée.........................................

Plus en détail

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée I- DÉRIVÉE ET SENS DE VARIATION 1) Du sens de variation au signe de la dérivée Théorème (admis) : soit f une fonction définie et dérivable sur un intervalle I. o Si f est une fonction croissante sur I,

Plus en détail

I. Equation et inéquation du second degré

I. Equation et inéquation du second degré I. Equation et inéquation du second degré Théorème : Soient a, b et c des nombres réels avec a non nul, on appelle discriminant et on note Δ le nombre b 2 4ac. L équation ax 2 + bx + c = 0, - admet deux

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

Chapitre 2 - Continuité et convexité

Chapitre 2 - Continuité et convexité Chapitre 2 - Continuité et convexité I Rappels : sens de variation et dérivée Soit f une fonction définie et dérivable sur un intervalle I. Si la dérivée est strictement positive sur l intervalle I, alors

Plus en détail

Dérivées et applications

Dérivées et applications Dérivées et applications I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de la tangente

Plus en détail

. b a. ( ) f ( a) Soit f une fonction, définie sur un intervalle contenant le réel a, et h un réel proche de zéro.

. b a. ( ) f ( a) Soit f une fonction, définie sur un intervalle contenant le réel a, et h un réel proche de zéro. Capitre 5 : Dérivation I Nombre dérivé et tangente 1 Taux d accroissement de entre a et b Déinition Soit une onction déinie sur un intervalle contenant les réels a et b Le taux d'accroissement de la onction

Plus en détail

Chapitre 2 CONTINUITE - CONVEXITE TES

Chapitre 2 CONTINUITE - CONVEXITE TES Chapitre 2 CONTINUITE - CONVEXITE TES I Quelques rappels Définition Soit a et (a + h) appartenant à I. Dire que f est dérivable en a signifie que le taux d'accroissement entre a et a + h, τ a,h, tend vers

Plus en détail

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S I Notion de continuité 1) Fonctions continues Définition 1 : Soit f une fonction définie sur un intervalle I contenant a. Remarques : On dit que f est continue en a si lim f(x) = f(a) On dit que f est

Plus en détail

TERMINALE ES Fonctions 2/2 La convexité

TERMINALE ES Fonctions 2/2 La convexité * 1. Rappels sur la dérivation 1. Définition Soit f une fonction définie sur un intervalle I de R et a un réel de I. Soit h un nombre très petit et non nul. Alors Dire que f est dérivable en a de I signifie

Plus en détail

EXERCICE 3 (7 points )

EXERCICE 3 (7 points ) EXERCICE 3 (7 points ) Commun à tous les candidats La page annexe sera à compléter et à remettre avec la copie à la fin de l épreuve. PARTIE A On considère la fonction f définie sur l intervalle ]0; +

Plus en détail

Dérivation. I. Nombre dérivé d une fonction en un point

Dérivation. I. Nombre dérivé d une fonction en un point I. Nombre dérivé d une fonction en un point Dérivation Dans tout ce paragrape, on considère une fonction f définie sur un intervalle I et a un nombre réel de cet intervalle. ) Définition Le nombre dérivée

Plus en détail

Chapitre 3 Dérivée I EXERCICES page I-2 3 Dans chaque repère ci-dessous, tracer la droite qui passe par le point de coefficient directeur m. Les unité

Chapitre 3 Dérivée I EXERCICES page I-2 3 Dans chaque repère ci-dessous, tracer la droite qui passe par le point de coefficient directeur m. Les unité Chapitre 3 Dérivée I EXERCICES page I-1 I Exercices Comment déterminer le coefficient directeur d une droite ()? Exemple : (2, ; 2) ; (4 ; 3) (l unité du repère est un carreau) Graphiquement : on compte

Plus en détail

Fonctions de référence

Fonctions de référence Fonctions de référence 1. Rappel sens de variation d'une fonction Soit f une fonction définie sur un intervalle I de R f est croissante sur I si pour tout nombre a et b de I tels que a < b alors f(a)

Plus en détail

Continuité d une fonction, Théorème des valeurs intermédiaires

Continuité d une fonction, Théorème des valeurs intermédiaires Continuité d une fonction, Théorème des valeurs intermédiaires I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative

Plus en détail

Chapitre 2 : Fonctions QCM Pour bien commencer (cf. p. 58 du manuel)

Chapitre 2 : Fonctions QCM Pour bien commencer (cf. p. 58 du manuel) Chapitre 2 : Fonctions QCM Pour bien commencer (cf. p. 58 du manuel) Pour chaque question, il y a une ou plusieurs bonnes réponses. Exercice n 1 On considère la figure ci-dessous où cinq droites sont tracées.

