Exemple 89. Définition 51. point d inflexion de Exemple Tracé du graphe d une fonction

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Exemple 89. Définition 51. point d inflexion de Exemple Tracé du graphe d une fonction"

Transcription

1 59 Eemple 89. L foctio f : 2 est deu fois dérivle sur R, et pour dérivée et dérivée secode sur R : f ) = 2 et f ) = 2 Puisque s dérivée secode est positive sur R, l foctio f est covee sur R. E u poit 0 où l dérivée secode f d ue foctio f chge de sige, le grphe de cette foctio trverse s tgete. Pr eemple si f est positive vt 0 lors f est covee vt 0 et doc so grphe est u-dessus de ses tgetes, et si f est égtive près 0 lors f est cocve près 0 et so grphe est u-dessous de ses tgetes : ds ce cs, le grphe de f est u-dessus de s tgete u poit 0, f 0 )) vt 0 et u-dessous près, doc il "trverse" s tgete e ce poit. O doe u om prticulier à ce tpe de poits : Défiitio 51. Soit f ue foctio deu fois dérivle sur u itervlle I, u poit 0 de I est ppelé poit d ifleio de f si s dérivée secode f chge de sige u poit 0. Eemple 90. Si o cosidère l foctio sius si : si) lors elle est deu fois dérivle sur [0, 2π] et s dérivée secode est si ) = si) qui chge de sige e π : sur [0, π] l dérivée secode si est égtive et doc si est cocve, et sur [π, 2π] cette dérivée secode est positive et doc si est covee. Au poit 0 = π, l tgete de si est = 1) π) + 0 et le grphe de si psse doc de u-dessous de s tgete à u-dessus : = si) = π Trcé du grphe d ue foctio E vue de trcer le grphe d ue foctio umérique f, o procède selo les étpes suivtes : o détermie le domie de défiitio de f ; o clcule les limites de f u ords de so domie de défiitio ; o étudie les smptotes évetuelles de f e et + ; o clcule l dérivée f et o doe le tleu de vritios de f, e fist ppritre les etrem locu et/ou glou) ; o clcule l dérivée secode f, o étudie so sige pour détermier les itervlles sur lesquels f est covee ou cocve, et o trouve les poits d ifleio. efi pour trcer le grphe de f o reporte les smptotes, les directios smptotiques, les tgetes horizotles u poits où f tteit u etremum et les tgetes u poits d ifleio : o lors suffismmet d idictios pour trcer l llure du grphe.

2 60 O triter de mière étedue e cours le cs de l foctio Gussiee f : e 2, pour oteir le grphe suivt : = e 2

3 61 5 Itégrle et primitive 5.1 Itégrle d ue foctio cotiue Soit et deu omres réels tels que <, et soit f ue foctio cotiue sur le segmet [, ], le grphe de f, l e des scisses et les droites verticles = et = délimitet ue régio du pl qui peut être e plusieurs morceu si f s ule), représetée e gris ds l eemple ci-dessous : = f) O peut ssocier à cette régio du pl comprise etre le grphe de f et l e des scisses so ire sigée : o dit sigée prcequ o compte e positif l ire de l zoe qui se trouve u-dessus de l e des scisses, et e égtif l prtie qui se trouve u-dessous. Eemple 91. O cosidère pr eemple le cs = 1, = 2 et f) =. L ire sigée de l prtie du pl comprise etre le grphe de f) = et l e des scisses sur [ 1, 2] vut lors 3 2 : = l ire du petit trigle sous l e des scisses est égle à 1 2, elle est comptée pour 1 2, et l ire du grd trigle u-dessus de l e des scisses est égle à 2, elle est comptée pour +2. L ire sigée vut doc = 3 2. Comme o v le voir, cette ire sigée ue grde importce e mthémtiques, c est pour cette riso qu o itroduit l otio suivte : Défiitio 52. Soit et deu omres réels tels que < et soit f ue foctio cotiue sur le segmet [, ], o ppelle itégrle de f sur le segmet [, ] l ire sigée de l prtie du pl qui se trouve etre le grphe de l foctio f sur [, ] et l e des scisses. O ote ce omre Remrque 40. Pr covetio o pose le omre ft)dt. ft)dt = 0, et si < lors l ottio ft)dt. ft)dt désige

4 62 O déduit les propriétés suivtes de l défiitio l itégrle e terme d ire sigée : 5.1. Propriété Itégrle 1. Soit < et soit f ue foctio cotiue sur le segmet [, ], lors : Reltio de Chsles : pour tout c [, ] o ft)dt = c ft)dt + ft)dt c Itégrle d ue costte : si α est u omre réel fié et f) = α pour tout [, ] lors ft)dt = α dt = α ) Si g est cotiue sur [, ] et f) g) pour tout ds [, ] lors ft)dt gt)dt E prticulier, si m et M sot deu costtes telles que m f) M pour tout [, ] lors m 1 ft)dt M 1 Le omre ft)dt est ppelé vleur moee de f sur [, ]. Lie vec l prité : o suppose 0, si f est ue foctio pire sur [, ] lors ft)dt = 2 ft)dt et si f est impire sur [, ] lors 0 ft)dt = 0. Eemple 92. Si o repred l eemple 91, comme f) = lors o 1 f) 2 pour tout ds 1 2 [ 1, 2] et o voit que l vleur moee de f sur [ 1, 2], qui vut ft)dt = 1 2 1) = 1 2 est ie etre 1 et 2. Ue utre mière de défiir l itégrle de f sur [, ] est l suivte : o ssocie à l foctio f l suite I ) 1 de terme géérl I = 1 f + k Géométriquemet, I est l somme des ires des rectgles costruits à prtir de f de l mière suivte : )

5 63 = f) Eemple 93. Si o repred à ouveu l eemple 91 o lors = 2 1) = 3 et o peut clculer I 1 = 3 1 f ) = 3f 1) = 3 1) = 3 1 I 2 = 3 2 f ) f ) = f 1) + 3 ) 1 2 f = I 3 = 3 3 f ) f ) f ) 3 = f 1) + f0) + f1) = 0 I = 3 1 f 1 + k 3 ) = 3 = 3 [ 1 1) + 3 ] 1 k = k 3 ) [ + 3 ] 1) = Ds ce cs l suite I ) 1 est l suite de terme géérl I = O peut démotrer que l suite I ) 1 isi défiie est toujours covergete, et plus précisémet que s limite est l ire sigée de l prtie du pl qui se trouve etre le grphe de l foctio f sur [, ] et l e des scisses : c est doc l itégrle de f sur [, ]. O lors l propriété : 5.2. Propriété Itégrle 2. Soit < et soit f ue foctio cotiue sur le segmet [, ], lors : ft)dt = 1 lim f + + k ) Eemple 94. O repred l eemple 91 : ds ce cs, puisque l suite I ) 1 est l suite de terme géérl I = o voit que s limite est ie 3 2, qui est effectivemet l ire sigée de l prtie du pl comprise etre le grphe de f) = et l e des scisses sur [ 1, 2].

