( v) L r. r r. Chapitre III : Le Moment Cinétique en Mécanique Quantique. III-1) Le moment cinétique en Mécanique Classique : Son importance.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "( v) L r. r r. Chapitre III : Le Moment Cinétique en Mécanique Quantique. III-1) Le moment cinétique en Mécanique Classique : Son importance."

Transcription

1 Capte III : e Moent Cnétque en Mécanque Quantque III-) e oent cnétque en Mécanque Classque : on potance. On défnt le oent cnétque pa la quantté vectoelle. p ( v) v On pale de oent cnétque obtal pusqu l est elé au ouveent (taectoe) de l obet pa appot à O. O On a donc : p p p p p p

2 Il est potant de éalse c l potance qu a le oent cnétque en Mécanque classque. upposons qu un sstèe sot sous à une foce centale F c dp Fc Fc u ; Fc dt d d d ( p) ( ) p dt dt dt d v p Fc dt d dt ( p) On aboutt à un ésultat etêeent potant : e oent cnétque est une constante du ouveent dans un poblèe de foces centales. Ce ésultat este valable dans le cas de tout sstèe solé quelque sot la foce agssant su le sstèe. (o de consevaton du oent cnétque)

3 III-) Obsevables assocées au Moent Cnétque en Mécanque Quantque. On va pouvo assoce pluseus obsevables au oent cnétque : une à cacune de ses coposantes et une au odule du vecteu epésentant ( ) ( ) YP XP XP ZP ZP YP.

4 III-3) es ègles de coutaton des obsevables de oent cnétque. Défnton d une obsevable de la écanque quantque epésentant une obsevable de oent cnétque. Calculons les coutateus suvants : [ ] ( ) ( YP ZP )( ZP XP ) ( ZP XP )( YP ZP ) ( YP ) Z P YP X P Z P Z P Z P X P ( Z P YP X P YP Z P Z P X P Z P ) ( YP P Z XYP Z P P XP ZP ) ( YP ZP XYP Z P P XP P Z ) YP ( ) ( P Z ZP ) XP ZP P Z YP [ ] [ ] P Z XP Z P YP ( ) XP ( ) [ ] ( XP ) YP

5 On obtent de êe : [ ] [ ] Et On constate que les obsevables assocées au dfféentes coposantes d un oent cnétque ne coutent pas ente elles. Il ne set donc à en dans un poblèe de Mécanque Quantque de voulo conseve enseble ces tos obsevables qu n auont pas de vecteus popes couns. Nous allons cependant onte un ésultat potant concenant la coutaton ente une quelconque des coposantes et le odule du oent cnétque. Calculons pa eeple le coutateu : [ ]

6 [ ] [ ] [ ] [ ] [ ] [ ] [ ] ( ) ( ) [ ] ( ) ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) ( ) I

7 Fnaleent on obtent : [ ] On déonte de la êe façon que : [ ] [ ] On constate que pou établ la téoe d un oent cnétque l sufft de gade Une seule des coposantes et [ ] ( ) [ ] ( ) [ ] ( ) En ésué Cette elaton consttue la défnton tout à fat généale d un oent cnétque Quantque.

8 III-4) a téoe généale des oents cnétques. Coe ndqué pécédeent toute obsevable vectoelle Ĵ telle que : epésente nécessaeent une gandeu de Moent Cnétque. 4-) Popétés des opéateus et On défnt les opéateus : Ces deu opéateus ouent un ôle cental dans la téoe quantque des oents cnétques. On constate que ces deu opéateus ne sont pas etques: Ils ne peuvent donc epésente des gandeus psques esuables. ( ) * ( ) * ( ) * ( ) *

9 Il est potant de connate les elatons de coutaton de ces opéateus : [ ] [ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) [ ] ( ) ( ) [ ] ( ) ( ) ( ) [ ] [ ]

10 [ ] [ ] [ ] Nous avons égaleent les elatons potantes suvantes : ( )( ) ( )( ) On a donc : ( ) ( ) [ ]

11 On en dédut donc : 4-) es équatons au valeus popes des obsevables de Moent cnétque. On cost de conseve les obsevables et. On dt que l on cost O coe ae de quantfcaton. Coe les obsevables coutent on a donc de façon tout à fat généale : Ĵ Ĵ ψ μ ψ μ λ ψ λ ψ éels.

12 unté de oent cnétque peut ête cose en unté de μ λ β on ave à déonte que les deu obsevables foent un ECOC de l espace des états du oent α cnétque E on auat alos : ψ α β Pou des asons que l on eplctea pa la sute nous allons pose : β α ( ) es équatons au valeus popes vont donc s éce : ( ) A pat des popétés des opéateus et décts plus aut on déonte

13 -I) Une peèe elaton tès potante : - es valeus de ne peuvent cange que pa saut de - II) Une elaton tès potante au nveau de l acton des opéateus et su les kets ( ) ( ) -III) es valeus de touous postves sont nécessaeent entèes ou deentèes. Ans :

14 ( ) [ ] [ ] [ ] [ ] [ ] [ ] Ε 4 3 ; ; ; d / Nous voons que pou caque valeu de nous avons () valeus de possbles. a denson de l espace des états d un oent cnétque est donc E III-5) Matces standad epésentants les oent cnétques. C est le cas potant coespondant au spn /

15 III-8) addton des oents cnétques. 8-) Poston du poblèe. On veut pouvo calcule le ésultat de l addton de pluseus oents cnétques. C est un poblèe dffcle as : ) on sat addtonne deu oents cnétques à po on saua en addtonne une nfnté. ) addton de deu oents cnétques se fat touous dans des espaces de Hlbet dfféents. Ε Ε Ε Ε Ε Ε Ε N d( Ε) d( Ε ).d( Ε ).d( Ε ).d( Ε )...d( Ε ( )( )( )(... )..( ) N N )

16 8-) addton de deu oents cn addton de deu oents cnétques tques. ot à addtonne Nous connassons les équatons au valeus popes assocées à et ) ( Dans E de denson ( ) Dans E de denson ( ) ) ( Nous désons connate antenant les solutons de ces équatons pou et dans l espace E E E de denson ( )( ) Dans la esue où les opéateus de oents cnétques assocés à () et () agssent dans des sous-espaces dfféents pluseus splfcatons peuvent ête fates.