Plus en détail

f : I R 2x + x2 x 1 x 2 w : R R x x h un réel non nul tel que a + h I. On considère les points A(a; f(a)) et M(a + h; f(a + h)).

f : I R 2x + x2 x 1 x 2 w : R R x x h un réel non nul tel que a + h I. On considère les points A(a; f(a)) et M(a + h; f(a + h)). 1S1: doc 5 Dérivation 2015-2016 I Pour bien commencer I.1 Limite en 0 d une fonction Soit I un intervalle contenant 0, I = I\ {0} et f : I R D é f i n i t i o n : On dit que f admet une limite finie L

Plus en détail

1 ère S 2004/2005. Ch.12. Applications de la dérivation. A P P L I C A T I O N S D E L A D É R I V A T I O N.

1 ère S 2004/2005. Ch.12. Applications de la dérivation. A P P L I C A T I O N S D E L A D É R I V A T I O N. 1 ère S 4/5 Ch1 Applications de la dérivation J TAUZIEDE A P P L I C A T I O N S D E L A D É R I V A T I O N I- DERIVEE ET SENS DE VARIATION D UNE FONCTION 1 ) Sens de variation et dérivées Théorème liant

Plus en détail

Dérivées : Rappels et compléments

Dérivées : Rappels et compléments Dérivées : Rappels et compléments I) Rappels ) Dérivabilité en un point Soit f une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative dans un repère ( O;

Plus en détail

2de Variations de fonctions Cours

2de Variations de fonctions Cours 2de Variations de fonctions Cours I. Fonction croissante, fonction décroissante Transmath : Activité 1 page 23 1. Définitions ( la courbe «monte» de gauche à droite, plus La courbe «descend» de gauche

Plus en détail

x 2 n est pas une fonction polynôme. b2 4ac. En effet, x+ b ) 2

x 2 n est pas une fonction polynôme. b2 4ac. En effet, x+ b ) 2 Lcée JANSON DE SAILLY 04 septembre 014 SECOND DEGRÉ 1 re STID I POLYNÔMES DU SECOND DEGRÉ 1 DÉFINITION Une fonction polnôme de degré est une fonction f définie surrpar f)=a + b+c où a, b, c sont des réels

Plus en détail

Chap 5. Dérivation. Pré requis : généralités sur les fonctions ; fonctions usuelles ; limite réelle d'une fonction en a.

Chap 5. Dérivation. Pré requis : généralités sur les fonctions ; fonctions usuelles ; limite réelle d'une fonction en a. Chap 5 Dérivation Pré requis : généralités sur les fonctions ; fonctions usuelles ; limite réelle d'une fonction en a. Objectifs : faire le lien entre nombre dérivé et tangente à la courbe en un point

Plus en détail

Chapitre 3. Continuité, dérivation et limite d une fonction

Chapitre 3. Continuité, dérivation et limite d une fonction Chapitre 3. Continuité, dérivation et limite d une fonction I. Continuité Définition : Continuité d une fonction Dire que f est continue en a signifie que f a une limite finie en a ; cette limite est alors

Plus en détail

Continuité d une fonction et équation

Continuité d une fonction et équation Continuité d une fonction et équation I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative sur l intervalle I se fait

Plus en détail

BTS Maintenance industrielle - Les fonctions

BTS Maintenance industrielle - Les fonctions de référence. en escaliers Une fonction en escaliers est une fonction constante par intervalles. Eemple. la fonction f définie sur [,[ - 5 6 7 8. affines Une fonction affine f est définie sur par où a

Plus en détail

Fonctions numériques : dérivation

Fonctions numériques : dérivation Fonctions numériques : dérivation Table des matières I Notion de tangente à une courbe Soit f une fonction définie sur un intervalle I de courbe représentative C f et soit A un point fixe de C f. Soit

Plus en détail

Chapitre M3 Algèbre 10 FONCTION DERIVEE

Chapitre M3 Algèbre 10 FONCTION DERIVEE TBP Chapitre M3 (A10) Page 1/7 Chapitre M3 Algèbre 10 FONCTION DERIVEE ET ETUDE DES VARIATIONS D UNE FONCTION Capacités Utiliser les formules et règles de variation pour déterminer la dérivée d une fonction.

