Flocon de Von Koch et approximation de Pi

Dimension: px
Commencer à balayer dès la page:

Download "Flocon de Von Koch et approximation de Pi"

Transcription

1 Flocon de Von Koch et approximation de Pi Vincent Pilaud Février 00 1 Préliminaire 1.1 Calculs d aire Soit ABC un triangle de cotés de longueur AB = x, AC = x et BC = y. Question 1 Montrer que l aire du triangle ABC vaut : A ABC = y x y Question En déduire l aire d un triangle équilatéral de côté x. 1. Calculs de sommes de suites arithmétiques et géométriques Question 3 Soit (x n ) n N la suite définie par : { Montrer (par récurrence) que : n N, Question Soit (x n ) n N la suite définie par : { x 0 n N, x n+1 = µ + x n (n + 1)(x 0 + nµ) x 0 n N, x n+1 = µx n = (n + 1)x 0 + Montrer (par récurrence) que : n N, x k n+1 1

2 Flocon de Von Koch.1 Description du problème On se donne un triangle équilatéral de côté x. A la première étape, on divise en trois chaque côté du triangle, et on supprime le tiers central que l on remplace par deux cotés de même longueur tournés vers l extérieur (cf dessin!). A chaque étape, on remplace le tiers central de chaque segment par deux côtés de même longueur tournés vers l extérieur. FIG 0 FIG 1 FIG On appelle FIG n la figure obtenue après la n-ième étape.. Calcul du périmètre et de l aire Question 5 On appelle P n le périmètre de FIG n, c n le nombre de côtés et l n la longueur de ces côtés. n N, c n = n.3 et l n = x 3 n En déduire que : n N, P n = ( 3 )n 3x lim P n = n Question 6 On appelle A n l aire de FIG n, k n le nombre de petits triangles rajoutés à l étape n et a n l aire de ces petits triangles. En déduire que : n N, A n = A 0 [1 + n N, k n = n 1.3 et a n = A 0 n ( k 1.3 k )] = x 3 0 [8 3( )n )] k=1 lim A n = x 3 n 5 Question 7 Montrer que la figure reste toujours inscrite dans le cercle circonscrit au triangle de départ. emarque 1 On note donc que l on obtient une série de figures dont l aire reste bornée tandis que le périmètre tend vers.

3 3 Approximation de Pi 3.1 Description de la méthode On sait que l aire du cercle est : A = π. On va ici trouver un encadrement de π en trouvant un encadrement de l aire du cercle. On considère pour n N les deux polygones réguliers à n côtés P n et Q n tels que le cercle circonscrit à P n soit le cercle inscrit dans Q n. On appelle le rayon de ce cercle. (cf figure pour n = 6). Q 6 P 6 3. Calcul de l aire d un polygone B O A On appelle rayon du polygone régulier le rayon de son cercle circonscrit (ici ). Question 8 En considérant le triangle OAB, calculer l aire d un polygone à n côtés de rayon. 3.3 Encadrement Question Donner l aire de P n. Calculer le rayon de Q n et en déduire son aire. Question 10 En déduire des encadrements de π de plus en plus fins. Combien de côtés doit avoir le polygone pour avoir une approximation de π à 10 5 près (donc 5 chiffres significatifs). emarque Le logiciel Maple donne chiffres significatifs instantanément. 3

4 Correction.1 Préliminaire Question 1 On calcule la longueur de la hauteur issue de A par le théorème de Pythagore : AH + HC = AC AH = AC HC = x ( y x y ) = On en déduit la formule : A ABC = AH.BC Question On a donc pour un triangle équilatéral (x = y) : Question 3 Montrons par récurrence que : A ABC = x x x n N, x n = nµ + x 0 et 1. Le résultat est clairement vrai pour n = 0, = y x y = x 3 (n + 1)x 0 +. Supposons le résultat vrai au rang n, et montrons qu alors il est vrai au rang n + 1 : x n+1 = µ + x n = µ + n.µ + x 0 = (n + 1)µ + x 0 n+1 x k + x n+1 = (n + 1)x (n + 1)µ + x 0 (n + 1)(n + )µ = (n + )x 0 + emarque 3 On peut bien sûr obtenir le résultat sans refaire la récurrence si on connaît déjà n k = n(n+1) Il suffit de dire que n N, x n = nµ + x 0 et d écrire : kµ + x 0 = (n + 1)x 0 + µ Question Montrons par récurrence que : n N, x n = µ n x 0 et 1. Le résultat est clairement vrai pour n = 0, n(n + 1) k = (n + 1)x 0 + µ x k n+1. Supposons le résultat vrai au rang n, et montrons qu alors il est vrai au rang n + 1 : x n+1 = µx n = µ.µ n x 0 = µ n+1 x 0. n+1 x k + x n+1 n+1 + µn+1 x 0 n+1 + ()µ n+1 n+