Calcul d aire et intégrale

Calcul d aire et intégrale Clcul d ire et itégrle Tle des mtières I Activité d itroductio 1 II Défiitio de l itégrle 2 1 Itégrle d ue foctio cotiue et positive................................ 2 2 Itégrle d ue foctio cotiue et égtive...............................

Plus en détail

Calcul intégral et application en probabilités.

Calcul intégral et application en probabilités. Chpitre Clcul itégrl et pplictio e probbilités. I Itroductio : u volume de béto. L église d Hllgrimür, à Reykjvik e Islde été costruite e béto, ds l secode moitié du XX ième siècle. L fçde compred deux

Plus en détail

Primitives et intégrales

Primitives et intégrales Termile S Primitives et itégrles Note : Ds tout ce cours, les ires sot eprimées e uité d ire (u. : ire du rectgle de côté ds u repère orthogol) et les volumes sot eprimés e uité de volume (u.v : volume

Plus en détail

Primitives de Fonctions Calcul Intégral Site MathsTICE de Adama Traoré Lycée Technique Bamako

Primitives de Fonctions Calcul Intégral Site MathsTICE de Adama Traoré Lycée Technique Bamako Primitives de Foctios Clcul Itégrl Site MthsTICE de Adm Troré Lcée Techique Bmko I Primitives d ue foctio umérique : - Activité : Soit l foctio f : + 3 ; Clculer l dérivée de chcue des foctios F ; G ;

Plus en détail

Dans ce cas de figure, on voit que f(x) prend des valeurs très proche de l quand x devient très grand.

Dans ce cas de figure, on voit que f(x) prend des valeurs très proche de l quand x devient très grand. Chpitre IV : Limites de foctios I. Limite d ue foctio et symptotes. Limite fiie e l ifii Eemple : C f est l courbe représettive de l foctio f. Ds ce cs de figure, o voit que f() pred des vleurs très proche

Plus en détail

Calcul intégral. 1 Aire sous une courbe 2

Calcul intégral. 1 Aire sous une courbe 2 Clcul itégrl Tble des mtières Aire sous ue courbe 2 2 Défiitios 3 2. Foctio cotiue et positive sur u itervlle.............................. 3 2.2 Foctio cotiue de sige quelcoque..................................

Plus en détail

DERIVES PRIMITIVES - EQUATIONS DIFFERENTIELLES - INTEGRALES

DERIVES PRIMITIVES - EQUATIONS DIFFERENTIELLES - INTEGRALES DERIVES PRIMITIVES - EQUATIONS DIFFERENTIELLES - INTEGRALES I) Dérivés : Propriétés : - Soit I u itervlle et f défiie sur I vec x 0 I : f x f(x f est dérivle sur x 0 : _ Si lim 0 ) x x0 = α, u réel fii.

Plus en détail

Suites et séries de fonctions.

Suites et séries de fonctions. Suites et séries de foctios Chp 8 : cours complet 1 Suites de foctios : covergece simple et uiforme, cotiuité Défiitio 11 : Défiitio 12 : Défiitio 13 : Défiitio 14 : Théorème 11 : Théorème 12 : Théorème

Plus en détail

λ(c) = De la question 2., déduire la majoration de l erreur commise en remplaçant l arc de courbe par sa corde sur le segment [a, b] :

λ(c) = De la question 2., déduire la majoration de l erreur commise en remplaçant l arc de courbe par sa corde sur le segment [a, b] : PCSI DEVOIR de MATHÉMATIQUES 4 pour le 5// EXERCICE : Soit f : [, b] IR ue foctio de clsse C O ote M = mx [,b] f Justifier l existece de M Motrer qu il existe ue uique foctio ffie ϕ telle que ϕ = f et

Plus en détail

Contrôle du vendredi 13 octobre 2017 (1 h 30) TS Prénom et nom :.. Note :.. / I. (4 points) ...

Contrôle du vendredi 13 octobre 2017 (1 h 30) TS Prénom et nom :.. Note :.. / I. (4 points) ... TS Cotrôle du vedredi octobre 07 ( h 0) Préom et om : Note : / 0 I (4 poits) O cosidère l suite u déiie sur pr so premier terme u et pr l reltio de récurrece u u pour tout etier turel Démotrer pr récurrece

Plus en détail

Limites de fonctions. que l'on veut" (respectivement "négatif et aussi grand que l'on veut en valeur absolue") dès que x est "assez grand".

Limites de fonctions. que l'on veut (respectivement négatif et aussi grand que l'on veut en valeur absolue) dès que x est assez grand. Termile S Ch7 Limites de foctios I Limite d'ue foctio e l'ifii / Limite ifiie Approche ituitive Dire qu'ue foctio f dmet pour limite (respectivemet ) e sigifie que f ( ) peut être "ussi grd que l'o veut"

Plus en détail

Cours LO/L1 biostatistiques. UE4 PARTIE ANALYSE. Chapitre I. Intégrales et équations différentielles.