Plus en détail

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en Chaudronnerie Industrielle Chapitre 1 Fonctions de référence...2 I Fonctions affines...2 a) Signe d'une fonction affine...2 II

Plus en détail

DÉRIVATION. Vidéos https://www.youtube.com/playlist?list=plvudmbpupcaoy7qihla2dhc9-rbgvrgwj

DÉRIVATION. Vidéos https://www.youtube.com/playlist?list=plvudmbpupcaoy7qihla2dhc9-rbgvrgwj DÉRIVATION I. Rappels Vidéos ttps://www.youtube.com/playlist?listplvudmbpupcaoy7qiladhc9-rbgvrgwj ) Fonction dérivable Définition : On dit que la fonction f est dérivable en a s'il existe un nombre réel

Plus en détail

Fonctions dérivées Applications

Fonctions dérivées Applications Fonctions dériées Applications Christophe ROSSIGNOL Année scolaire 04/05 Table des matières Quelques rappels. Nombre dérié Tangente......................................... Notion de fonction dériée.........................................3

Plus en détail

Exercices sur la fonction logarithme népérien - Corrigé

Exercices sur la fonction logarithme népérien - Corrigé Lycée Secondaire El Ksour Année Scolaire 213-214 Exercices sur la fonction logarithme népérien - Corrigé ExerciceN 1 Soient et les fonctions définies sur l intervalle par et On note C et C les courbes

Plus en détail

CONTINUITE ET CONVEXITE

CONTINUITE ET CONVEXITE CONTINUITE ET CONVEXITE I. Continuité et théorème des valeurs intermédiaires Le mathématicien allemand Karl Weierstrass (1815 ; 1897) apporte les premières définitions rigoureuses au concept de limite

Plus en détail

Première ES-L IE2 dérivation S1. a) Déterminer le taux d accroissement de la fonction f définie sur par : f(x) = 2x² - 3 en 1.

Première ES-L IE2 dérivation S1. a) Déterminer le taux d accroissement de la fonction f définie sur par : f(x) = 2x² - 3 en 1. Première ES-L IE2 dérivation 205-206 S Exercice : taux d accroissement (2 points) a) Déterminer le taux d accroissement de la fonction f définie sur par : En déduire le nombre dérivé de f en. f(x) 2x²

Plus en détail

La fonction f n est définie sur [1;3] f n est pas continue sur R. = lim(x a) lim

La fonction f n est définie sur [1;3] f n est pas continue sur R. = lim(x a) lim Lcée Camille SEE I CONTINUITÉ D UNE FONCTION DÉFINITION Soit f une fonction définie sur un intervalle I de R et a un réel appartenant à I.. Dire que f est continue en a signifie que lim a f()= f(a). Dire

Plus en détail

Fonctions. fonction constante droite parallèle à l'axe des abscisses. fonction linéaire Droite passant par l'origine

Fonctions. fonction constante droite parallèle à l'axe des abscisses. fonction linéaire Droite passant par l'origine I Image, antécédent Soit f une fonction de I dans R avec I Ϲ R. Pour tout réel y, on appelle antécédent de y par f, les réels x tels que f(x) = y. Une fonction f est définie sur I si tout x possède une

Plus en détail

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en Chaudronnerie Industrielle Chapitre Fonctions de référence...3 I Fonctions affines...3 a) Signe d'une fonction affine...3 II

Plus en détail

Première STMG. Dérivation. sguhel

Première STMG. Dérivation. sguhel Première STMG Dérivation sguhel ... 0 Chapitre 7 : Dérivation... 2 1 Introduction... 2 1.1 Equation de droite, coefficient directeur... 2 1.2 Vers la notion de tangente... 3 1.3 Approche du nombre dérivé

Plus en détail

Pour démarrer la classe de terminale S. Tout ce qu il faut savoir de la 1 re S. Paul Milan

Pour démarrer la classe de terminale S. Tout ce qu il faut savoir de la 1 re S. Paul Milan Pour démarrer la classe de terminale S Tout ce qu il faut savoir de la 1 re S Paul Milan 8 novembre 015 Table des matières 1 Second degré 7 1 Forme canonique............................. 7 Racines du

Plus en détail

Activités d approche. ACTIVITÉ 1 Vers de nouvelles formules de dérivation. Partie A : Fonction sous radical. Partie B : Fonction en puissance