5 . Flocons de Von Koch Question 5 On montre le résultat par récurrence : Le résultat est vrai pour n = 0 car il y a bien trois côtés, qui sont tous les trois de longueur x. Supposons le résultat vrai au rang n et montrons qu alors il est vrai au rang n+1 : à l étape n+1, chaque côté est divisé en trois, donc l n+1 = ln 3 = x 3, et on remplace un côté par quatre segments, donc c n+1 n+1 = c n = n+1.3. On en déduit immédiatement que : et donc, puisque 3 > 1 : P n = l n.c n = n.3. x 3 n = ( 3 )n 3x lim P n = n Question 6 On ajoute autant de carrés à l étape n qu on a de côtés à l étape n 1, donc k n = c n 1 = n 1.3. L aire est proportionnelle au carré du triangle ajouté, donc à ln = x, et pour n = 1, a n n = A0, donc on a bien le résultat. On en déduit en faisant la somme que : et donc, puisque < 1 : A n = A Approximation de Pi k j.a j = A 0 + j=1 j=1 = A 0 [ ( )n 3 1 ] = x 3 0 [8 3( )n )] lim A n = x 3 n 5 j 1.3. A 0 j = A 0[1 + 1 n 1 ( 3 )j ] Question 7 On rappelle que l angle au centre du polygone régulier à n côtés est α n = π n. On calcule la longueur de la hauteur du triangle OAB issue de O : OH =. cos( αn ). On calcule la longueur du côté AB : AB =. sin( αn ). On a donc : Question 8 On a donc : et comme le rayon de Q n est A n, = na OAB = n AB.OH = n sin(α n) = n sin(π n ) cos( αn ), on a : A Pn = n sin(π n ) A Qn = n tan( π n ) j=0 = n. cos(α n ) sin(α n ) Question On a donc : A Pn < A C < A Qn et donc : n sin( π n ) < π < n tan( π n ). On a maintenant un problème pour calculer sin( π n ) et tan( π n ). On ne sait en général pas les calculer, mais on connaît une formule de récurrence si n est une puissance de : cos( π k ) = 1 + cos( π ) nk 1 On peut donc calculer par récurrence, et on obtient des approximations de π successives : k cos( π ) k k π sin( ) k k tan( π ) k On vérifie qu il faut aller jusqu à n = 1 = 06 pour obtenir une approximation avec 5 chiffres significatifs. emarque On aurait aussi pu obtenir une approximation de π avec le périmètre du cercle. 5

Triangles rectangles et trigonométrie

Triangles rectangles et trigonométrie Chapitre 6 Triangles rectangles et trigonométrie I] Rappels a) Définition Un triangle qui a un angle droit est un triangle rectangle. Le côté opposé à l angle droit est l hypoténuse, c est le plus grand

Plus en détail

Contrôle continu d Outils Mathématiques pour Scientifiques

Contrôle continu d Outils Mathématiques pour Scientifiques Contrôle continu d Outils Mathématiques pour Scientifiques (LM 130) (6 novembre 010 durée : h) Les calculatrices et les documents ne sont pas autorisés pages imprimées Les différents exercices sont indépendants

Plus en détail

Correction des exercices

Correction des exercices Correction des exercices Chapitre EXERCICE 1 a) u 1 = 5 5+1 = 5, u = 5 = 5 + 1 5, u 1 = 5 = 5 + 1 10 9, u = 10 9 10 9 + 1 = b) u 1 = ( 1+1) = 0, u = (0+1) = 1, u = (1+1) =, u = (+1) = 5 1 c) u 1 = 1 =

Plus en détail

Trigonométrie. I] Cercle trigonométrique et radians

Trigonométrie. I] Cercle trigonométrique et radians I] Cercle trigonométrique et radians Dans le plan muni d un repère orthonormé, on appelle cercle trigonométrique le cercle de centre O et de rayon 1 sur lequel on définit un sens de parcours appelé sens

Plus en détail

RELATION TRIGONOMETRIQUE DANS UN TRIANGLE QUELCONQUE

RELATION TRIGONOMETRIQUE DANS UN TRIANGLE QUELCONQUE Pré-requis : I-mise en situations RELATION TRIGONOMETRIQUE DANS UN TRIANGLE QUELCONQUE -Trigonométrie dans le triangle rectangle -le radian -la proportionnalité Pour connaître la hauteur de la falaise

Plus en détail

MPSI 2 : DL 03. pour le 12 décembre 2003

MPSI 2 : DL 03. pour le 12 décembre 2003 MPSI : DL 03 pour le décembre 003 Problème L objet du problème est de calculer eplicitement la limite de la suite des moyennes arithmétiques-géométriques pour certaines valeurs initiales. On considère

Plus en détail

Les suites numériques

Les suites numériques Exercices dernière impression le 18 février 2015 à 17:50 Les suites numériques Généralités sur les suites Exercice 1 Pour les suites suivantes, trouver la fonction f associée à la suite définie par la

Plus en détail

Le berger et ses moutons

Le berger et ses moutons Cet article est rédigé par des élèves. Il peut comporter des oublis ou des imperfections, autant que possible signalés par nos relecteurs dans les notes d édition. Le berger et ses moutons 2014-2015 Nom,

Plus en détail

Corrections des exercices sur les pyramides et cônes de révolution Exercice 1 :

Corrections des exercices sur les pyramides et cônes de révolution Exercice 1 : Corrections des exercices sur les pyramides et cônes de révolution Exercice 1 : Bien que sa base soit un polygone régulier ( un carré), la pyramide 1 n est pas régulière car sa hauteur ne passe pas par

Plus en détail

CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6)

CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6) 3D2 LMRL CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6) 1 Rappels - classe de quatrième Théorème de Pythagore : Dans un triangle rectangle, le carré de l hypoténuse est égal à la somme des

Plus en détail

Géométrie. Mesures de cercles, de parties de cercles et de figures arrondies

Géométrie. Mesures de cercles, de parties de cercles et de figures arrondies Géométrie Mesures de cercles, de parties de cercles et de figures arrondies 1. Le nombre Le nombre est le nombre que l'on obtient en divisant le périmètre de n'importe quel cercle avec son diamètre. Il