17 es kets foent encoe une base possble de E On notea ces kets spleent : { } Ils foeont ce que l on appelle la base non-couplée de E. Ils coespondent à l ECOC : { } e poblèe que nous encontons est le suvant : Dans un sstèe psque seul le oent cnétque total est une constante du ouveent. En ce sens les oents cnétques ndvduels pedent beaucoup de leu ntéêt. Cette «pete d ntéêt» se anfeste dès l nstant où nous cecons à eplcte les ègles de coutaton ente les nouvelles obsevables. En fat nous connassons déà la soluton : Dans l espace des états de denson E on dot utlse les équatons au valeus popes de à savo : et ( )

18 Il a quelques ègles sples à connaîte concenant l addton de ces oents cnétques; Il este pluseus valeus de possbles. Eeple : ot a addtonne 3 et d : 7 4 es valeus possbles de sont : 7 I et II Pou caque valeu de nous avons : 5 II I II I valeus I valeus II 8 6

19 III-9) e Moent Cnétque de pn 9-) e spn éléentae. s e spn éléentae est la quantté nu de oent cnétque que l on peut touve dans la natue. Cette quantté n a aucune équvalence en écanque classque. a défnton est le suvante : e spn éléentae est la quantté de oent cnétque pésentée pa cetanes patcules dans leu epèe au epos. A cette gandeu psque coespond une obsevable vectoelle défne pa : Cette quantté est donc un oent cnétque l obsevable agt dans un espace de Hlbet à deu densons que nous notons : E

20 [ ] [ ] [ ] [ ] [ ] [ ] 4 3 es équatons au valeus popes dans l ECOC s écvent : { } s s s s s s s s s s s s Ou encoe Ou encoe

21 9-) e spn de l électon et le oent agnétque de l électon. Un ésultat tès potant pou les futues applcaton ésde dans le fat que le spn de l électon (pa eeple) est assocé à un oent agnétque de spn. Ce ésultat généal povent du fat que tout oent cnétque d une patcule cagée est assocé à un oent agnétque Cec se déonte tès ben dans le cas du ouveent obtal d un électon : v. e Nous avons : I π v. e μ I. μ. π π e v e l e oent agnétque est dgé selon la decton opposée de l e μ. l μb l où μ B e I -e v est le agnéton de Bo /T

22 Pa analoge un oent cnétque est assocé au spn de l électon : μ e μb s a pésence du facteu n est pas sple à déonte

VECTEURS ET SCALAIRES

VECTEURS ET SCALAIRES Vecteus et scalaes VECTEURS ET SCLIRES Le peme cous «nalse vectoelle» a été publé pa Wlson et Gbbs, en 90. Ce cous eposat su les tavau de Hamlton, Cauch, Gassman et Mawell. Dès los, les équatons qu décvent

Plus en détail

PSI Les Ulis Cours CI8 DYNAMIQUE DES SYSTEMES. Dynamique des systèmes de solides

PSI Les Ulis Cours CI8 DYNAMIQUE DES SYSTEMES. Dynamique des systèmes de solides SI Les Uls Cous CI8 DYNMIQUE DES SYSTEMES Dynaque es systèes e soles Objectf fnal : En pésence un systèe technque nustel coposé e soles ges en ouveent elatf sous l acton effots extéeus, vous evez ête capable

Plus en détail

Module 2 : L analyse en composantes principales - Exercices préparatifs

Module 2 : L analyse en composantes principales - Exercices préparatifs Analyse de données Module : L analyse en composantes pncpales - Eecces pépaatfs M Module : L analyse en composantes pncpales - Eecces pépaatfs L analyse en composantes pncpales est notée ACP. Elle s applque

Plus en détail

Liaisons entre Solides d un mécanisme

Liaisons entre Solides d un mécanisme cences Industelles Cous Lasons nomalsées ente soldes Lasons ente oldes d un mécansme 1èe pate : LIION NORMLIEE ENTRE OLIDE 1.1. BUT DE L MODELITION...3 1.2. CRCTERITIQUE GEOMETRIQUE DE LIION NORMLIEE...3

Plus en détail

P= m g. Figure 1. j, r. i, r. et f.

P= m g. Figure 1. j, r. i, r. et f. 1 1 MOUVEMENT D UN CYLINDRE SUR UN PLAN INCLINÉ On consdèe un cylnde homogène, de ayon R, de hauteu h, de densté volumque σ v et de masse m. Ce cylnde oule sans glsse su un plan nclné fasant un angle avec

Plus en détail

CHAMP ELECTRIQUE. Matière : Physique Chimie. Niveau : 1 Bac S.M. I) Electrisation de la matière:

CHAMP ELECTRIQUE. Matière : Physique Chimie. Niveau : 1 Bac S.M. I) Electrisation de la matière: Matèe : Physque Chme Nveau : 1 Bac S.M CHAMP ELECTRIQUE I) Electsaton de la matèe: 1) Electsaton pa fottement : Cetanes cops "pegne, ègle, stylo,...", losqu on les fotte, sont susceptbles de povoque des

Plus en détail

Cinématique du point

Cinématique du point Scences Cnématque du pont Cnématque du pont 1REPERE D'ESPACE ET REPERE DE TEPS2 11L'ESPACE PHYSIQUE2 111 Repésentaton géométque d un espace affne 2 112 Popétés des espaces vectoels2 113 Repésentaton géométque

Plus en détail

Rappels cours précédent

Rappels cours précédent Plan du cous: Raels cous écédent I II IV V Hstoque de la bomécanque Notons de mécanque -> Pnces Fondamentaux Muscles et bomécanque atculae Alcaton aux athologes La lo d acton éacton (3e lo de Newton) F

Plus en détail

II MOMENTS - TORSEURS

II MOMENTS - TORSEURS II OENTS - TORSEURS Le torseur est l'outl prvlégé de la mécanque. Il sert à représenter le mouvement d'un solde, à caractérser une acton mécanque et à formuler le PFD (prncpe fondamental de la dynamque),

Plus en détail

10: Systèmes de plusieurs objets

10: Systèmes de plusieurs objets : Systèmes de pluseus objets I.Comment déct-on le mouvement lnéae d un système d objets? Le cente de masse () La dynamque et l énege mécanque d un système de objets II.Qu est-ce qu met un objet ndéfomable

Plus en détail

Une voiture de masse 1200kg (considérée comme un point matériel!) monte une côte à α=5? avec une vitesse constante de v=36 km/h.