Cours LO/L1 biostatistiques. UE4 PARTIE ANALYSE. Chapitre I. Intégrales et équations différentielles. Diel Aécssis. Aée iversitire 00/0 Cors LO/L iosttistiqes. UE4 PARTIE ANALYSE Chpitre I. Itégrles et éqtios différetielles. I. Clcl des primitives.. Défiitio : Soiet f et F de foctios défiies sr itervlle

Plus en détail

Dérivées des fonctions de référence Du nombre dérivé à la fonction dérivée. 1 ère S. f a h f a k k h h. Objectifs : f a h f a lim 0

Dérivées des fonctions de référence Du nombre dérivé à la fonction dérivée. 1 ère S. f a h f a k k h h. Objectifs : f a h f a lim 0 ère S Objectifs : Dérivées des foctios de référece Du ombre dérivé à l foctio dérivée Poursuivre l objet d étude des deu cpitres précédets : l tgete à ue courbe Psser de l otio de ombre dérivé à l otio

Plus en détail

TS Fonction logarithme népérien (1)

TS Fonction logarithme népérien (1) TS Foctio logritme épérie () Logos : rpport riso Aritmos : ombre Néper : stroome écossis du XVI e siècle I. Géérlités ) Défiitio Nous dmettros provisoiremet qu il eiste ue uique foctio f défiie sur ]0

Plus en détail

CAPES épreuve 1 session 2014

CAPES épreuve 1 session 2014 ... CAPES épreuve 1 sessio 214 A. P. M. E. P. Problème 1 : sommes de Riem Ds ce problème, o suppose itroduite à l ide des foctios e esclier l otio d itégrle u ses de Riem d ue foctio. Prtie A : covergece

Plus en détail

Séries de Fourier - Calculs fondamentaux

Séries de Fourier - Calculs fondamentaux Séries de Fourier - Clculs fodmetux I - Série de Fourier ssociée à ue foctio f L série de Fourier ssociée à ue foctio f, périodique de période T, s écrit : S(t) + + cos(ωt) + b si(ωt) où l pulstio ω est

Plus en détail

EXPOSE 73 : FORMULES DE TAYLOR. APPLICATIONS. Pré-requis : Intégrale, intégration par parties Théorème de Rolle Règle de L Hôpital.

EXPOSE 73 : FORMULES DE TAYLOR. APPLICATIONS. Pré-requis : Intégrale, intégration par parties Théorème de Rolle Règle de L Hôpital. ETIENNE Sylvi PLC, groupe EXPOSE 73 : FORMULES DE TAYLOR APPLICATIONS Niveu : Complémetire Pré-requis : Itégrle, itégrtio pr prties Théorème de Rolle Règle de L Hôpitl I INTRODUCTION Ett doé u polyôme

Plus en détail

TP N o 2 : Calcul approché d intégrale

TP N o 2 : Calcul approché d intégrale Igéierie umérique MPSI 2 semies TP N o 2 : Clcul pproché d itégrle But : Soit f ue foctio cotiue sur u segmet [, b]. O cherche à obteir ue pproximtio de f(x dx. Pour cel, fixos N et posos i = + i b 1 f(x

Plus en détail

Chapitre 18 : Intégration

Chapitre 18 : Intégration PCSI 2 Préprtio des Khôlles 23-24 Chpitre 8 : Itégrtio Eercice type Soit f :[,] R cotiue d itégrle ulle sur[,]. O pose m= if f et M =sup f (justifier l eistece de m et [,] [,] M). Que dire de l foctio

Plus en détail

Mathématiques - ECS1. Formule du binôme. 30 avenue de Paris Versailles. c 2015, Polycopié du cours de mathématiques de première année.

Mathématiques - ECS1. Formule du binôme. 30 avenue de Paris Versailles. c 2015, Polycopié du cours de mathématiques de première année. Mthémtiques - ECS 8 Formule du iôme Lycée L Bruyère 30 veue de Pris 78000 Versilles c 05, Polycopié du cours de mthémtiques de première ée. 8 Formule du iôme. 8. Ojectifs Coe ciets iomiux, ottio. p Formule

Plus en détail

1. Justifier que l intégrale I est l aire d une partie du plan que l on hachurera sur le graphique donné en annexe (à rendre avec la copie).

1. Justifier que l intégrale I est l aire d une partie du plan que l on hachurera sur le graphique donné en annexe (à rendre avec la copie). Atilles-ue septembre 0 EXERCICE poits Commu à tous les cdidts O cosidère l foctio f défiie ] 0 ; + [ pr : f () = l Prtie A : Étude d ue foctio Détermier l limite de l foctio f e + b Détermier l limite

Plus en détail

Théorème de convergence dominée

Théorème de convergence dominée [http://mp.cpgedupuydelome.fr] édité le juillet 4 Eocés Théorème de covergece domiée Eercice [ 9 ] [correctio] Clculer les ites des suites dot les termes gééru sot les suivts : ) u = π/4 t b) v = + e Eercice

Plus en détail

ÉQUIVALENCES DES DÉFINITIONS. (x i x i 1 ) f(y i ).

ÉQUIVALENCES DES DÉFINITIONS. (x i x i 1 ) f(y i ). ÉQUIVALENCES DES DÉFINITIONS. Sommes de Riem Défiitio.. Soiet et deux réels tels que

Plus en détail

Soit a un nombre réel strictement positif et différent de 1, c.-à-d. a + , condition valable tout au long de ce chapitre.

Soit a un nombre réel strictement positif et différent de 1, c.-à-d. a + , condition valable tout au long de ce chapitre. LGL Cours de Mthémtiques 26 Foctios epoetielles et foctios logrithmes fiche professeur 5) Défiitio des foctios logrithmes \, coditio vlble tout u log de ce chpitre Nous svos que les foctios ep sot des

Plus en détail

Problèmes numériques et algébriques

Problèmes numériques et algébriques Prolèmes umériques et lgériques I Ecriture décimle d u omre : Ds le omre déciml 12 56,589 : - 12 56 est l prtie etière du omre déciml - 589 est l prtie décimle du omre déciml. Plcer ce chiffre ds l coloe

Plus en détail

DÉMONSTRATIONS AU PROGRAMME POUR LE BAC S

DÉMONSTRATIONS AU PROGRAMME POUR LE BAC S DÉMONSTRATIONS AU PROGRAMME POUR LE BAC S 1 SUITES Propriété : Si q > 1 lors lim + q = + D1 - Démostrtio u progrmme (eigible BAC) : Prérequis : Pour tout etier turel, o : ( ) pr récurrece) O suppose que