Activités d approche. ACTIVITÉ 1 Vers de nouvelles formules de dérivation. Partie A : Fonction sous radical. Partie B : Fonction en puissance Dérivation. Fonctions cosinus et sinus ANALYSE Connaissances nécessaires à ce chapitre Calculer la dérivée d une fonction f Déterminer certaines caractéristiques de f à partir de f Utiliser le cercle trigonométrique,

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

Exercice 3 : La courbe représentant la fonction f est donnée ci-dessous :

Exercice 3 : La courbe représentant la fonction f est donnée ci-dessous : AP ère ES L Nombre dérivé 2 Exercice : La courbe représentant la fonction f est représentée ci-dessous. ) Donner par lecture grapique f( 2) et f(6). 2) Donner par lecture grapique f ( 2), f (2) et f (6).

Plus en détail

Remarque : une fonction continue sur un intervalle possède une représentation graphique qui

Remarque : une fonction continue sur un intervalle possède une représentation graphique qui Chapitre 6 : CONTINUITE - DERIVATION 1. CONTINUITE 1. 1 Continuité en un point Définition Soit f une fonction numérique définie sur un intervalle I de R, et a un élément de I (distinct des bornes de I)

Plus en détail

1 S DEVOIR DE MATHEMATIQUES N 4 SUJET A 5/04/ H

1 S DEVOIR DE MATHEMATIQUES N 4 SUJET A 5/04/ H S DEVOIR DE MATHEMATIQUES N SUJET A 5/0/0 H Nom prénom Exercice : Soit q un réel différent de,prouver l égalité : points + q + q + q 3 +...q n = qn+ q Exercice :. Calculer la somme des 00 premiers multiples

Plus en détail

Sujets de bac : Intégration

Sujets de bac : Intégration Sujets de bac : Intégration Sujet n 1 : Liban juin 2006 Partie A : étude d une fonction Soit la fonction définie sur l intervalle 0; par ln 1 Sa courbe représentative dans un repère orthogonal ; ; est

Plus en détail

Chapitre 2 : Dérivation et continuité T-ES2,

Chapitre 2 : Dérivation et continuité T-ES2, Chapitre 2 : Dérivation et continuité T-ES2, 206-207.Rappel sur la dérivation.. Règles de dérivation.. Dérivées des fonctions usuelles Fonction f f Fonction dérivée Domaine de validité f() = k (k R) f

Plus en détail

Sujet A. Exercice 1. Dans cette partie, les réponses seront justifiées sur la copie. 1S Devoir surveillé n 7 : lundi 4 avril 2011

Sujet A. Exercice 1. Dans cette partie, les réponses seront justifiées sur la copie. 1S Devoir surveillé n 7 : lundi 4 avril 2011 S Devoir surveillé n 7 : lundi avril 0 Sujet A Eercice Pour les parties A et B, indiquer pour chaque affirmation si elle est e ou fausse. Chaque réponse eacte rapporte un demi-point et chaque réponse fausse

Plus en détail

MATHÉMATIQUES Enseignement spécifique et de spécialité. y=e x. Ce polycopié regroupe les documents distribués aux élèves en cours d année.

MATHÉMATIQUES Enseignement spécifique et de spécialité. y=e x. Ce polycopié regroupe les documents distribués aux élèves en cours d année. T le ES MATHÉMATIQUES Enseignement spécifique et de spécialité 0,4 y y=e x 0,3 0, -3-0,1-1 0 1 N (0;1) e y=lnx 1 un+1=au n + b 0 1 e 0 1 1 1 1 0 0 1 0 1 0 0 x Ce polycopié regroupe les documents distribués

Plus en détail

1. Généralités sur les fonctions et fonctions polynômes

1. Généralités sur les fonctions et fonctions polynômes Comment faire pour Généralités sur les fonctions et fonctions polnômes86 Repérage 88 Dérivation90 Comportements asmptotiques et étude de fonctions9 5 Calcul vectoriel et barcentre 96 6 Produit scalaire

Plus en détail

Chapitre 5 : Fonctions de référence et fonctions associées

Chapitre 5 : Fonctions de référence et fonctions associées Chapitre 5 : Fonctions de référence et fonctions associées I) Sens de variation d une fonction Définition : Soit une fonction définie sur un intervalle I. Dire que : est croissante sur I signifie que pour