Plus en détail

CORRECTION DU DEVOIR SURVEILLE DE MATHEMATIQUES n 1 SUJET A

CORRECTION DU DEVOIR SURVEILLE DE MATHEMATIQUES n 1 SUJET A CORRECTION DU DEVOIR SURVEILLE DE MATHEMATIQUES n 1 SUJET A Exercice 1 Dans la figure ci-contre, I U et V sont trois points du cercle C de centre O. L angle e re. 1) Calc ler La e re de l angle Dans le

Plus en détail

Terminale S Problème de synthèse n 5 Fonctions trigonométriques - Suites géométriques - Suites adjacentes - Intégrales

Terminale S Problème de synthèse n 5 Fonctions trigonométriques - Suites géométriques - Suites adjacentes - Intégrales Partie A a est un nombre réel appartenant à l intervalle [0 ;π]. On considère la suite géométrique (u n ) de premier terme u 0 cos a et de raison sin a. 1) Exprimer u n en fonction de n et déterminer la

Plus en détail

Correction du baccalauréat S La Réunion juin 2007

Correction du baccalauréat S La Réunion juin 2007 Durée : 4 heures Correction du baccalauréat S La Réunion juin 007 EXERCICE Commun à tous les candidats y ln a. a. Aa ; ln a.mx ; y A T x a = a y = x ln a. a b. P0 ; y T y = ln a. P0 ; ln a. Longueur PQ

Plus en détail

ABCD est un carré donc les distances des côtés sont égales. On note.

ABCD est un carré donc les distances des côtés sont égales. On note. Exercice 1 ABCD est un carré donc les distances des côtés sont égales. On note. Pour construire E et F, on a tracé un quart de cercle de centre D passant par B. On peut ainsi noter car ils correspondent

Plus en détail

Exercice 8 [ ] [Correction] Soit (ABC) un vrai triangle du plan. Pour un point M du plan, on pose

Exercice 8 [ ] [Correction] Soit (ABC) un vrai triangle du plan. Pour un point M du plan, on pose [http://mp.cpgedupuydelome.fr] édité le décembre 06 Enoncés Extremum sur compact Exercice [ 0059 ] [Correction] Déterminer le maximum de la fonction f définie sur le compact K = [0 ; ] donnée par f (x,

Plus en détail

Pyramide et Cône de révolution

Pyramide et Cône de révolution Pyramide et Cône de révolution I ) Pyramide 1 ) Présentation : a) Une pyramide est un solide constitué d un polygone appelé base dont les sommets sont reliés à un point, n appartenant pas au plan de base,

Plus en détail

PROPRIETES, THEOREME DE GEOMETRIE

PROPRIETES, THEOREME DE GEOMETRIE PROPRIETES, THEOREME DE GEOMETRIE Droites Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles. (6ème) Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

p(p a)(p b)(p c) où p = 1 (a + b +c)

p(p a)(p b)(p c) où p = 1 (a + b +c) ème E DS4 racines carrées 01-014 sujet 1 Eercice 1 : (4 points) Les figures ci-dessous ont toutes une aire de cm². Donner la valeur eacte de en cm, dans chacun des cas. (1) () () (4) 1 Eercice : au brevet

Plus en détail

Trigonométrie et angles orientés

Trigonométrie et angles orientés Trigonométrie et angles orientés A) Angles orientés. 1. Le radian. Le radian est une unité de mesure d un angle comme le degré. Il est défini comme la longueur de l arc entre deux points du cercle unité

Plus en détail

RELATIONS METRIQUES du TRIANGLE RECTANGLE - Propriétés de Pythagore.

RELATIONS METRIQUES du TRIANGLE RECTANGLE - Propriétés de Pythagore. RELATIONS METRIQUES du TRIANGLE RECTANGLE - Propriétés de Pythagore. - Les relations trigonométriques dans le triangle rectangle. COURS I ) propriétés de Pythagore Pré requis Théorème : Dans un triangle

Plus en détail

Volume d une boule = 4 3 π r3

Volume d une boule = 4 3 π r3 Page 1 sur 5 Figure : Calcul d aires : exemple Parallélogramme Rectangle... Base hauteur Triangles base hauteur 2 Aire du parallélogramme ABCD = DC AE pour repérer la hauteur et la base, j ai repassé l

Plus en détail

Chapitre 1 : Correction des Travaux dirigés

Chapitre 1 : Correction des Travaux dirigés U.P.S. I.U.T. A, Département d Informatique Année 009-00 Chapitre : Correction des Travaux dirigés. Soit v n n i0 qi la somme des n premiers termes d une suite géométrique de raison q, et de premier terme.

Plus en détail

TAGE 2 / TAGE MAGE SOUS-TEST : CALCUL

TAGE 2 / TAGE MAGE SOUS-TEST : CALCUL TAGE 2 / TAGE MAGE SOUS-TEST : CALCUL GEOMETRIE AUCUN DOCUMENT N EST AUTORISE CALCULATRICES INTERDITES Le sujet a été réalisé par l équipe pédagogique de Mes Concours Blancs et n engage en rien le concours

Plus en détail

I) Activités numériques

I) Activités numériques Brevet 1996 : Bordeaux I) Activités numériques Exercice 1 : Dans cet exercice, on utilisera le programme de calcul ci-après : Programme de calcul : choisir un nombre x ; retrancher au double de x ; élever

Plus en détail

Mathématiques élémentaires

Mathématiques élémentaires Cellule de Géométrie Mathématiques élémentaires S F1 + S F = S F3 Isopérimétrie et le théorème de Pythagore a² + b² = c² Cellule de Géométrie Catégorie pédagogique de la HEH DEMAL Michel DRAMAIX Jérémy

Plus en détail

Club de mathématiques 2 Le théorème de Pythagore et les triplets Pythagoriciens. Et comment tracer des triangles si on connait les trois côtés.