Plus en détail

Calculs d intégrales

Calculs d intégrales Bibliothèque d eercices Éocés L Feuille 5 Clculs d itégrles Utilistio de l défiitio Eercice Soit f l foctio défiie sur [, 3] pr si = si < < f() = 3 si = si < 4 si < 3 Clculer 3 f(t)dt Soit [, 3], clculer

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Eo7 Itégrtio Eercices de Je-Louis Rouget. Retrouver ussi cette fiche sur www.mths-frce.fr * très fcile ** fcile *** difficulté moyee **** difficile ***** très difficile I : Icotourble T : pour trviller

Plus en détail

Baccalauréat S Nouvelle - Calédonie Mars 2009

Baccalauréat S Nouvelle - Calédonie Mars 2009 Bcclurét S Nouvelle - Clédoie Mrs 009 Exercice Commu à tous les cdidts (5 poits) r r Le pl est rpporté à u repère orthoorml direct ( O, u, v) d uité grphique cm O cosidère les poits et B d ffixes respectives

Plus en détail

Annexe du chapitre 9: Primitives et intégrales

Annexe du chapitre 9: Primitives et intégrales PRIMITIVES ET INTEGRALES I Aee du chpitre 9: Primitives et itégrles Ojectif : L ojectif de cette ee est de défiir plus rigoureusemet l otio de foctio itégrle (u ses de Riem), de doer ue preuve du théorème

Plus en détail

Correction Devoir maison 2

Correction Devoir maison 2 Uiversité Pierre et Mrie Curie Aée 0/0 LM5 MIME 6 Correctio Devoir miso Exercice Soit R \ {0, } Iitilistio : O motre l propriété u rg. + ( ) = ( ) ( ) = Doc l propriété est vrie u rg. Hérédité : Soit N,

Plus en détail

Chapitre I : analyse, étude de fonctions

Chapitre I : analyse, étude de fonctions Chpitre I : lyse, étude de foctios Limites, cotiuité, brches ifiies. Soit u etier turel et f défiie pr : f () =, et si > : f () = (+).e /. Etudier l cotiuité de f. Etudier l limite de f e +. 3 e. Motrer

Plus en détail

La fonction logarithme népérien. Plan du chapitre : I. Rappels. 1 ) Définition

La fonction logarithme népérien. Plan du chapitre : I. Rappels. 1 ) Définition TS L foctio logrithme épérie I Rppels ) Défiitio Pl du chpitre : I Rppels O démotré ds le chpitre sur les epoetielles que l foctio ep est strictemet croisste sur, et que e et e 0 D près l versio géérlisée

Plus en détail

a) En 1990 la population mondiale était de 5,3 milliards. Elle croît chaque année de 1,8%.

a) En 1990 la population mondiale était de 5,3 milliards. Elle croît chaque année de 1,8%. LGL Cours de Mthémtiques 26 Foctios epoetielles et foctios logrithmes fiche professeur ) Eemples itroductifs ) E 99 l popultio modile étit de 5,3 millirds. Elle croît chque ée de,8%.. Doe ue descriptio

Plus en détail

Chapitre 7 : Racines carrées

Chapitre 7 : Racines carrées Chpitre : Rcies crrées. Itroductio, défiitios et eemples Scht que les crreu ci-dessous ot comme dimesios cm, costruisez ) u crré A d ire égle à 9 cm ; c) u crré C d ire égle à cm ; ) u crré B d ire égle

Plus en détail

Calcul approché des intégrales définies

Calcul approché des intégrales définies Clcul pproché des itégrles défiies Pour ce chpitre, I = [, b] est u segmet réel vec < b, C I est l espce vectoriel réel des foctios défiies sur I à vleurs réelles et cotiues et pour toute foctio f C I,

Plus en détail

Problème 1 : nombres irrationnels

Problème 1 : nombres irrationnels L esemble des ombres rtioels est oté. Problème 1 : ombres irrtioels O rppelle que tout ombre rtioel o ul peut s écrire sous l forme p, où p et q sot des etiers reltifs premiers etre eux. q U ombre réel

Plus en détail

8. Applications des intégrales définies

8. Applications des intégrales définies APPLICATIONS DES INTÉGRALES DÉFINIES 57 8. Applictios des itégrles défiies 8.1. Aire etre deux coures Prolème Soiet f et g deux foctios cotiues ds l'itervlle [, ] telles que f(x) g(x), pour x. Clculer

Plus en détail

Corrigé de Centrale 2016 PC math 1. I Autour de la fonction Gamma d Euler. f(t)dt existe si et seulement si x > 0.

Corrigé de Centrale 2016 PC math 1. I Autour de la fonction Gamma d Euler. f(t)dt existe si et seulement si x > 0. I.A.) ft) = t x e t doc t t x Puisque Corrigé de Cetrle 26 PC mth I Autour de l foctio Gmm d Euler x + tx+ e t =, ft) = t + o t 2 ) doc Le domie de défiitio de Γ est doc D =], + [. ft)dt existe si et seulemet

Plus en détail

Étude globale des fonctions (C01) Exercices

Étude globale des fonctions (C01) Exercices Étude globle des foctios (C) Exercices Exercice O fixe R et b R vec < b O cosidère ue foctio croisste f : [, b] R b) Motrer que pour tout etier N, l esemble D c := { x [, b] ; f(x+) f(x ) > } est fii b)

Plus en détail

DEVOIR DE SYNTHESE N 2

DEVOIR DE SYNTHESE N 2 EDUCATION EN LIGNE PARTAGE DU SAVOIR DEVOIR DE SYNTHESE N 2 4ème Ecoomie et Gestio Mthémtique WWW.NETSCHOOL1.NET Bri Power School Lycée secodire Ghzl Devoir de sythése 2 MATHEMATIQUES 4EG M r :WALID Jebli

Plus en détail

INTÉGRATION. 1 Intégration des fonctions en escalier. 1.1 Fonctions en escalier sur un segment. 1.2 Intégrale d une fonction en escalier