Plus en détail

Fonctions - Dérivabilité Cours maths Terminale S

Fonctions - Dérivabilité Cours maths Terminale S Fonctions - Dérivabilité Cours maths Terminale S Dans ce module, retour sur la notion de nombre dérivé vue en première. La classe de terminale s attardant plus longuement sur le problème de la dérivabilité

Plus en détail

1S DS n o 5 Durée :1h. ( 4 points ) Exercice 1

1S DS n o 5 Durée :1h. ( 4 points ) Exercice 1 1S DS n o 5 Durée :1 Exercice 1 ( points ) Voici la courbe représentative C f d une fonction f définie sur [ 6; 9] avec quatre de ses tangentes. Le point A de coordonnées ( 2, ; 0), appartient à la courbe

Plus en détail

Nombre dérivé. Tangente et approximation affine. Définitions :

Nombre dérivé. Tangente et approximation affine. Définitions : Nombre dérivé S T f ' (a) a f(a+) M f(a)+f'(a) N 0.6 f'(a) f(a) A P Approimation affine : f(a)+f ' (a) 0.6 Valeur eacte : f(a+).98 Différence :.38 a a+ variable (ou ) Définitions : f( a + ) f( a) une fonction

Plus en détail

Dérivation. Hervé Hocquard. 5 novembre Université de Bordeaux, France

Dérivation. Hervé Hocquard. 5 novembre Université de Bordeaux, France Dérivation Hervé Hocquard Université de Bordeaux, France 5 novembre 2012 Nombre dérivé Définition Soit f une fonction définie sur un intervalle I, et a un point de I. On dit que f est dérivable en a lorsque

Plus en détail

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan.

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. Polynésie juin 005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. 1 a) Déterminer les limites de la fonction aux bornes de

Plus en détail

Exercices supplémentaires Dérivation

Exercices supplémentaires Dérivation Exercices supplémentaires Dérivation Partie A : Lecture graphique et tracé de tangente Exercice Lire graphiquement le coefficient directeur s il existe de chacune des droites représentées ci-dessous. -

Plus en détail

Fiche 10 Taux d accroissement Dérivée Variations d une fonction

Fiche 10 Taux d accroissement Dérivée Variations d une fonction Université Paris Est Créteil DAEU Fiche 10 Taux d accroissement Dérivée Variations d une fonction 1 Taux de variation Dans cette fiche on découvre l outil qui permet d obtenir de manière directe les variations

Plus en détail

3. En donner une interprétation graphique. 3 [ par f(x) = ln(-2x + 3) + 2x.

3. En donner une interprétation graphique. 3 [ par f(x) = ln(-2x + 3) + 2x. T ES Mathématiques DS 5 le 18/01/01 Exercice 1 (5,5 POINTS ) On considère une fonction f définie et dérivable sur l intervalle [- ; 4]. On note f la fonction dérivée de la fonction f. La courbe C f, tracée

Plus en détail

Devoir surveillé n 5 19 janvier 2011

Devoir surveillé n 5 19 janvier 2011 Devoir surveillé n 5 19 janvier 2011 Term ES Eercice 1 : (4 points) Soit f une fonction définie et dérivable sur R. On a tracé ci-contre sa courbe représentative C dans un repère orthonormal. On note f

Plus en détail

CONTINUITÉ. Vidéos https://www.youtube.com/playlist?list=plvudmbpupcaop_sqt3bq3q6otr6qxodut

CONTINUITÉ. Vidéos https://www.youtube.com/playlist?list=plvudmbpupcaop_sqt3bq3q6otr6qxodut 1 CONTINUITÉ I. Rappels sur la dérivation Vidéos https://www.youtube.com/playlist?list=plvudmbpupcaop_sqt3bq3q6otr6qxodut Fonction f Ensemble de définition de f Dérivée f ' Ensemble de définition de f

Plus en détail

Dérivées et primitives I. RAPPELS SUR LES DROITES ET LES FONCTIONS AFFINES

Dérivées et primitives I. RAPPELS SUR LES DROITES ET LES FONCTIONS AFFINES Chapitre 2 Dérivées et primitives I. RAPPELS SUR LES DROITES ET LES FONCTIONS AFFINES Une fonction affine est une fonction définie sur R par : f (x)=ax+b, avec a et b réels. La représentation graphique