Une voiture de masse 1200kg (considérée comme un point matériel!) monte une côte à α=5? avec une vitesse constante de v=36 km/h. Exercce I : La ontée en oture Une oture de asse 00kg (consdérée coe un pont atérel!) onte une côte à α=5? aec une tesse constante de =36 k/h. a)- Calculez le traal que ournt le oteur en 5 n. b)- Quelle

Plus en détail

α Epaisseur tôle : e = 0,05m (considéré négligeable devant R) Masse volumique porte : ρ = 7800 km/m 3 R α = π/3

α Epaisseur tôle : e = 0,05m (considéré négligeable devant R) Masse volumique porte : ρ = 7800 km/m 3 R α = π/3 Cous 7 - éoéte des Masses ycée Bellevue Toulouse - CE M éoéte des Masses ( a asse éléentae d( est défne en foncton de la natue de la odélsaton du systèe atéel étudé : Modélsaton voluque (cas généal : d(

Plus en détail

La Rotation, la vibration et l'énergie moléculaire Cas des molécules diatomiques

La Rotation, la vibration et l'énergie moléculaire Cas des molécules diatomiques La Rotaton, la vbaton et l'énege moléculae Cas des molécules datomques 1. Rappels de mécanque 1.1. Les coodonnées polaes y' j y O Pou expme le vecteu poston OM Dans le système de coodonnées polaes, le

Plus en détail

Energétique des systèmes de solides

Energétique des systèmes de solides I Les Uls Cous CI9 : Eneétque Eneétque es sstèmes e soles oblématque : Le théoème e l énee cnétque EC applqué à un sstème e soles onne une elaton scalae ente les paamètes cnématques u mouvement les caactéstques

Plus en détail

II 10-2 Théorèmes des travaux virtuels

II 10-2 Théorèmes des travaux virtuels II 10-2 Théoèmes des tavaux vtuels Phlppe.Boullad@ulb.ac.be veson 26 septembe 2006 Théoèmes des tavaux vtuels Motvaton Poblème de l élastcté Notatons - taval des foces éeues Théoèmes des tavaux vtuels

Plus en détail

Le vol en virage Quelques clarifications

Le vol en virage Quelques clarifications e ol en age Quelques clafcatons E Bonand Su la Vllaz M, CH-1742 Autgny; etennebonand@maccom Résumé : dans pluseus ouages, les foces execées su l'aon los du ol en age sont epésentées de façon eonée 'objet

Plus en détail

Mécanique du Solide. Année Mohammed Loulidi. Laboratoire de Magnétisme et Physique des Hautes Energies

Mécanique du Solide. Année Mohammed Loulidi. Laboratoire de Magnétisme et Physique des Hautes Energies Flèe cences athématques et Infomatque Flèe cences de la atèe hysque écanque du olde Année 8 ohammed Lould Laboatoe de agnétsme et hysque des Hautes Eneges Dépatement de hysque Faculté des cences Unvesté

Plus en détail

Chapitre 4.1 Le champ magnétique

Chapitre 4.1 Le champ magnétique Chapite 4.1 Le chap agnétique La découete du agnétise On peut accode au Gec de l antiquité la découete du agnétise apès aoi découet pès de la ille de Magnésie un inéal qui aait la popiété d attie le fe.

Plus en détail

Chapitre 1.5a Le champ électrique généré par plusieurs particules

Chapitre 1.5a Le champ électrique généré par plusieurs particules hapte.5a Le chap électque généé pa pluseus patcules Le chap électque généé pa pluseus chages fxes Le odule de chap électque d une chage ponctuelle est adal, popotonnel à la chage électque et neseent popotonnel

Plus en détail

Chapitre 4.8 L énergie, le travail et la puissance en rotation

Chapitre 4.8 L énergie, le travail et la puissance en rotation Chaptre 4.8 L énerge, le traval et la pussance en rotaton Une roue qu roule sans glsser Une roue qu roule sans glsser sur une surace de contact peret à celle-c d eectuer une translaton et une rotaton.

Plus en détail

COURS L2- PC, E2i (ESGT, ENSIM),), L2-MATH Partie II: Magnétostatique. Objectifs. 1. Exemples d applications du champ magnétique

COURS L2- PC, E2i (ESGT, ENSIM),), L2-MATH Partie II: Magnétostatique. Objectifs. 1. Exemples d applications du champ magnétique COURS L- PC, E (ESGT, ENSM),), L-MATH Pate : Magnétostatque Objectfs obnes de Helmholtz 1. Exemples d applcatons du champ magnétque. Etude le champ magnétque cée pa des couants constants (Lo de ot-savat,

Plus en détail

CHAPITRE 1 L ÉLECTROSTATIQUE

CHAPITRE 1 L ÉLECTROSTATIQUE L électostatque Chapte 1 CHAPITRE 1 L ÉLECTROSTATIUE 1.1 Intoducton La chage est une popété de la matèe qu lu fat podue et sub des effets électques et magnétques. On dstngue : - l'électostatque qu est

Plus en détail

LA REGULATION P.I.D. 1. Introduction

LA REGULATION P.I.D. 1. Introduction . Intoducton LA REGULATION P.I.D Encoe utlsé en ason du pods du passé, à la fos matéel et cultuel : matéel : gâce à la découvete de l ampl cateu opéatonnel, le peme P.I.D. est commecalsé en 930; pus dans

Plus en détail

Corrigés d exercices pour le TD 3

Corrigés d exercices pour le TD 3 Corrgés d eercces pour le TD 3 N héstez pas à relever les éventuelles fautes dans ce document! Sot (E, d) un espace vectorel mun d une dstance vérfant Pour tous, y E et λ R, d(λ, λy) = λ d(, y). Pour tous,