INTÉGRATION. 1 Intégration des fonctions en escalier. 1.1 Fonctions en escalier sur un segment. 1.2 Intégrale d une fonction en escalier Luret Grci MPSI Lycée Je-Bptiste Corot INTÉGRATION Ds tout ce chpitre et b désige des réels. Qud o ote [, b], il est sous-etedu que b. 1 Itégrtio des foctios e esclier 1.1 Foctios e esclier sur u segmet

Plus en détail

TS ROC Année 2014/2015

TS ROC Année 2014/2015 TS ROC Aée 214/215 Commetires : - Les ROC mrquées d u fot prtie des cpcités ttedues et sot doc eigibles. - Les ROC mrquées sot difficiles. - Lorsqu ue ROC est ccompgée de questios, il fut se lisser guider

Plus en détail

CALCUL INTÉGRAL. 1. Notion d intégrale. Unité d aire (u.a.) : l aire du rectangle bâti à partir des vecteurs

CALCUL INTÉGRAL. 1. Notion d intégrale. Unité d aire (u.a.) : l aire du rectangle bâti à partir des vecteurs CALCUL INTÉGRAL Cors Termile S Notio d itégrle Soit e octio cotie et positive sr itervlle ; i j Soit c s core représettive ds le pl mi d repère orthogol ( O ;, ) Déiitio : O ppelle : Uité d ire () : l

Plus en détail

Fonctions - Cours Compétences Contenus Fonctions Applications des dérivées (scientifiques) Représentation graphique (Scientifiques)

Fonctions - Cours Compétences Contenus Fonctions Applications des dérivées (scientifiques) Représentation graphique (Scientifiques) Foctios - Cours Compéteces Coteus,, 3, 4, 5, 6 Foctios - Foctio : déiitio, eemples, lecture grphique, imge d ue octio, représettio grphique, propriétés, résolutio des équtios et des iéqutios à l ide de

Plus en détail

Corrigé de l épreuve de mathématiques du baccalauréat S de la Réunion /5 N 2 4/5 R 2 R 3 3/5 4/ c) Comme dans la question précédente :

Corrigé de l épreuve de mathématiques du baccalauréat S de la Réunion /5 N 2 4/5 R 2 R 3 3/5 4/ c) Comme dans la question précédente : Corrigé de l épreuve de mthémtiques du bcclurét S de l Réuio 5 Eercice ) Les propositios b) et c) sot vries ) Les propositios b) et d) sot vries Les propositios b) et d) sot vries 4) Les propositios b)

Plus en détail

Exo7. Trigonométrie. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur

Exo7. Trigonométrie. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur Exo7 Trigoométrie Exercices de Je-Louis Rouget Retrouver ussi cette fiche sur wwwmths-frcefr * très fcile ** fcile *** difficulté moyee **** difficile ***** très difficile I : Icotourble T : pour trviller

Plus en détail

3. Opérations sur les limites : Limite d une somme :

3. Opérations sur les limites : Limite d une somme : Termile S Limites de foctios.................. Dérivilité et cotiuité................ 4 Epoetielles..................... 7 Logrithmes...................... Itégrtios...................... Foctios trigoométriques...............

Plus en détail

Corrigés des exercices sur les ensembles de nombres

Corrigés des exercices sur les ensembles de nombres Mster «Eductio et Métiers de l eseigemet du premier degré» Corrigés des exercices sur les esembles de ombres Exercice 9. ; ;,4 ; ; 0 sot des ombres rtioels décimux. U ombre déciml plusieurs écritures dot

Plus en détail

Suites et séries d applications

Suites et séries d applications Chpitre 3 Suites et séries d pplictios Ds tout ce chpitre,, b R vec < b (ou évetuellemet, et/ou b + ). Pour N, : [, b] R ou C sot des octios déiies sur l itervlle [, b] (ou R ou [, b] ou [, + [). 3. Covergece

Plus en détail

1.2. L ensemble des nombres complexes Opérations sur les nombres complexes

1.2. L ensemble des nombres complexes Opérations sur les nombres complexes . Nomres complees.. U peu d histoire! (lecture p ) So utilistio proviet des équtios du 3 et 4 ème degré pour permettre leur résolutio. Au XVI ème siècle, Bomelli les ppelle impossile. E 637, Descrtes les

Plus en détail

La puissance nième d une matrice 2X2

La puissance nième d une matrice 2X2 L puissce ième d ue mtrice X L puissce ième d ue mtrice (détils)... Le théorème de CLEY-HMILTON (pour les mtrices x)... lgorithme de clcul de l puissce ième...6 Suite umérique ssociée à l puissce ième...7

Plus en détail

1 Intégration des fonctions en escalier

1 Intégration des fonctions en escalier Mster Métiers de l Eseigemet, Mthémtiques - ULCO, L Mi-Voi, /3 ANALYSE Fiche de Mthémtiques 7 - Itégrles simples. O cosidère ds ce chpitre des foctios (umériques ou vectorielles) orées sur u itervlle compct

Plus en détail

CHAPITRE V. Suites et séries de fonctions.

CHAPITRE V. Suites et séries de fonctions. CHAPITRE V Suites et séries de foctios. I - Covergece simple d ue suite de foctios : le problème de l iterversio des ites. II - Covergece uiforme d ue suite de foctio : le théorème d iterversio des ites.

Plus en détail

Le problème de Cauchy

Le problème de Cauchy Le problème de Cuchy Deis Vekems Ds cet exposé, [, b] est u segmet de R. Soit f ue foctio de R R ds R et soit y ue foctio de R ds R, différetible. O ppelle équtio différetielle du premier ordre l reltio

Plus en détail

Questions les plus fréquentes, Méthodes et Stratégies classiques.

Questions les plus fréquentes, Méthodes et Stratégies classiques. Questios les plus fréquetes, Méthodes et Strtégies clssiques L spect rédctio est u spect importt des Mthémtiques : de mière géérle, u risoemet pourr voir cette forme : je dis ce que je fis et pourquoi

Plus en détail

La présentation, le soin et la rigueur des résultats entreront pour une part importante dans l évaluation de la copie. Exercice 1 : sur 8 points

La présentation, le soin et la rigueur des résultats entreront pour une part importante dans l évaluation de la copie. Exercice 1 : sur 8 points Termiles S DS N de Mthémtiques Ludi /0/04 L présettio, le soi et l rigueur des résultts etrerot pour ue prt importte ds l évlutio de l copie Exercice : sur 8 poits Cet exercice est costitué de questios

Plus en détail

Chapitre 13. Calcul Intégral. Cours de mathématiques de BCPST Première année.