Plus en détail

Chapitre 3 : Limites de fonctions Terminale ES 2, , Y. Angeli

Chapitre 3 : Limites de fonctions Terminale ES 2, , Y. Angeli Chapitre 3 : Limites de fonctions -28-09-- Terminale ES 2, 20-202, Y. Angeli. Notion de ite : les différentes situations. Le plan est muni d un repère orthogonal (; ı, j). Dans ces illustrations, a et

Plus en détail

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3 LOGARITHME Ph DEPRESLE 9 juin 5 Table des matières Fonction logarithme népérien. Définition............................................... Conséquences............................................ 3 Propriétés

Plus en détail

I. Fonction de référence

I. Fonction de référence I. Fonction de référence Fonction x x 2 x x 3 x x x x Nom Domaine de définition x 3 2,5 2,5 0,5 0 0,5,5 2 2,5 3 Tableau de valeurs x² x 3 x /x Graphes Extremum Eléments de symétrie de la courbe Fonctions

Plus en détail

Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. Lorsque le rapport

Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. Lorsque le rapport Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID I NOMBRE DÉRIVÉ DÉFINITION Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. f() f(a) Lorsque le rapport admet une

Plus en détail

Fonctions Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Fonctions Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Fonctions Numériques Site MathsTICE de Adama Traoré Lcée Technique Bamako A- / Ensemble de définition d une fonction : - / Définition : Soit f : A B une fonction. On appelle ensemble de définition D f

Plus en détail

Formulaire des fonctions usuelles

Formulaire des fonctions usuelles Université d Orléans Formulaire des fonctions usuelles Licence 1 de Mathématiques Groupe 2 Baptiste Morelle 29/09/2008 Page 1 sur 28 Page 2 sur 28 Table des matières Fonctions particulières... 4 Fonction

Plus en détail

Notion de continuité sur un intervalle. I. Notion de dérivée et tangente à une courbe en un point

Notion de continuité sur un intervalle. I. Notion de dérivée et tangente à une courbe en un point Capitre 3 Term. ES Notion de continuité sur un intervalle Ce que dit le programme : CONTENUS Notion de continuité sur un intervalle CAPACITÉS ATTENDUES Exploiter le tableau de variation pour déterminer

Plus en détail

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles.

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles. TS - Maths - D.S.5 Samedi 17 janvier 015-4h Spécialités : SVT - Physique Exercice 1 (5 points) Pour les candidats n ayant pas suivi l enseignement de spécialité Pour chaque proposition, indiquer si elle

Plus en détail

2 Généralités sur les fonctions

2 Généralités sur les fonctions Chapitre Généralités sur les fonctions. Fonctions usuelles.. Fonction racine carrée Définition. On appelle fonction racine carrée la fonction définie sur R + par x x. Théorème. La fonction racine carrée

Plus en détail

DERIVATION. ou f'(x 0 ) = lim. h 0

DERIVATION. ou f'(x 0 ) = lim. h 0 DERIVATION I. DE LA TANGENTE A LA DERIVABILITE a) Tangente et nombre dérivé Aux origines la dérivation, était un problème purement géométrique : il s'agissait de connaître le coefficient directeur ou pente

Plus en détail

EXERCICES CONTINUITÉ

EXERCICES CONTINUITÉ EXERCICES CONTINUITÉ On sait déjà calculer l aire de polygone, mais qu en est-il de figure dont les côtés ne sont pas des segments? Exercice 1. On cherche l aire A de la figure délimitée, sur l intervalle

Plus en détail

Convexité Convexité

Convexité Convexité Conveité 10.1. Conveité 1. Fonctions convees, fonctions concaves Définitions : f est une fonction dérivable sur un intervalle I et C sa courbe représentative dans un repère. Dire que f est convee sur I

Plus en détail

Dérivation - Correction

Dérivation - Correction Dérivation - Correction Exercice 1 1. La fonction f(x) = 2x 3 est-elle dérivable en 0? f(x) f(0) x 0 = 2x 3 + 3 x Donc, la fonction f(x) = 2x 3 est dérivable en 0 et vaut 2. = 2x x = 2 2. La fonction g(x)

Plus en détail

Dérivation et fonctions trigonométriques

Dérivation et fonctions trigonométriques Dérivation et fonctions trigonométriques 1. Compléments sur la dérivation Théorème. Soit une fonction à valeurs positives dérivable sur un intervalle. Alors est dérivable sur et. Soit. La fonction est

Plus en détail

NOMBRE DÉRIVÉ ET TANGENTE

NOMBRE DÉRIVÉ ET TANGENTE CLSSE DE STG NOMBRE DÉRIVÉ ET TNGENTE NOMBRE DÉRIVÉ ET TNGENTE. Nombre dérivé.. Définition. Soit une fonction représentée par la courbe C On considère la tangente T, au point d abscisse Le coefficient

Plus en détail

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α.