Plus en détail

VI INERTIE GEOMETRIE DES MASSES

VI INERTIE GEOMETRIE DES MASSES VI INERTIE EOMETRIE DE ME Dans l étude de la dynamque des systèmes matérels et des soldes l est mportant d étuder la répartton géométrque des masses, afn d exprmer smplement les concepts cnétques qu apparassent

Plus en détail

9. Émettre des ondes électromagnétiques

9. Émettre des ondes électromagnétiques 9. Émette des ondes électomagnétiques Le dipôle oscillant est la souce d ondes électomagnétiques la plus simple. Son étude détaillée nous pemetta d abode les caactéistiques essentielles des antennes. Los

Plus en détail

Physique quantique. Dans l UF Physique Quantique et Statistique. 3ème année IMACS. Pierre Renucci (cours) Thierry Amand (TDs)

Physique quantique. Dans l UF Physique Quantique et Statistique. 3ème année IMACS. Pierre Renucci (cours) Thierry Amand (TDs) Physque quantque Dans l UF Physque Quantque et Statstque ème année IMACS Pee enucc cous They Aman TDs Objectfs UF Nanophysque I : De l Optque onulatoe à la Photonque et aux Nanotechnologes La physque quantque

Plus en détail

Vecteur déplacement. Inertie et 1 ère loi de Newton. Vitesse moyenne et instantanée. Accélération moyenne et instantanée

Vecteur déplacement. Inertie et 1 ère loi de Newton. Vitesse moyenne et instantanée. Accélération moyenne et instantanée Inetie et èe loi de Newton «L inetie d un obet est sendance à ésiste à toute aiation de son état de mouement.» l inetie est la ésistance au changement «Tout cops au epos consee son état de epos et tout

Plus en détail

Notes de cours d électrostatique (classes préparatoires) Exercices et examens corrigés. Zouhaier HAFSIA. Saliha NOURI

Notes de cours d électrostatique (classes préparatoires) Exercices et examens corrigés. Zouhaier HAFSIA. Saliha NOURI Insttut épaatoe au Etudes d Ingéneus El-ana Ecole Supéeue des Scences et Technque de Tuns Notes de cous d électostatque (classes pépaatoes) Eecces et eamens cogés Zouhae HAFSIA Insttut épaatoe au Etudes

Plus en détail

Dipôle RC : Exercices

Dipôle RC : Exercices Dpôle : xercces xercces 1 : QM Un condensateur est placé dans un crcut. Le schéma ndque les conventons adoptées. hosr dans chacune des phrases suvantes, la proposton exacte. On donne q A = q 1. la tenson

Plus en détail

G k=1/2 si cylindre homogène plein k=1 si cylindre homogène vide. = Mg sin F 0=0 0=N Mg cos 0=0 krma G. Ma G =FR 0=0. OS, 07 février

G k=1/2 si cylindre homogène plein k=1 si cylindre homogène vide. = Mg sin F 0=0 0=N Mg cos 0=0 krma G. Ma G =FR 0=0. OS, 07 février Roulement sans glssement su plan nclné Cylnde de évoluton oulant sans glsse: v = 0 v = R Moment d nete: I,y = k MR k = nombe caactésant la «fome», R N ndépendamment de la masse et de la dmenson k=/ s cylnde

Plus en détail

SYMÉTRIES DE L'ESPACE ET DU TEMPS ET LOIS DE CONSERVATION

SYMÉTRIES DE L'ESPACE ET DU TEMPS ET LOIS DE CONSERVATION SYMÉTRIES DE L'ESPACE ET DU TEMPS ET LOIS DE CONSERVATION Pascal Rebetez Août 203 RÉSUMÉ Apès une ntoducton concenant les symétes et les los de consevaton, nous appelons les concepts de base et les postulats

Plus en détail

Dipôles électrostatiques

Dipôles électrostatiques Mchel Foc Électomagnétsme et électocnétque P0) UPM, 06/07 hapte III Dpôles électostatques III.a.. Potentel Potentel et champ céés pa un dpôle onsdéons un système de deu chages opposées, +Q et Q, stuées

Plus en détail

applications et compléments : nappes de courant et discontinuité de B calcul des coefficients L et M; calcul de moments magnétiques

applications et compléments : nappes de courant et discontinuité de B calcul des coefficients L et M; calcul de moments magnétiques applcaton et complément : nappe de couant et dcontnuté de calcul de coeffcent L et M; calcul de moment magnétque (on touea c le pncpau éultat de calcul déeloppé en cou et en taau dgé) 1. denté de couant

Plus en détail

LES CHALEURS DE REACTION

LES CHALEURS DE REACTION TERMOCIMIE I Ce chapte de themochme a été édgé à pat des ouvages suvants : «TERMODYNAMIQUE CIMIQUE» de Bénon, Audat, Busquet et Mesnl (édteu ACETTE Supéeu) «REACTION CIMIQUE» Collecton Punet (édteu DUNOD)

Plus en détail

β est un angle inscrit

β est un angle inscrit HAPITRE 4 : ERLES 4.1 Définitions Un cecle Γ est un ensemble de point situés à une distance donnée d'un point fixe. Le point fixe est le cente et la distance donnée le ayon du cecle. est le cente et un

Plus en détail

Chapitre 6 Dynamique de la particule II

Chapitre 6 Dynamique de la particule II Chapte 6 Dnaque de la patule II Queton : # Pae qu l et ontaent en hute lbe ve la Tee. # Le fotteent tatque n et pa aez élevé pou anten la pèe en plae. Dè qu elle e et en ouveent, le oeffent de fotteent

Plus en détail

Exemple : Translation du centre de masse et rotation autour du centre de masse. Évaluer expérimentalement la position du centre de masse

Exemple : Translation du centre de masse et rotation autour du centre de masse. Évaluer expérimentalement la position du centre de masse Chaptre 4. Le centre de asse Centre de asse Le centre de asse d un corps est un pont de référence agnare stué à la poston oenne de la asse du corps. Voc quelques caractérstques du centre de asse : Cette

Plus en détail

Lycée Clemenceau. PCSI 1 - Physique. PCSI 1 (O.Granier) Lycée. Clemenceau. Les lois de Newton. (mécanique du point matériel) Olivier GRANIER

Lycée Clemenceau. PCSI 1 - Physique. PCSI 1 (O.Granier) Lycée. Clemenceau. Les lois de Newton. (mécanique du point matériel) Olivier GRANIER Lycée Clemenceau PCSI 1 (O.Gane) Les los de Newton (mécanque du pont matéel) Olve GRANIER Objet de la dynamque : détemne les causes des mouvements. Gallée (physcen talen, 1564 164) Keple (astonome allemand,

Plus en détail

Champ électrostatique dans le vide

Champ électrostatique dans le vide Flèe MI Modle Physe II lément : lectcté Cos Pof..Tadl èe pate Chapte II Champ électostate dans le vde I. Défnton On dt en ne égon de l espace exste n champ électostate s ne chage électe placée en n pont

Plus en détail

Version du 16 janvier 2017 (17h39)

Version du 16 janvier 2017 (17h39) CHAPITRE. DYNAMIQUE DU SLIDE..................................... -. -.. Intoduction......................................................... -. -.. Moment cinétique d un solide............................................