Chapitre 13. Calcul Intégral. Cours de mathématiques de BCPST Première année. Chpitre 3 Clcul Itérl Cours de mthémtiques de BCPST Première ée. Tble des mtières Chpitre 3: Clcul Itérl Itértio sur u semet Ds tout ce chpitre, I désier u itervlle de réels cotet otmmet les deux élèmets

Plus en détail

L intégrale définie 3

L intégrale définie 3 . L ottio sigm L itégrle défiie. L ottio sigm Nous verros ds ce chpitre qu il existe ue reltio étote etre l otio de primitive et l otio de somme. Cette reltio permettr de résoudre rpidemet certies sommes

Plus en détail

UNE CONSTRUCTION DE L INTÉGRALE

UNE CONSTRUCTION DE L INTÉGRALE Lycée Thiers UNE CONSTRUCTION DE L INTÉGRALE Ett doée ue foctio f : [, b] R, peut-o prler de l itégrle de f? Et si oui, de quoi s git-il? Ces questios sot riches et profodes, mis l objet de ce texte est

Plus en détail

DM 2 SUR LES SUITES ADJACENTES, VERS LE NOMBRE e TS. n! = n si n 1 et 0! = 1

DM 2 SUR LES SUITES ADJACENTES, VERS LE NOMBRE e TS. n! = n si n 1 et 0! = 1 DM SUR LES SUITES ADJACENTES, VERS LE NOMBRE e TS. Fctorielle d'u etier turel. Soit. O ppelle fctorielle de l'etier oté défii pr : = 3... si et 0 = Pr exemple, 3 = 3 = 6. Le but de cette première prtie

Plus en détail

Intégration des fonctions continues par morceaux

Intégration des fonctions continues par morceaux Chpitre 4 Intégrtion des fonctions continues pr morceu 4.1 Introduction Dns cette section, on fie < deu réels, on note I = [, ] et on considère f : I R une ppliction continue. On suppose en outre que f

Plus en détail

M : Zribi 4 ème Sc Fiche. Calcul intégral. Le plan est rapporté à un repère orthogonal (O;i,j).

M : Zribi 4 ème Sc Fiche. Calcul intégral. Le plan est rapporté à un repère orthogonal (O;i,j). L.S.Mrs Elridh Clcul intégrl M : Zrii Le pln est rpporté à un repère orthogonl (O;i,j). A) Intégrle d une fonction continue et positive. 1 - Aire et intégrle. Définition Soit f une fonction continue et

Plus en détail

Limite et continuité d une fonction

Limite et continuité d une fonction Limite et cotiuité d ue octio 1 Limites iies Soit ue octio et D so domie de déiitio. Déiitio 1 : O dit que le ombre réel est u poit dhéret de D si >, D et tel que - < ( - < < + ). Le ombre est dit isolé

Plus en détail

Calcul de déterminants

Calcul de déterminants [http://mpcpgedupuydelomefr] édité le juillet 4 Eocés Clcul de détermits Exercice [ 693 ] [correctio] Clculer le détermit + x (x) où x,,, réels (x) + x Exercice 5 [ 386 ] [correctio] Soit λ,, λ C disticts

Plus en détail

Exo7. Intégrale de Riemann. 1 Rappel. 2 Propriétés de l intégrale de Riemann. 3 Quelles sont les fonctions Riemann-intégrables?

Exo7. Intégrale de Riemann. 1 Rappel. 2 Propriétés de l intégrale de Riemann. 3 Quelles sont les fonctions Riemann-intégrables? Exercices : Brbr Tumpch Relecture : Frçois Lescure Exo7 Itégrle de Riem Rppel Soiet ue octio borée et = { = < < < = b} ue subdivisio de [,b]. O ote : m k = i{ (x), x ] k, k [} et M k = sup{ (x), x ] k,

Plus en détail

LA MESURE EN MECANIQUE QUANTIQUE , ', ' > 0.

LA MESURE EN MECANIQUE QUANTIQUE , ', ' > 0. Trvux Dirigés de Physique Qutique : TD LA MESURE EN MECANIQUE QUANTIQUE I-/ O cosidère le mouvemet d ue prticule ss spi régi pr u Hmiltoie Ĥ. O suppose coue l équtio ux vleurs propres de Ĥ : Ĥ, = +, vec

Plus en détail

Intégration et primitives

Intégration et primitives DERNIÈRE IMPRESSIN LE 8 mrs 24 à 4:2 Itégrtio et primitives Tle des mtières Notio d itégrle 2. Défiitio................................. 2.2 Exemple de clcul d itégrle : l qudrture de l prole.... 3.3 Itégrle

Plus en détail

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A AVRIL CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie A CORRIGE DE LA ère COMPOSITION DE MATHEMATIQUES Eercice. Calculer, e, la dérivée de : Arc ta( ) Soit f ( ) Arc ta( ), alors f ( ) Arc ta( )

Plus en détail

5. Puissances et racines

5. Puissances et racines - - Puissces et rcies. Puissces et rcies. Puissces d expost positif Il rrive souvet qu o multiplie u etier plusieurs fois ps lui-même. Pr exemple : est le produit de fcteurs égux à. L ottio «puissce» permet

Plus en détail

LES PUISSANCES. a n désigne le produit de n facteurs, tous égaux à a. a n = a a a. a a apparaît n fois Il y a donc n 1 multiplications

LES PUISSANCES. a n désigne le produit de n facteurs, tous égaux à a. a n = a a a. a a apparaît n fois Il y a donc n 1 multiplications LES PUISSANCES I) Défiitios : ) Défiitio : Soit u omre reltif Soit u omre etier positif o ul désige le produit de fcteurs, tous égux à.. pprît fois Il y doc multiplictios est ue puissce du omre et se lit

Plus en détail

1. Intégration d une fonction continue par morceaux sur [a, b]

1. Intégration d une fonction continue par morceaux sur [a, b] Itégrle sur u segmet [, b] 6 - Sommire. Itégrle de f cotiue pr morceux.. Itégrle de f cotiue pr morceux.... Iterpréttio géométrique.........3. Sommes de Riem.............4. Propriétés..................