Club de mathématiques 2 Le théorème de Pythagore et les triplets Pythagoriciens. Et comment tracer des triangles si on connait les trois côtés. Club de mathématiques 2 Le théorème de Pythagore et les triplets Pythagoriciens. Et comment tracer des triangles si on connait les trois côtés. Ce club de mathématique peut être adapté à différent niveaux

Plus en détail

Penser : «les mesures des côtés du petit triangle sont proportionnelles aux mesures respectives des côtés du grand triangle».

Penser : «les mesures des côtés du petit triangle sont proportionnelles aux mesures respectives des côtés du grand triangle». 2 nde Ch III Géométrie Plane Théorèmes et rappels sur les angles I- Le théorème de Pythagore est sa réciproque. Hypothèses = «ce qu on sait» = conditions à vérifier pour pouvoir appliquer le théorème Conclusion

Plus en détail

Le Centre d éducation en mathématiques et en informatique. Ateliers en ligne Euclide Atelier n o 4. Trigonométrie. c 2014 UNIVERSITY OF WATERLOO

Le Centre d éducation en mathématiques et en informatique. Ateliers en ligne Euclide Atelier n o 4. Trigonométrie. c 2014 UNIVERSITY OF WATERLOO Le entre d éducation en mathématiques et en informatique teliers en ligne Euclide telier n o 4 Trigonométrie c 014 UNIVERSITY OF WTERLOO teliers en ligne Euclide telier n o #4 TRIGONOMÉTRIE OÎTE À OUTILS

Plus en détail

Cours configurations du plan

Cours configurations du plan I Polygones a) Polygones particuliers triangles Propriété : La somme des angles d un triangle est égale à 180. Définition : Un triangle isocèle a deux côtés de même longueur. Propriétés caractéristiques

Plus en détail

Symétrie centrale - Exercices

Symétrie centrale - Exercices Symétrie centrale - Exercices Exercice 1 On considère le triangle ABC tel que AB = 4, 5 cm, AC = 6cm et BC = 4cm. a. Construire ce triangle. b. Tracer les symétriques A et C de A et C par rapport à B.

Plus en détail

CUEEP. Théorème de Pythagore Département Mathématiques. Juin 2006 GEOMETRIE E 325 1/14 DIVERS PROBLEMES. 1 - Les barreaux

CUEEP. Théorème de Pythagore Département Mathématiques. Juin 2006 GEOMETRIE E 325 1/14 DIVERS PROBLEMES. 1 - Les barreaux 006 E 35 1/14 Situations DIVERS PROBLEMES 1 - Les barreaux 7 barreaux équidistants forment un porche en demi-cercle. Calculer la longueur totale des barreaux. - La tente Une tente canadienne est large

Plus en détail

Nombres Complexes Exercice 1. [5 pts] Équations

Nombres Complexes Exercice 1. [5 pts] Équations Nombres Complexes Exercice 1. [5 pts] Équations On se propose d étudier les solutions de l équation (E) z + 1 = 0 1. Vérifier que pour tout nombre complexe z, on a : z + 1 = (z + 1)(z z + 1). En déduire

Plus en détail

Lemmes utiles en géométrie

Lemmes utiles en géométrie Lemmes utiles en géométrie Thomas Budzinski Avant-propos La géométrie est un domaine où une bonne culture peut s avérer très utile pour résoudre des exercices. Ce document est une liste (non exhaustive!)

Plus en détail

Triangles rectangles

Triangles rectangles Triangles rectangles Définitions : L hypoténuse. Le côté adjacent à l angle. Le côté opposé à l angle B. A B. Le côté adjacent à l angle B. Le côté opposé à l angle. Remarque : Dans un triangle rectangle,

Plus en détail

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR.

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. I Notion de suite réelle ) Définition : Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. Le réel U(n) est noté U n il est appelé terme général

Plus en détail

Calculs d aires et de périmètre dans le plan Calculs de volumes Formules trigonométriques. Géométrie numérique. Fabrice LECLERCQ.

Calculs d aires et de périmètre dans le plan Calculs de volumes Formules trigonométriques. Géométrie numérique. Fabrice LECLERCQ. 13 octobre 2009 Figures Périmètres Aires Carré 4a a 2 Rectangle 2a+2b a b Figures Périmètres Aires Tri. quelconque a+b + c b h 2 Tri. équilatéral 3a 3 a 2 4 Figures Périmètres Aires Losange 4a D d 2 Trapèze

Plus en détail

38 Questions de plus : éléments de correction

38 Questions de plus : éléments de correction 38 Questions de plus : éléments de correction Attention, ce document vous donne uniquement les réponses et quelques explications ; pour les éléments de rédaction à rajouter, merci de vous reporter à ce

Plus en détail

THEOREMES DE GEOMETRIE

THEOREMES DE GEOMETRIE THEOREMES DE GEOMETRIE DROITES REMARQUABLES D'UN TRIANGLE Hauteurs : On appelle hauteur d'un triangle une droite qui passe par un sommet du triangle et qui est perpendiculaire au coté opposé à ce sommet.

Plus en détail

Séance 1. Activité 1.: Réflexion. Construction tétraèdre par pliage. En déduire un patron de pyramide.