Plus en détail

1 ère S Le plan muni d un repère

1 ère S Le plan muni d un repère 1 ère S Le plan mun d un repère Ce chaptre fat sute à celu des vecteurs du plan bectf : consolder et compléter les bases de géométre analtque dans le plan de seconde (repérage des ponts dans le plan) I

Plus en détail

Cours 1 LA STATIQUE du CORPS SOLIDE

Cours 1 LA STATIQUE du CORPS SOLIDE Cous L STTIQUE du CRPS SLIDE L'intoduction L'objet et les Modèles de la Mécanique Mécanique Classique (Newtoneén) est une patie de la phsique, dans laquelle on étudie les lois fondamentales de mouvement

Plus en détail

La réaction chimique

La réaction chimique Unvesté du Mane - Faculté des Scences La éacton chmque / Défnton La éacton chmque Il s agt d une tansfomaton au cous de laquelle un cetan nombe de consttuants ntaux appelés éactfs donnent dans l état fnal

Plus en détail

ASI 3. Méthodes numériques pour l ingénieur. Interpolation f(x)

ASI 3. Méthodes numériques pour l ingénieur. Interpolation f(x) ASI 3 Métodes nuérques pour l ngéneur Interpolaton f Approaton de fonctons Sot une foncton f nconnue eplcteent connue seuleent en certans ponts, n ou évaluable par un calcul coûteu. rncpe : représenter

Plus en détail

Propriétés thermoélastiques des gaz parfaits

Propriétés thermoélastiques des gaz parfaits Themodynamque - Chapte opétés themoélastques des gaz pafats opétés themoélastques des gaz pafats LES CONNAISSANCES - Gaz pafat à l échelle macoscopque Défnton : Le gaz pafat assocé à un gaz éel est le

Plus en détail

Nombre dérivé d une fonction (2) Plan du chapitre

Nombre dérivé d une fonction (2) Plan du chapitre Nombre dérvé d une foncton (2) Plan du captre Introducton : Nous poursuvons l étude des tangentes en procédant par pettes touces. Dans le captre précédent, nous avons défn la noton de nombre dérvé d une

Plus en détail

Exercices d arithmétique

Exercices d arithmétique DOMAINE : Arthmétque NIVEAU : Intermédare CONTENU : Exercces AUTEUR : Noé DE RANCOURT STAGE : Cachan 011 (junor) Exercces d arthmétque Exercce 1 - Énoncés - a) Trouver tous les enters n N qu possèdent

Plus en détail

Ondes dans les plasmas

Ondes dans les plasmas Ondes dans les plasmas (PC*) 1 Ondes dans les plasmas I Popagation d une onde électomagnétique dans un plasma : 1 Définition d un plasma : Un plasma est un milieu composé d atomes ou de molécules ionisés

Plus en détail

CHAPITRE 14 : OSCILLATEURS MECANIQUES FORCES

CHAPITRE 14 : OSCILLATEURS MECANIQUES FORCES PCSI CHAPITRE 4 : OSCILLATEURS MECANIUES ORCES /5 CHAPITRE 4 : OSCILLATEURS MECANIUES ORCES I. INTRODUCTION Nous étudons dans c chapt ls oscllatons focés d un systè écanqu sous à un foc snusoïdal. Tout

Plus en détail

Quelques éléments à propos du trou noir de Schwarzchild

Quelques éléments à propos du trou noir de Schwarzchild Quelques éléments à popos du tou noi de Schwazchild Jéôme Peez 8 août 05 Table des matièes Métique du champ cental stationnaie à symétie sphéique Ecitue des équations de la dynamique 3 Solution à l exteieu

Plus en détail

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. Eric Jondeau

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. Eric Jondeau Ecole des HEC Unvesté de Lausanne FIACE EMPIRIQUE Ec Jondeau FIACE EMPIRIQUE Intoducton au Modèle d Evaluaton des Actfs Fnances Ec Jondeau Bachelo/Lcence P. Ec Jondeau - Fnance Eque /6 La théoe odene du

Plus en détail

Lycée Clemenceau. PCSI 1 - Physique. PCSI 1 (O.Granier) Lycée. Clemenceau. Loi d Ohm Effet Hall Force de Laplace. Olivier GRANIER

Lycée Clemenceau. PCSI 1 - Physique. PCSI 1 (O.Granier) Lycée. Clemenceau. Loi d Ohm Effet Hall Force de Laplace. Olivier GRANIER ycée Cleenceau PCS 1 (O.Ganie) oi d Oh ffet all Foce de aplace Olivie GRANR a loi d Oh locale et acoscopique 1 Pésentation du odèle de Dude (1900) : Dans un conducteu étallique («ohique») souis à une tension

Plus en détail

DISPOSITIF DE REGLAGE DE L INCIDENCE DES PALES D HELICOPTERE

DISPOSITIF DE REGLAGE DE L INCIDENCE DES PALES D HELICOPTERE CPGE / Sciences Industielles pou l Ingénieu DISPOSITIF DE REGLAGE DE L INCIDENCE DES PALES D HELICOPTERE Pésentation Un hélicoptèe cée sa potance gâce au mouvement de otation du oto pincipal entaîné à