Plus en détail

Par «paquets» : Différents types : Ecriture de position :

Par «paquets» : Différents types : Ecriture de position : NUMERATION 1. Commet compter? Pr «pquets» : o commecé pr costruire des symoles ouveux pour chcu des «iveux» : 10, 100, 1 000, etc. C'est le cs des écritures égyptiee, grecque ou romie. Ce mode de représettio

Plus en détail

Primitives et Calcul d une intégrale

Primitives et Calcul d une intégrale Primitives et Clcul d une intégrle I) Primitive ) Définition : Soit f une fonction définie sur un intervlle I. On ppelle primitive de f sur I, toute fonction F dérivle sur I dont l dérivée F est égle à

Plus en détail

Mathématiques. On représente souvent la correspondance entre les deux suites par un tableau. Exemple : 5 12,

Mathématiques. On représente souvent la correspondance entre les deux suites par un tableau. Exemple : 5 12, PROPORTIONNALITE I. Suite de ombres proportioelles 1. Défiitio Deu suites de ombres réels (t le même ombre de termes) sot proportioelles si o peut psser de chque terme de l première suite u terme correspodt

Plus en détail

C f. 1 u.a. B x 1 A' E4 E2. 1 u.a. a. OJ = et K le point tel que OIKJ. OI = i, J le point tel que

C f. 1 u.a. B x 1 A' E4 E2. 1 u.a. a. OJ = et K le point tel que OIKJ. OI = i, J le point tel que CLCULS 'IRES. INTEGRLES. PRIMITIVES ) Intégrle d'une fonction. Soit f une fonction définie sur [ ; ] et C s coure représenttive dns un repère orthogonl ( ; j ). Si I est le point tel que I i, J le point

Plus en détail

Intégrale 4 ème math B.H.Hammouda Fethi

Intégrale 4 ème math B.H.Hammouda Fethi Intégrle 4 ème mth BHHmmoud Fethi Intégrle d une onction continue et positive : Déinition : Le pln est muni d un repère orthogonl Soit une onction continue et positive sur un intervlle, et F une primitive

Plus en détail

Cours (Terminale S) Limite d une fonction

Cours (Terminale S) Limite d une fonction Cours (Termile S) Limite d ue octio Limite d ue octio e + ou Foctio déiie u voisige de + (resp ) Soit ue octio d esemble de déiitio D O dir que «l octio est déiie u voisige de + (resp )» s il eiste u réel

Plus en détail

Intégrales. Motivation

Intégrales. Motivation Itégrles Vidéo prtie. L'itégrle de Riem Vidéo prtie. Propriétés Vidéo prtie 3. Primitive Vidéo prtie. Itégrtio pr prties - Chgemet de vrible Vidéo prtie 5. Itégrtio des frctios rtioelles Fiche d'eercices

Plus en détail

CALCULS ALGEBRIQUES A MODES DE RAISONNEMENT

CALCULS ALGEBRIQUES A MODES DE RAISONNEMENT CALCULS ALGEBRIQUES A MODES DE RAISONNEMENT O présete ds ce chpitre, les modes de risoemet usuels Ds l suite le terme de propositio, ou ssertio, désige u éocé mthémtique qui peut predre 2 vleurs : Vri

Plus en détail

C.N.D.P. Erpent septembre 2011 Réalisé par Fr. Borlon-Vangénéberg Avec la participation de P. de Baenst, A.-M. Genevrois et J.-P.

C.N.D.P. Erpent septembre 2011 Réalisé par Fr. Borlon-Vangénéberg Avec la participation de P. de Baenst, A.-M. Genevrois et J.-P. C.N.D.P. Erpet septemre 0 Rélisé pr Fr. Borlo-Vgééerg Avec l prticiptio de P. de Best, A.-M. Geevrois et J.-P. Gosseli http://www.orlo.et/mths/ Ide. Le premier degré..... Rdicu et eposts..... Les produits

Plus en détail

Résumé de cours : Terminale ES. Table des matières. Maths-Terminale ES. Mr Mamouni : source disponible sur: Samedi 08 Avril 2006.

Résumé de cours : Terminale ES. Table des matières. Maths-Terminale ES. Mr Mamouni : source disponible sur: Samedi 08 Avril 2006. Résumé de cours : Terminle ES. Mths-Terminle ES. Mr Mmouni : myismil@ltern.org source disponile sur: c http://www.chez.com/myismil Smedi 08 Avril 2006. Tle des mtières Eqution du second degré. 2. Ses solutions

Plus en détail

A RETENIR TERMINALE S

A RETENIR TERMINALE S A RETENIR TERMINALE S Ce documet est destié à "résumer" le cours de termile. Il e préted ps coteir tout ce que vous devez svoir pour réussir l épreuve. Il est coçu pour que vous puissiez l utiliser seul.

Plus en détail

Le théorème de Moivre-Laplace.

Le théorème de Moivre-Laplace. Le théorème de Moivre-Lplce. Ue démostrtio complète ds le cs p = 1/2. 1 - Eocé du théorème. 2 - Démostrtio du théorème de Moivre-Lplce lorsque p = 1/2. - Les étpes de l démostrtio. b - Covergece de f (t

Plus en détail

4 ème aée Maths Limites Cotiuité et dérivabilité Octobre 9 A LAATAOUI Eercice : La figure ci cotre est la représetatio graphique d ue foctio f défiie et cotiue sur IR O ote que (ζf) admet au voisiage de

Plus en détail

Lycée Faidherbe, Lille PC* Fonction Gamma. Corrigé du devoir non surveillé 1. I.1 Quelques valeurs. nn! n.(n + 1) = n donc lim