Séance 1. Activité 1.: Réflexion. Construction tétraèdre par pliage. En déduire un patron de pyramide. Séance 1 Année 2016-2017 Séquence 03 : Pyramides et cônes Objectifs : Connaitre les noms des polyèdres ; Connaitre les propriétés des pyramides et celles de cônes ; Propriétés sur les quadrilatères particuliers

Plus en détail

BAC BLANC 2013 MATHÉMATIQUES STI2D. Toutes options

BAC BLANC 2013 MATHÉMATIQUES STI2D. Toutes options BACCALAURÉAT TECHNOLOGIQUE CORRIGÉ BAC BLANC 03 MATHÉMATIQUES STID Toutes options Durée de l épreuve : heures Coefficient : Ce sujet comporte pages numérotées (celle-ci comprise) L usage de la calculatrice

Plus en détail

2 e Devoir sur la quadrature du cercle

2 e Devoir sur la quadrature du cercle e Devoir sur la quadrature du cercle Si l on excepte quelques valeurs de mentionnées dans la Bible ou le Talmud ou indiquées par les Égyptiens et les Babyloniens, à savoir respectivement 6 9 et, l histoire

Plus en détail

APPLICATIONS DU PRODUIT SCALAIRE

APPLICATIONS DU PRODUIT SCALAIRE APPLICATIONS DU PRODUIT SCALAIRE Lycée Stendhal Première S M Obaton L équipe des professeurs de mathématiques Lycée Stendhal En mathématique, c est comme dans un roman policier ou un épisode de Columbo:

Plus en détail

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2 NOMBRES COMPLEXES Ph DEPRESLE janvier 06 Table des matières Les nombres complexes-forme algébrique d un nombre complexe Opérations dans l ensemble C. Addition dans C...........................................

Plus en détail

Sommaire. Séquence 8. Séance 1 Numération Encadrer une fraction page 37. Séance 2 Calcul Diviser ou multiplier par 10 ou 100 page 39

Sommaire. Séquence 8. Séance 1 Numération Encadrer une fraction page 37. Séance 2 Calcul Diviser ou multiplier par 10 ou 100 page 39 Sommaire Séquence 8 Séance 1 Numération Encadrer une fraction page 37 Séance 2 Calcul Diviser ou multiplier par 10 ou 100 page 39 Séance 3 Mesures Périmètre du cercle page 43 Séance 4 Géométrie Les triangles

Plus en détail

50 CHAPITRE 1. UN COFFRE D OUTILS

50 CHAPITRE 1. UN COFFRE D OUTILS 50 HPITRE 1. UN OFFRE D OUTILS 1.7 Géométrie 1. Le triangle : angles et côtés. (a) La somme des trois angles d un triangle est 180 degrés ou π. (b) La longueur de cacun des côtés est inférieure à la somme

Plus en détail

Exercices corrigés Théorème de Rolle, accroissements finis

Exercices corrigés Théorème de Rolle, accroissements finis Eercices corrigés Théorème de Rolle, accroissements finis Enoncés Eercice Démonstration du théorème des accroissements finis Soit f : [a, b] R, continue sur [a, b], dérivable sur ]a, b[ En appliquant le

Plus en détail

Racines carrées. EXTRAIT DU B.O. SPÉCIAL N 6 DU 28 AOÛT 2008 Connaissances Capacités Commentaires

Racines carrées. EXTRAIT DU B.O. SPÉCIAL N 6 DU 28 AOÛT 2008 Connaissances Capacités Commentaires Racines carrées EXTRAIT U B.O. SPÉCIAL N 6 U 8 AOÛT 008 Connaissances Capacités Commentaires. Nombres et calculs.. Calculs élémentaires sur les radicaux Racine carrée d un nombre positif. Produit et quotient

Plus en détail

SUITES ARITHMETIQUES ET GEOMETRIQUES

SUITES ARITHMETIQUES ET GEOMETRIQUES Chapitre 5 SUITES ARITHMETIQUES ET GEOMETRIQUES 51 Suites numériques Vocabulaire et notations 1 Une suite numérique est une liste ordonnée de nombres réels En d autres mots, il s agit d une fonction de

Plus en détail

Ch.11!SUITES_ partie 2

Ch.11!SUITES_ partie 2 1 Ch11!SUITES_ partie 1ere S Nous allons nous intéresser dans ce chapitre à deux types de suites : les suites arithmétiques et les suites géométriques I Suite arithmétique A introduction définition Une

Plus en détail

Corrigé du baccalauréat S Métropole juin 2004

Corrigé du baccalauréat S Métropole juin 2004 Corrigé du baccalauréat S Métropole juin 4 EXERCICE. On a pour tout n N, u n+ = u n + n+, donc u n+ u n = n+. Or n+>, donc u n+ u n > quel que soit n N. Conclusion : la suite (u n ) est strictement croissante..

Plus en détail

2 e Devoir. a d c. 6 2 b 1

2 e Devoir. a d c. 6 2 b 1 e Devoir I. Le but de l exercice est de déterminer les réels x, y, z, t de telle sorte que la somme des nombres d une même ligne ou d une même colonne du tableau ci-dessous donne le même nombre S. 5 x

Plus en détail

Diplôme National du Brevet Métropole - La Réunion - Mayotte Session 2007

Diplôme National du Brevet Métropole - La Réunion - Mayotte Session 2007 Diplôme National du Brevet Métropole - La Réunion - Mayotte Session 2007 L emploi de la calculatrice est autorisé. La rédaction et la présentation seront notées sur 4 points. Coefficient : 2 Activités

Plus en détail

en effectuant un pliage le long de la droite, les figures se superposent. en effectuant un demi-tour autour de ce point, les figures se superposent.

en effectuant un pliage le long de la droite, les figures se superposent. en effectuant un demi-tour autour de ce point, les figures se superposent. 1 Symétrie par rapport à une droite JETIF 1 ÉFINITIN ire que deux figures sont symétriques par rapport à une droite signifie que, en effectuant un pliage le long de la droite, les figures se superposent.