Plus en détail

DISPOSITIF DE REGLAGE DE L INCIDENCE DES PALES D HELICOPTERE

DISPOSITIF DE REGLAGE DE L INCIDENCE DES PALES D HELICOPTERE DISPOSITIF DE REGLAGE DE L INCIDENCE DES PALES D HELICOPTERE Pésentation Un hélicoptèe cée sa potance gâce au mouvement de otation du oto pincipal entaîné à l aide de la tubine. Pou pemette à l hélicoptèe

Plus en détail

EM1. dl dl. d j. M. Tube de courant élémentaire. Elément de courant : PSI ANNEE SCOLAIRE 2010/2011 Interrogation EM1/EM2 : Corrigé

EM1. dl dl. d j. M. Tube de courant élémentaire. Elément de courant : PSI ANNEE SCOLAIRE 2010/2011 Interrogation EM1/EM2 : Corrigé I ANNEE OLAIE 1/11 Inteogation E1/E : oigé E1 ouants voluiques : oit un conducteu dans lequel on définit, en un point, la densité voluique de chages obiles (,t) ainsi que la vitesse oyenne de ces poteus

Plus en détail

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16 Méthode des mondres carrés Stuaton Le lancer de pods Dx adolescents droters s exercent à lancer le pods, du bras drot pus du bras gauche. Les résultats (dstances en mètres) obtenus sont les suvants : Adolescent

Plus en détail

Dipôle magnétostatique

Dipôle magnétostatique DA - 3 janvie 5 Le but des calculs qui suivent est de monte exactement qu au loin, une distibution d extension finie de couants est équivalente à l ode le plus bas à un dipôle magnétique a. e calcul est

Plus en détail

Comment aborder l étude du régime transitoire d un circuit?

Comment aborder l étude du régime transitoire d un circuit? 0-03 xecces Électocnétque PTSI omment abode l étude du égme tanstoe d un ccut? 3 Méthode De manèe généale : Le l énoncé Ouve-t-on ou feme-t-on l nteupteu à t = 0? Établ la les) condtons) ntales) ègles

Plus en détail

Chapitre 3.6 L énergie potentielle gravitationnelle des astres

Chapitre 3.6 L énergie potentielle gravitationnelle des astres Chapte 3.6 L énee potentelle atatonnelle des astes Équaton énéale du taal de la oce atatonnelle Nous aons donné la dénton suante à la oce atatonnelle : m et G ˆ F F m F : Foce atatonnelle subt pa m (N

Plus en détail

Aspects énergétiques des systèmes mécaniques. Elémentaire : qui s effectue sur un déplacement infinitésimal (ou élémentaire)

Aspects énergétiques des systèmes mécaniques. Elémentaire : qui s effectue sur un déplacement infinitésimal (ou élémentaire) I. Tavail élémentaie d une foce. spects énegétiques des systèmes mécaniques Elémentaie : qui s effectue su un déplacement infinitésimal (ou élémentaie). Tavail d une foce su un tajet quelconque. Le tavail

Plus en détail

) de ce plan et un nombre réel positif r. Un point P = ( x P

) de ce plan et un nombre réel positif r. Un point P = ( x P Mathématiques e Niv. et Toisième patie : Géométie Théoie chapite 4 HAPITRE 4 ERLES 4. Equation d'un cecle donné pa son cente et son ayon 4.. Equation catésienne d'un cecle Nous savons déjà qu'un cecle

Plus en détail

Exercices Électrocinétique

Exercices Électrocinétique ecces Électocnétque alculs de tensons et de couants -2.1 éseau à deu malles étemne, pou le ccut c-conte, l ntensté qu tavese la ésstance 2 et la tenson u au bones de la ésstance 3 : 1) en fasant des assocatons

Plus en détail

Choc élastique en 2 dimensions

Choc élastique en 2 dimensions Choc élastique en dimensions Pa Pascal Rebetez Juillet 008. Intoduction Nous étudions le choc élastique ente deux disques glissant sans fottement su un plan hoizontal. Cette étude est menée dans le cade

Plus en détail

Axes principaux d inertie

Axes principaux d inertie Axes pincipaux d inetie Théoème: se démonte en algèbe linéaie Pou tout point d un solide, il est toujous possible de choisi un epèe othonomé au point tel que la matice epésentant le tenseu d inetie soit

Plus en détail

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS Statque et Cnématque des soldes 0-0 Chaptre Chap: OUTILS THETIQUES GLISSEUS & TOSEUS L'obectf de ce chaptre est de donner brèvement les outls mathématques nécessares à la compréhenson de la sute de ce

Plus en détail

Centre d inertie, Opérateur d inertie

Centre d inertie, Opérateur d inertie PI es Ulis Cous CI8 DYNAMIUE DE YTEME Cente d inetie, Opéateu d inetie I CENTRE D INERTIE Un point G est cente d inetie du sstème matéiel Σ s il véifie la elation : avec = µ ( dv ( et ( P Σ GP( = 0 µ la

Plus en détail

Mouvement dans un champ de forces centrales conservatives

Mouvement dans un champ de forces centrales conservatives MPSI - Mécanique II - Mouvement dans un champ de foces centales consevatives page /5 Mouvement dans un champ de foces centales consevatives Table des matièes Foces centales consevatives. Exemple de la

Plus en détail

IFT1575 Modèles de recherche opérationnelle (RO) 7. Programmation non linéaire

IFT1575 Modèles de recherche opérationnelle (RO) 7. Programmation non linéaire IFT575 Modèles de recherche opératonnelle (RO 7. Programmaton non lnéare Fonctons convees et concaves Sot et deu ponts dans R n Le segment de drote jognant ces deu ponts est l ensemble des ponts + λ( -

Plus en détail

Méthodes de catégorisation : Réseaux bayesiens naïfs. Olivier Aycard E-Motion group. Université Joseph Fourier. http://emotion.inrialpes.