Lycée Faidherbe, Lille PC* Fonction Gamma. Corrigé du devoir non surveillé 1. I.1 Quelques valeurs. nn! n.(n + 1) = n donc lim Lycée Faidherbe, Lille PC* 008 009 Corrigé du devoir o surveillé Foctio Gamma I Défiitio I. Quelques valeurs a u ( u ( u (3!..3.( + doc lim + u ( : Γ ( eiste et vaut. +!.3.( +.( + doc lim ( +.( + u ( :

Plus en détail

Chapitre 6. Calcul intégral. OJ = j. Aire(rectangle OIKJ)= 1 u.a. 1 u.a. D = {M(x ; y) P tels que a x b et 0 y f(x)}

Chapitre 6. Calcul intégral. OJ = j. Aire(rectangle OIKJ)= 1 u.a. 1 u.a. D = {M(x ; y) P tels que a x b et 0 y f(x)} Chpitre 6 Clcul intégrl Intégrle et ire. Intégrle d une fonction continue positive sur un intervlle [ ; ] Définition : L unité d ire Soit P un pln muni d un repère orthogonl (O ; ı, j ). Soient I, J, et

Plus en détail

( ). Dans tout ce paragraphe, f et g sont des fonctions continues et positives sur un intervalle a;b. C f

( ). Dans tout ce paragraphe, f et g sont des fonctions continues et positives sur un intervalle a;b. C f Chpitre 6 : Clcul intégrl I Intégrle d une fonction continue positive 1 Unité d'ire Le pln est muni d un repère orthogonl O;i!,! j!!" "!!! " " En posnt OI = i et OJ = j, l ire du rectngle OIKJ définit

Plus en détail

PRENDRE UN BON DÉPART EN SECONDE LES RÈGLES DE PRIORITÉ

PRENDRE UN BON DÉPART EN SECONDE LES RÈGLES DE PRIORITÉ LES RÈGLES DE PRIORITÉ Règle 1 Ds ue suite de clculs, il fut effectuer d bord les clculs etre prethèses. Exemple 1 + (1-4) 1-9 Règle Si, ds ue suite de clculs figuret plusieurs prethèses imbriquées, il

Plus en détail

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse

Filière Sciences de Matières Physiques (SMP4) Module Mathématiques : Analyse (S4) Cours d Analyse UNIVERSITÉ MOHAMMED V - AGDAL Faculté des Scieces Départemet de Mathématiques Filière Scieces de Matières Physiques (SMP4) Module Mathématiques : Aalyse (S4) Cours d Aalyse Séries umériques Suites et Série

Plus en détail

Epreuve de la Mécanique quantique

Epreuve de la Mécanique quantique Fculté poldiscipliire de Sfi Filière : SMC Semestre : 4 Sessio de rttrpge Epreuve de l Mécique qutique Problème N : Effet Compto (7 poits) Uiversité cdi d Ludi : Jui 5 Durée : miutes Compto observ que

Plus en détail

Fiche Intégration MOSE Octobre 2014

Fiche Intégration MOSE Octobre 2014 Fiche Intégrtion MOSE 13 9 Octore 14 Tle des mtières Propriétés de l intégrle 1 Théorème fondmentl du clcul intégrl................................ Intégrle d une fonction de signe quelconque...............................

Plus en détail

Développements limités

Développements limités [http://mp.cpgedupuydelome.fr] édité le 0 juillet 04 Eocés Développemets limités Calcul de développemets limités Eercice [ 0447 ] [correctio] Détermier les développemets limités suivats : a) DL 3 (π/4)

Plus en détail

Définition d'une intégrale. Calcul intégral

Définition d'une intégrale. Calcul intégral Définition d'une intégrle Clcul intégrl. Introduction... p2 4. Primitives d'une fonction continue sur un intervlle... 2. Intégrle d'une fonction continue positive sur [;]... p5 p 5. Recherche de primitives...

Plus en détail

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série.

Les calculatrices sont autorisées. **** **** Le sujet comporte 6 pages. 1 n. (resp. f x ln 1 e ) la somme de cette série. Les calculatrices sot autorisées **** NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio Si u cadidat est ameé à repérer ce qui peut lui sembler

Plus en détail

CCP Filière MP Corrigé de l épreuve Mathématiques I

CCP Filière MP Corrigé de l épreuve Mathématiques I CCP 215 - Filière MP Corrigé de l épreuve Mthémtiques I Dmie Broizt & Nicols Bsbois Lycée Jules Ferry - Istitut Stisls, Ces EXERCICE I. I.1. Pr défiitio, l foctio géértrice g X de l vrible létoire X qui

Plus en détail

1 Convergence simple et convergence uniforme

1 Convergence simple et convergence uniforme Mster Métiers de l Eseigemet, Mthémtiques - ULCO, L Mi-Voi, 0/03 ANALYSE Fiche de Mthémtiques 5 - Suites et séries de foctios Soiet E et F deu espces métriques quelcoques et (f ) ue suite d pplictios de

Plus en détail

Synthèse de filtres. Normalisation du filtre. Choix du type de réponse. Calcul de la transmittance normalisé

Synthèse de filtres. Normalisation du filtre. Choix du type de réponse. Calcul de la transmittance normalisé Sythèse de iltres But : Suivt u grit de iltre doé, vous devez être cple de dimesioer ce iltre soit vec des composts pssis, soit vec des composts ctis ( respectivemet iltres dit pssis et iltres dit ctis

Plus en détail

Primitives et intégrales

Primitives et intégrales DOCUMENT 37 Primitives et itégrles O désige pr I u itervlle de R o vide et o réduit à u poit.. Primitives d ue foctio Défiitio 37.. O dit qu ue foctio f : I R possde ue primitive sur I, ou est primitivble

Plus en détail

Intégration. Intégrale d une fonction. II - Interprétation graphique : calcul d aire. 1) Aire d une fonction positive. T ale STI

Intégration. Intégrale d une fonction. II - Interprétation graphique : calcul d aire. 1) Aire d une fonction positive. T ale STI Intégrtion T le STI I - Intégrle d une fonction Définition Soit F une primitive de l fonction f sur [; ], lors, on note Exemple : Clcul de Clcul de 4 (3x ) dx = = [F(x)] = F() F() xdx : Une primitive de

Plus en détail