Plus en détail

EPREUVE D ENTRAÎNEMENT 21 MAI 2012

EPREUVE D ENTRAÎNEMENT 21 MAI 2012 EPREUVE D ENTRAÎNEMENT 21 MAI 2012 MATHEMATIQUES Durée : 2 heures L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation et de la rédaction entrent dans l appréciation des copies

Plus en détail

Par Clément en vacances sur la Côte d Azur Le 26 décembre 2010

Par Clément en vacances sur la Côte d Azur Le 26 décembre 2010 Par Clément en vacances sur la Côte d Azur Le 26 décembre 2010 1 Les formes à trois côtés Le triangle possède: trois sommets, trois angles et trois côtés. Les trois côtés sont: AB dont la longueur est

Plus en détail

Partie I : Activités numériques (12 points)

Partie I : Activités numériques (12 points) Correction du brevet blanc mars 2012 Partie I : Activités numériques (12 points) Exercice 1 ( points) Voici un programme de calcul : - Prendre un nombre et calculer le produit de ce nombre par 2,5 ; -

Plus en détail

I) Angle orienté formé par deux vecteurs du plan

I) Angle orienté formé par deux vecteurs du plan CHAPITRE Angles orientés, trigonométrie Capacités au programme : Utiliser le cercle trigonométrique, notamment pour : déterminer les cosinus et sinus d angles associés ; résoudre dans R les équations d

Plus en détail

Corrigé du Brevet Blanc n 2

Corrigé du Brevet Blanc n 2 Activités numériques : Exercice 1 : 1. Test pour 2 : D une part : 3 x 1 6 = 3 2 1 6 = 3 3 6 = 9 6 = 3 D autre part, on a 0. 3 0, donc 2 est solution de cette inéquation. 2. Résolution et représentation

Plus en détail

Sujets de bac : Géométrie dans l espace 1

Sujets de bac : Géométrie dans l espace 1 Sujets de bac : Géométrie dans l espace Sujet n : La Réunion juin 23 On considère un cube d arête. Le nombre désigne un réel strictement positif. On considère le point de la demi-droite défini par. ) Déterminer

Plus en détail

I. Relations métriques

I. Relations métriques 1 sur 8 http://www.ilemaths.n/maths-capes-lecon-37-relation-triangle-rectang... LEÇON 37 : RELATIONS MÉTRIQUES DANS UN TRIANGLE RECTANGLE. TRIGONOMÉTRIE. APPLICATIONS Niveau : Collège (4 ème - 3 ème )

Plus en détail

Produit scalaire. 1 Vecteurs Norme Angle orienté de deux vecteurs Projection orthogonale... 4

Produit scalaire. 1 Vecteurs Norme Angle orienté de deux vecteurs Projection orthogonale... 4 Table des matières 1 Vecteurs 1.1 Norme................................................. 1. Angle orienté de deux vecteurs................................... 1.3 Projection orthogonale........................................

Plus en détail

BREVET BLANC de MATHEMATIQUES n 1 Janvier durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 1 Janvier durée : 2 heures BREVET BLANC de MATHEMATIQUES n 1 Janvier 2011 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points)

Plus en détail

Feuille de TD 2 - Les nombres complexes

Feuille de TD 2 - Les nombres complexes Université Paris-Diderot Année 016-017 MM1 - Algèbre et analyse élémentaires I 51AE01MT Filière Chimie - Step Feuille de TD - Les nombres complexes Exercice 1. Écrire sous forme algébrique les nombres

Plus en détail

Epreuve de Mathématiques Durée 2 heures

Epreuve de Mathématiques Durée 2 heures Collège Jules Ferry Session 2012 Diplôme National du Brevet Blanc n 1 Epreuve de Mathématiques Durée 2 heures L emploi des calculatrices est autorisé (circulaire n 99 186 du 16 Novembre 1999 publiée au

Plus en détail

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. Utiliser le cercle trigonométrique, notamment

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. Utiliser le cercle trigonométrique, notamment Chapitre 6 Trigonométrie CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale. Utiliser le cercle trigonométrique, notamment

Plus en détail

Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé.

Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé. Activités numériques (12 points) Brevet blanc 2012 La rédaction et la présentation seront notées sur 4 points. L'emploi de la calculatrice est autorisé. Exercice 1 :(détailler chacun des calculs suivants)

Plus en détail

Baccalauréat S Centres étrangers 10 juin 2015

Baccalauréat S Centres étrangers 10 juin 2015 Corrigé Baccalauréat S Centres étrangers 10 juin 015 A. P. M. E. P. Exercice 1 Commun à tous les candidats 4 points Partie A 1. On a p = 0, 0 et n = 500. Un intervalle de fluctuation au seuil de 95 % est

Plus en détail

TS - Maths - Révisions Nombres complexes

TS - Maths - Révisions Nombres complexes TS - Maths - Révisions Nombres complexes Exercice 1 LIBAN 01 On considère la suite de nombres complexes z n définie par z 0 = i et pour tout entier naturel n : z n+1 = 1 + iz n. Les parties A et B peuvent