Méthodes de catégorisation : Réseaux bayesiens naïfs. Olivier Aycard E-Motion group. Université Joseph Fourier. http://emotion.inrialpes. Méthodes de atégosaton : éseau aesens naïfs le Aad E-Moton goup Unesté Joseph Foue http://emoton.nalpes.f/aad le.aad@mag.f lan du ous Intéêts éseau aesens naïfs Appentssage de éseau aesens naïfs ésentaton

Plus en détail

Calculatrice autorisée. Les annexes 1 et 2 (pages 4/5 et 5/5) sont à rendre avec la copie. I ÉTUDE D UN CHAUFFE-EAU ALIMENTÉ EN TRIPHASÉ

Calculatrice autorisée. Les annexes 1 et 2 (pages 4/5 et 5/5) sont à rendre avec la copie. I ÉTUDE D UN CHAUFFE-EAU ALIMENTÉ EN TRIPHASÉ BACCALAURÉAT TECHNOLOGIQUE -- SESSION 2007 SERIE SCIENCES ET TECHNOLOGIES DE LABORATOIRE SPÉCIALITÉ : CHIMIE DE LABORATOIRE ET DE PROCÉDÉS INDUSTRIELS Épeuve : PHYSIQUE - CHIMIE PHYSIQUE Duée 2 h Coefficient

Plus en détail

DIPÔLE MAGNÉTOSTATIQUE

DIPÔLE MAGNÉTOSTATIQUE DIPÔLE MAGNÉTSTATIQUE I DIPÔLE MAGNÉTIQUE I1 Moment magnétique d une distibution de couant Le moment magnétique M d une distibution de couant est défini de la manièe suivante : Dans le cas d un cicuit

Plus en détail

MECANIQUE DYNAMIQUE D UN SOLIDE EN ROTATION EQUILIBRAGE. 1 Etude dynamique d un solide en rotation autour d un axe fixe O G

MECANIQUE DYNAMIQUE D UN SOLIDE EN ROTATION EQUILIBRAGE. 1 Etude dynamique d un solide en rotation autour d un axe fixe O G Sciences Indusielles Dynamique d un solide en otation - Equilibage MECANIQUE DYNAMIQUE D UN SLIDE EN RTATIN EQUILIBRAGE Etude dynamique d un solide en otation autou d un axe fixe Paamétage du poblème :

Plus en détail

Masse d inertie et masse gravitationnelle

Masse d inertie et masse gravitationnelle Masse d inetie et asse gavitationnelle Deux définitions difféentes de la asse: asse d inetie, appaaissant dans la 2èe loi de Newton: F = i a asse gavitationnelle, appaaissant dans la loi de la gavitation:

Plus en détail

r i h l opérateur qui représente la rotation d angle α autour du vecteur

r i h l opérateur qui représente la rotation d angle α autour du vecteur MOMENTS CINETIQUES ET ROTATION Les transformatons par rotaton, la conservaton du moment cnétque et les technques d addton des moments cnétques ouent un rôle très mportant en spectroscope atomque et nucléare,

Plus en détail

MODULE:VIBRATIONS. Chapitre 1: Généralités sur les oscillations. Dr. Fouad BOUKLI HACENE ESSA- TLEMCEN

MODULE:VIBRATIONS. Chapitre 1: Généralités sur les oscillations. Dr. Fouad BOUKLI HACENE ESSA- TLEMCEN ECOLE SUPÉRIEURE EN SCIENCES APPLIQUÉES --T L E M C E N- FORMATION PRÉPARATOIRE NIVEAU : IEME ANNÉE MODULE:VIBRATIONS Chaptre 1: Généraltés sur les oscllatons Dr. Fouad BOUKLI HACENE ESSA- TLEMCEN ANNÉE

Plus en détail

Chapitre 2.2a Le potentiel électrique généré par des particules chargées

Chapitre 2.2a Le potentiel électrique généré par des particules chargées hapt.a L potntl élctu généé pa ds patculs chagés L potntl élctu L potntl élctu généé pa un nsmbl d chags à un pont P d l spac cospond à l éng potntll élctu patagé pa ls chags avc un chag stué au pont P

Plus en détail

Equilibres chimiques et loi d action des masses

Equilibres chimiques et loi d action des masses Cnétque et thermodynamque chmques CHI305 Chaptre 8 Equlbres chmques et lo d acton des masses CHI305 Chaptre 9 : Equlbres chmques et lo d acton des masses I. Equlbres chmques II. Affnté chmque, monôme des

Plus en détail

INTRODUCTION A L ETUDE DES SPECTROMETRIES DE L ATOME

INTRODUCTION A L ETUDE DES SPECTROMETRIES DE L ATOME INTRODUCTION A ETUDE DES SPECTROMETRIES DE ATOME Nveaux énergétques de l atome et transtons permses C.J. Ducauze, H. Ths et X.T. Bu INTRODUCTION A ETUDE DES SPECTROMETRIES DE ATOME Nveaux énergétques de

Plus en détail

OSCILLATEUR LINÉAIRE

OSCILLATEUR LINÉAIRE OSCILLAEUR LINÉAIRE ) Définition Un oscillateu linéaie est un point atéiel asteint à se déplace su une doite fixe dans (R) galiléen et souis à une foce attactive ves un point fixe O, d'intensité popotionnelle

Plus en détail

Les bases de la mécanique Newtonienne classique (sous forme de rappel de notions déjà apparues dans ce cours)

Les bases de la mécanique Newtonienne classique (sous forme de rappel de notions déjà apparues dans ce cours) Les bases de la mécanique Newtonienne classique (sous fome de appel de notions déjà appaues dans ce cous) Les 3 lois de Newton. Loi d inetie mouvement ectiligne unifome F = 0. Loi fondamentale de la dynamique

Plus en détail

CHAPITRE V. Formes différentielles sur les variétés. I. Espace tangent

CHAPITRE V. Formes différentielles sur les variétés. I. Espace tangent CHAPITRE V Formes dfférentelles sur les varétés I. Espace tangent Sot M une varété dfférentable de dmenson n et U = (U, ϕ ) I un atlas de M. On note par ϕ j := ϕ ϕ 1 j le dfféomorphsme entre les ouverts

Plus en détail

Travaux pratiques débutants TPD Expérience N o 31. Cycle d hystéresis. Assistant responsable Oscar Cubero (217) 1 novembre 2006

Travaux pratiques débutants TPD Expérience N o 31. Cycle d hystéresis. Assistant responsable Oscar Cubero (217) 1 novembre 2006 Tavaux patiques débutants TPD Expéience N o 31 Cycle d hystéesis Assistant esponsable Osca Cubeo (217) 1 novembe 2006 Résumé Cette expéience pemet de mesue le cycle d hystéesis et la peméabilité d un matéiel