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α. Eercice 1: (7 points) Nouvelle-Calédonie novembre 2010 TS4 DS5 19/01/11 Soit la fonction définie sur l intervalle [1 ; + [ par ϕ() = 1+ 2 2 2 ln(). 1. a. Étudier le sens de variation de la fonction ϕ sur

Plus en détail

Exercices et Annales Maths Terminale S

Exercices et Annales Maths Terminale S Stages intensifs Exercices et Annales Maths Terminale S www.groupe-reussite.fr contact@groupe-reussite.fr 1 Chapitre 1 Fonction exponentielle, logarithme népérien et logarithme décimal 1.1 Exercices préliminaires

Plus en détail

Documents pour l étudiant : Chapitre III : continuité

Documents pour l étudiant : Chapitre III : continuité 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Gestion MATH101 : Pratique des Fonctions numériques Documents pour l étudiant : Chapitre III : continuité Notations

Plus en détail

Continuité Compléments de dérivation

Continuité Compléments de dérivation Continuité Compléments de dérivation Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Notion de continuité 1.1 Limite finie en un réel a......................................... 1. Définitions

Plus en détail

Limite d une fonction en un point

Limite d une fonction en un point Limite d une fonction en un point Définiton Soit f une fct déf. sur un intervalle I de R, sauf p-ê en a I. l R est la limite de f en a si, quand x I se rapproche de a, f (x) se rapproche de l. Dans ce

Plus en détail

Généralités sur les fonctions

Généralités sur les fonctions Généralités sur les fonctions I Ensemble de définition On appelle fonction f un procédé, qui, à tout nombre x d un ensemble, associe un nombre f (x). Définition : L ensemble de définition d une fonction

Plus en détail

Synthèse de cours PanaMaths Fonctions dérivables convexes

Synthèse de cours PanaMaths Fonctions dérivables convexes Synthèse de cours PanaMaths Définitions et eemples fondamentau Définitions à un point Soit C sa courbe représentative dans un repère tel que l ae des ordonnées est orienté du bas vers le haut La fonction

Plus en détail

Dérivation, cours, terminale S

Dérivation, cours, terminale S Dérivation, Dérivation, 27 septembre 2016 Définitions : Soit f une fonction définie sur un intervalle I contenant a. Dire que f est dérivable en a de nombre dérivé f (a), signifie que le taux d accroissement

Plus en détail

La fonction carré est la fonction définie pour tout réel x par f(x)=x 2

La fonction carré est la fonction définie pour tout réel x par f(x)=x 2 Lcée JANSON DE SAILLY I FONCTION CARRÉ DÉFINITION La fonction carré est la fonction définie pour tout réel par f)= 2 PROPRIÉTÉS Un carré est toujours positif ou nul. Pour tout réel, on a 2 0. Un nombre

Plus en détail

I- DÉRIVATION EN UN POINT. 1) Taux de variation. 2) Nombre dérivé. f est une fonction définie sur un intervalle I, a et a + h sont deux réels de I.

I- DÉRIVATION EN UN POINT. 1) Taux de variation. 2) Nombre dérivé. f est une fonction définie sur un intervalle I, a et a + h sont deux réels de I. I- DÉRIVATION EN UN POINT 1) Taux de variation Définition : pour toute fonction numérique f définie sur un intervalle I, et a, b deux réels distincts de I, le taux de variation de f entre a et b est le

Plus en détail

Exemple : déterminer la dérivée f de la fonction f définie sur [1 ; + [ par : f(x) = 5x 2.

Exemple : déterminer la dérivée f de la fonction f définie sur [1 ; + [ par : f(x) = 5x 2. Chapitre III : Dérivées de fonctions composées et primitives I. Dérivées de fonctions composées a) Formule Propriété : g est une fonction dérivable sur un intervalle J. u est une fonction dérivable sur

Plus en détail

L ensemble de définition de la fonction inverse est l ensemble des réels non nuls noté Ê, c est la réunion de deux intervalles ] ;0[ ]0;+ [

L ensemble de définition de la fonction inverse est l ensemble des réels non nuls noté Ê, c est la réunion de deux intervalles ] ;0[ ]0;+ [ I FONCTION INVERSE DÉFINITION La fonction inverse est la fonction définie pour tout réel x 0 par f(x)= x. ENSEMBLE DE DÉFINITION L ensemble de définition de la fonction inverse est l ensemble des réels

Plus en détail

I. Limite en et en 1. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [

I. Limite en et en 1. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [ A. Limites d'une fonction I. Limite en et en. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [ où a R. DÉFINITIONS Soit l un réel.