Plus en détail

(exercice : calculer u 2 puis u 5 )

(exercice : calculer u 2 puis u 5 ) Suites Prérequis : Division euclidienne Soient a et b deux entiers avec b 0. Il existe un unique couple (q, r) Z N tel que a = q b + r et 0 r < b. q s appelle le quotient de la division enclidienne de

Plus en détail

Aide : Vecteurs distance - colinéarité

Aide : Vecteurs distance - colinéarité Exercice : calculs de distances en repère orthonormal On donne les points A(- ;) B( ;) et C( ;-). Placer ces points dans un repère. ) Calculer les longueurs AB, BC et CA. En déduire la nature du triangle

Plus en détail

Convergence : vitesse et accélération

Convergence : vitesse et accélération 1 Convergence : vitesse et accélération 1. Rapidité de convergence. a) Introduction. Daniel PERRIN Soit (u n ) n N une suite de nombres réels qui converge vers a. On cherche à préciser la rapidité de convergence

Plus en détail

Trigonométrie et calcul numérique

Trigonométrie et calcul numérique Université de Liège Examen d'admission aux études de bachelier ingénieur civil et architecte Trigonométrie et calcul numérique Prof. P. Duysinx et Prof. M. Hogge Septembre 01 Nous présentons ici une voie

Plus en détail

Chapitre 7 : Trigonométrie

Chapitre 7 : Trigonométrie Chapitre : Trigonométrie I. Longueur d arc de cercle Par cœur : Le périmètre d un cercle de rayon R : R L aire d un disque de rayon R : R Savoir-faire : calculer la longueur d un arc de cercle Le cercle

Plus en détail

1. Définitions du nombre π

1. Définitions du nombre π 1. Définitions du nombre π Première définition de π π est le rapport de la circonférence au diamètre: c = 2 π 1 r = π 1 d c d π 1 = c d = circonférence diamètre = côté du polygone inscrit à n côtés h n

Plus en détail

Soit a un nombre... Le nombre... dont le... est égal à a est la... de a. On note ce nombre...

Soit a un nombre... Le nombre... dont le... est égal à a est la... de a. On note ce nombre... 5.1 Activités Activité n 1 : Découverte....... Depuis le théorème de Pythagore, vous avez appris à utiliser la touche racine carrée de votre calculatrice. De plus, vous avez été surpris(e) par certaines

Plus en détail

Exercices d entrainement pour le chapitre 02 (récurrence et suites)

Exercices d entrainement pour le chapitre 02 (récurrence et suites) Exercices d entrainement pour le chapitre 0 récurrence et suites 0. Énoncés Exercice. Démontrer l inégalité n > n pour tout entier naturel n. Exercice. On définit, pour tout entier n, le n ième nombre

Plus en détail

Exercices sur les fonctions et les limites

Exercices sur les fonctions et les limites Pierre-Louis CAYREL 008-009 Licence Introduction au Mathématiques Générales Université de Paris 8 Eercices sur les fonctions et les ites Fonctions Eercice Donner un eemple de fonction f définie sur I [0,

Plus en détail

Le produit scalaire et ses applications

Le produit scalaire et ses applications 1 Le produit scalaire et ses applications Table des matières 1 Définitions et propriétés 1.1 Définition initiale............................. 1. Définition dans un repère orthonormal................. 1.3

Plus en détail

S14C. Autour de la TRIGONOMETRIE Corrigé

S14C. Autour de la TRIGONOMETRIE Corrigé CRPE S4C. Autour de la TRIGONOMETRIE Corrigé Mise en route A. Le triangle MNP étant rectangle en P, on peut utiliser la trigonométrie. [MN] est l hypoténuse du triangle, [MP] est le côté adjacent à et

Plus en détail

TEST TAGE MAGE NUMERO 1 : VOTRE GRILLE DE REPONSES

TEST TAGE MAGE NUMERO 1 : VOTRE GRILLE DE REPONSES TEST TAGE MAGE NUMERO 1 : VOTRE GRILLE DE REPONSES Epreuve 1 Compréhension de textes Epreuve 2 Calcul Epreuve 3 Raisonnement/Argumentation Si vous souhaitez répondre la réponse B à la question 31, alors

Plus en détail

I. Relations métriques

I. Relations métriques 1 sur 8 08/04/2005 22:29 LEÇON 38 : RELATIONS MÉTRIQUES ET TRIGONOMÉTRIQUES DANS UN TRIANGLE QUELCONQUE. APPLICATIONS. Niveau : Première S Prérequis : i) Produit scalaire : Définitions (par distances et

Plus en détail

La trigonométrie en seconde

La trigonométrie en seconde Niveau : De la 4 e à la Terminale. Trigonométrie Prérequis :Géométrie du triangle, théorème de Pythagore,notion de fonction et produit scalaire. Vocabulaire :Tri - gono - métrie = trois - cotés - mesure

Plus en détail

GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES

GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES Géométrie analytique C est Descartes (1596-1650) qui a développé l idée de représenter les figures géométriques dans un repère, les points du plan étant définis

Plus en détail

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES FRANÇAISES OFM OLYMPIADES MATHÉMATIQUES TEST DE RENTRÉE CORRIGÉ

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES FRANÇAISES OFM OLYMPIADES MATHÉMATIQUES TEST DE RENTRÉE CORRIGÉ OLYMPIADES FRANÇAISES DE MATHÉMATIQUES OLYMPIADES OFM FRANÇAISES MATHÉMATIQUES TEST DE RENTRÉE MERREDI 1ER OTORE 2014 ORRIGÉ Exercice 1. Un restaurant propose trois desserts, et exactement deux fois plus