Plus en détail

2. Demi Additionneur. 1. Les Circuits combinatoires. Chapitre 4 : Les circuits combinatoires. Exemple de Circuits combinatoires

2. Demi Additionneur. 1. Les Circuits combinatoires. Chapitre 4 : Les circuits combinatoires. Exemple de Circuits combinatoires haptre : Les crcuts combnatores Object Les rcuts combnatores Un crcut combnatore est un crcut numérque dont les sortes dépendent unquement des entrées F(E F(E E E n pprendre la structure de quelques crcuts

Plus en détail

Partie construction mécanique

Partie construction mécanique BACCALAURÉAT SCIENCES ET TECHNOLOGIES INDUSTRIELLES Spécialité génie électonique Session 2007 Étude des systèmes techniques industiels AUTOMATISME DE PORTE DE GARAGE Patie constuction mécanique Duée conseillée

Plus en détail

Les nombres complexes

Les nombres complexes LGL Cours de Mathématques 6 Les nombres complexes Notaton, Défnton A Introducton et notatons Dans l'ensemble des enters naturels, une équaton telle que x + 5 admet une soluton. Pour que l'équaton x + 5

Plus en détail

Les nombres complexes

Les nombres complexes A) Forme algébrque des nombres complexes Théorème (adms) Il exste un ensemble appelé ensemble des nombres complexes, noté, vérfant les tros proprétés suvantes :. content ;. Il exste dans un élément tel

Plus en détail

1 ère S Le plan muni d un repère

1 ère S Le plan muni d un repère 1 ère S Le plan mun d un repère Ce chaptre fat sute à celu des vecteurs du plan bectf : consolder et compléter les bases de géométre analtque dans le plan de seconde (repérage des ponts dans le plan) I

Plus en détail

le dipôle magnétique ; circuit électrique dans un champ magnétique ; travail des forces

le dipôle magnétique ; circuit électrique dans un champ magnétique ; travail des forces le dipôle magnétique ; cicuit électique dans un champ magnétique ; tavail des foces = moment magnétique d une spie On cheche ici à calcule le champ céé pa une petite spie ciculaie plate, pacouue pa un

Plus en détail

Cours de Mécanique des Milieux Continus

Cours de Mécanique des Milieux Continus Cous de Mécanque des Mleu Contnus Mondhe NEFAR nsttut Supéeu de l Educaton et de la Fomaton Contnue Janve 9 Sommae CAPTRE : EEMENTS DE CACU TENSORE EN BASES ORTONORMEES.. 4. Conventon d'ndce muet... 4.

Plus en détail

Mécanisme de mise en mouvement de porte de Jet.

Mécanisme de mise en mouvement de porte de Jet. Sciences Industielles Filièe MP, PSI, PT Mécanisme de mise en mouvement de pote de Jet. TD Statique Pote avions Desciption du système Le schéma cinématique modélise patiellement le mécanisme d ouvetue

Plus en détail

Exercices sur les forces, 1 ère partie Module 3 : Des phénomènes mécaniques Objectif terminal 2 : Les forces

Exercices sur les forces, 1 ère partie Module 3 : Des phénomènes mécaniques Objectif terminal 2 : Les forces Date : Nom : Goupe : Résultat : / 60 Execices su les foces, èe patie Module 3 : Des phénomènes mécaniques Objectif teminal : Les foces Consine : outes les éponses numéiques doivent ête aondies au centième..

Plus en détail

III - Approximation de l optique géométrique - rayon lumineux.

III - Approximation de l optique géométrique - rayon lumineux. III - Appoimation de l optique géométique - aon lumineu. Un faisceau lumineu de lage section peut ête, à l aide de diaphagmes, amené à un pinceau étoit. n peut mathématiquement idéalise ce pinceau pa une

Plus en détail

MECANIQUE DU POINT Enoncés 1 à 61

MECANIQUE DU POINT Enoncés 1 à 61 MEANIQUE DU INT Enoncés 1 à 61 nématque 1. our ben ntégrer soluton page 31 Une partcule se déplace dans le plan horzontal (,, ), à la vtesse constante v 0, sur une courbe dont le raon de courbure R est

Plus en détail

L e c t u r e s o b l i g a t o i r e s 1

L e c t u r e s o b l i g a t o i r e s 1 L e c t u e s o b l g a t o e s Selon l auteu du module, les lectues oblgatoes espectent le dot d auteu et ne contevennent en aucun cas au copyght. . LECTURES OBLIGATOIRES *One elevant mage must be nseted

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé y 2005-2006 Devoi n 6 CONVERSION DE PUISSANCE Patie I MOTEUR A COURANT CONTINU COMMANDE PAR UN HACHEUR On appelle (figue 1) le schéma équivalent du moteu à couant continu à excitation sépaée : u epésente

Plus en détail

Chapitre 9. Le champ magnétique

Chapitre 9. Le champ magnétique Chapite 9 Le champ magnétique Objectif intemédiaie 4.1 Connaîte la notion de champ magnétique, puis l'employe pou calcule la foce magnétique su une paticule ou un couant continu et le moment de foce magnétique

Plus en détail

Chapitre I : Introduction à la Thermodynamique - Principales notions

Chapitre I : Introduction à la Thermodynamique - Principales notions Chapte I : Intoducton à la Theodynaque - Pncpales notons I. Intoducton généale La Theodynaque a pou but de ette en évdence des elatons qu peettent de calcule les échanges «d énege» s en eu dans chaque

Plus en détail

Nombres complexes. Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Nombres complexes. Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Les nombres complexes. Défnton............................................................... Opératons...............................................................3 Parte réelle

Plus en détail

Examen de Mécanique du Solide 2 (I3ICMG20) Conception préliminaire d'un robot tout terrain

Examen de Mécanique du Solide 2 (I3ICMG20) Conception préliminaire d'un robot tout terrain Dépateent de Sciences Techniques Pou l Ingénieu e A Pé-Oientation Ingénieie de la Constuction Exaen de Mécanique du Solide (IICMG) Duée h aucun docuent autoisé Janvie 4 Los de la coection, une attention

Plus en détail