Plus en détail

Tom utilise Xcas, un logiciel de calcul formel, qui affiche les résultats suivants :

Tom utilise Xcas, un logiciel de calcul formel, qui affiche les résultats suivants : Cours DERIATION 0 ACTIITE DERIATION et CALCUL FORMEL - Odyssée Le professeur de mathématiques a donné le «devoir maison» suivant : Tom utilise Xcas, un logiciel de calcul formel, qui affiche les résultats

Plus en détail

5. f(x) = x x en x = f(x) = (x 1) 1 x 2 en x = f(x) = (x 1) 1 x 2 en x = 1. (plus difficile) Aide

5. f(x) = x x en x = f(x) = (x 1) 1 x 2 en x = f(x) = (x 1) 1 x 2 en x = 1. (plus difficile) Aide de la ère S à la TS. I Exercices Dérivabilité Étudier la dérivabilité des fonctions suivantes au point demandé. f(x) = x 2 en x = 3 (Revenir à la définition du nombre dérivé) 2. f(x) = x en x =. 3. f(x)

Plus en détail

Chapitre 1 : Fonctions (généralités) Troisième partie : La dérivation

Chapitre 1 : Fonctions (généralités) Troisième partie : La dérivation Chapitre : Fonctions (généralités) Troisième partie : La dérivation Nombre dérivé Définition : Soit f une fonction définie sur un intervalle I contenant le réel a. On dit que f est dérivable en a lorsque

Plus en détail

Etude de la fonction bénéfice B telle que B(x) = -9x² + 450x 4050 pour un prix des places x variant de 0 à 50 : x [0 ; 50]

Etude de la fonction bénéfice B telle que B(x) = -9x² + 450x 4050 pour un prix des places x variant de 0 à 50 : x [0 ; 50] Fonctions du second degré - Exemple d étude d un problème. Activité. La recette R(x) d un spectacle dépend du prix x de la place suivant la relation R(x) = 450x 9x². Pour chaque spectacle, les frais fixes

Plus en détail

Chacune des fonctions définies ci-dessous est dérivable sur l intervalle I qui est indiqué. Calculer les dérivées de ces fonctions.

Chacune des fonctions définies ci-dessous est dérivable sur l intervalle I qui est indiqué. Calculer les dérivées de ces fonctions. CHPITRE 4. DÉRIVTION Capitre 4 Dérivation I Exercices 4. Cacune des fonctions définies ci-dessous est dérivable sur l intervalle I qui est indiqué. Calculer les dérivées de ces fonctions. 4.2. fpxq 9x

Plus en détail

FICHE METHODE : THEOREME DES VALEURS INTERMEDIAIRES

FICHE METHODE : THEOREME DES VALEURS INTERMEDIAIRES 1 FICHE METHODE : THEOREME DES VALEURS INTERMEDIAIRES Ci-après figure le tableau de variations d une fonction définie sur R 1) Déterminer le nombre de solutions de l équation = 2) Déterminer le nombre

Plus en détail

DERIVATION I. DE LA TANGENTE A LA DERIVABILITE. a) Tangente et nombre dérivé. Ch2 : Dérivation (TES)

DERIVATION I. DE LA TANGENTE A LA DERIVABILITE. a) Tangente et nombre dérivé. Ch2 : Dérivation (TES) DERIVATION I. DE LA TANGENTE A LA DERIVABILITE a) Tangente et nombre dérivé Aux origines la dérivation, était un problème purement géométrique : il s'agissait de connaître le coefficient directeur ou pente

Plus en détail

FONCTIONS. représente une fonction. ne représente pas une fonction

FONCTIONS. représente une fonction. ne représente pas une fonction FONCTIONS Activité de recherche : Stratégie d entreprise Une entreprise fabrique des ballons de rugby. Sa production quotidienne peut varier de à 000 ballons. Le coût total, en centaines d euros, pour

Plus en détail