Plus en détail

T. D. n o 3 Suites numériques. Limite d une suite numérique.

T. D. n o 3 Suites numériques. Limite d une suite numérique. T. D. n o 3 Suites numériques. Limite d une suite numérique. Exercice : D après le concours d inspecteur du trésor, épreuve 2, 2004.. Étudier la fonction de la variable réelle x définie par : f(x) = ln

Plus en détail

Bareme. TEST BLANC TAGE MAGE SOUS-TEST 2 : CALCUL Consignes

Bareme. TEST BLANC TAGE MAGE SOUS-TEST 2 : CALCUL Consignes Deuxième partie Test 1 463 1 TEST BLANC TAGE MAGE SOUS-TEST 2 : CALCUL Consignes L épreuve de calcul évalue la maîtrise de connaissances simples dans les domaines de l arithmétique, de la géométrie, de

Plus en détail

2.5 Solutions des exercices

2.5 Solutions des exercices .5 Solutions des exercices Réponses au questionnaire à choix multiples.1.5 Vrai Faux 1 Deux angles et sont complémentaires si + = 180. V F Deux angles et sont supplémentaires si + = 180. V F 3 Un polygone

Plus en détail

Trigonométrie dans le triangle rectangle

Trigonométrie dans le triangle rectangle Trigonométrie dans le triangle rectangle I Relations métriques dans le triangle rectangle : A) Le théorème de Pythagore : Propriété : Dans un triangle rectangle, le carré de la longueur de l hypoténuse

Plus en détail

Correction du baccalauréat S Pondichéry 16 avril 2008

Correction du baccalauréat S Pondichéry 16 avril 2008 Correction du baccalauréat S Pondichéry 6 avril 008 EXERCICE Commun à tous les candidats 4 points. a. x e x e ou encore e x e e x > par croissance de la fonction exponentielle). f est donc bien définie

Plus en détail

ANNEXE. PREMIÈRE PARTIE : ÉNONCÉS EXTRAITS DU COURS MAT (N os 1 à 55)

ANNEXE. PREMIÈRE PARTIE : ÉNONCÉS EXTRAITS DU COURS MAT (N os 1 à 55) ANNEXE PREMIÈRE PARTIE : ÉNONCÉS EXTRAITS DU COURS MAT - 4111-2 (N os 1 à 55) ANGLES 1. Des angles adjacents qui ont leurs côtés extérieurs en ligne droite sont supplémentaires. 2. Les angles opposés par

Plus en détail

Trigonométrie. Mathématique. Sylvie Jancart. septembre 2015

Trigonométrie. Mathématique. Sylvie Jancart. septembre 2015 Mathématique Sylvie Jancart sylvie.jancart@ulg.ac.be septembre 2015 Equations trigonométriques élémentaires Exemple 1 : résoudre dans IR l équation sin x = 1 : 2 L examen du cercle trigonométrique montre

Plus en détail

Exercice 1 : (Brevet National 2009) L'unité de longueur est le centimètre. ABC est un triangle tel que : AB = 16 cm, AC = 14 cm et BC = 8 cm.

Exercice 1 : (Brevet National 2009) L'unité de longueur est le centimètre. ABC est un triangle tel que : AB = 16 cm, AC = 14 cm et BC = 8 cm. Exercice : (Brevet National 009) L'unité de longueur est le centimètre. ABC est un triangle tel que : AB = 6 cm, AC = 4 cm et BC = cm. ) a) Tracer en vraie grandeur le triangle ABC sur la copie. b) Le

Plus en détail

NOM : ANGLES ET ROTATIONS 1ère S

NOM : ANGLES ET ROTATIONS 1ère S Exercice 1 ABC est un triangle de sens direct rectangle en A. On construit à l extérieur du triangle les carrés ACDE et BCF G. Démontrer que les droites (BD) et (AF ) sont perpendiculaires, et que BD =

Plus en détail

Proposition de corrigé

Proposition de corrigé Le sujet Programme officiel Proposition de corrigé Introduction La notion de probabilité, en lien direct avec les statistiques, est introduite dans les programmes du collège depuis la rentrée 2008. Elle

Plus en détail

Complément sur les suites. Suites adjacentes

Complément sur les suites. Suites adjacentes DERNIÈRE IMPRESSION LE 27 février 2017 à 16:33 Complément sur les suites. Suites adjacentes Table des matières 1 Le procédé 2 2 Suites adjacentes 2 2.1 Définition................................. 2 2.2

Plus en détail

CONFIGURATIONS DU PLAN (quelques rappels)

CONFIGURATIONS DU PLAN (quelques rappels) CONFIGURATIONS DU PLAN (quelques rappels).1polygones.1.1.parallélogramme Un parallélogramme est un quadrilatère dont les côtés opposés sont parallèles deux à deux. S Un parallélogramme admet un centre

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Arithmétique Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Plus en détail

EXERCICES DE GEOMETRIE BASES

EXERCICES DE GEOMETRIE BASES EXERES E GEETRE SES Exercice n 1 p. 222 Puisque et sont de même mesure, il en est de même pour les angles L et N. Notons x cet angle. Par suite, NL = N = 180 (90 + x) = 90 x. e même, NL = L = 180 (90 +

Plus en détail