Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 3. Mesures stationnaires. et théorèmes de convergence"

Transcription

1 Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1

2 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.2

3 I. Mesures stationnaires Définition : Une probabilité π sur E est invariante ou stationnaire pour la chaine de Markov (X n ) n 0 si, pour tout n 0 : ( x E, P(X n = x) = π(x)) = ( x E, P(X n+1 = x) = π(x)). Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.2

4 I. Mesures stationnaires Définition : Une probabilité π sur E est invariante ou stationnaire pour la chaine de Markov (X n ) n 0 si, pour tout n 0 : ( x E, P(X n = x) = π(x)) = ( x E, P(X n+1 = x) = π(x)). Proposition 1 : La probabilité π est stationnaire si et seulement si : y E, π(x)p(x, y) = π(y). x E Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.2

5 I. Mesures stationnaires Définition : Une probabilité π sur E est invariante ou stationnaire pour la chaine de Markov (X n ) n 0 si, pour tout n 0 : ( x E, P(X n = x) = π(x)) = ( x E, P(X n+1 = x) = π(x)). Proposition 1 : La probabilité π est stationnaire si et seulement si : y E, π(x)p(x, y) = π(y). x E En fait π est stationnaire si et seulement si, lorsque la loi initiale de la chaine est π (c est-à-dire si P(X 0 = x) = π(x) pour tout x) alors, pour tout instant n, la loi de X n est également π (c est-à-dire P(X n = x) = π(x) pour tout x). Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.2

6 Exemple : Dans le cas d une chaine pour laquelle E = {0,1} et p = 1 a a, b 1 b nous avons montré que P(X n = 0) = et P(X n = 1) = b a + b + (1 a b)n (µ(0) a a + b + (1 a b)n (µ(1) b a + b ) a a + b ) Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.3

7 Exemple : Dans le cas d une chaine pour laquelle E = {0,1} et p = 1 a a, b 1 b nous avons montré que P(X n = 0) = et P(X n = 1) = b a + b + (1 a b)n (µ(0) a a + b + (1 a b)n (µ(1) b a + b ) a a + b ) Par conséquent la probabilité π définie par π(0) = b a+b, π(1) = a a+b est stationnaire et c est la seule. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.3

8 Exemple : Dans le cas d une chaine pour laquelle E = {0,1} et p = 1 a a, b 1 b nous avons montré que P(X n = 0) = et P(X n = 1) = b a + b + (1 a b)n (µ(0) a a + b + (1 a b)n (µ(1) b a + b ) a a + b ) Par conséquent la probabilité π définie par π(0) = b a+b, π(1) = a a+b est stationnaire et c est la seule. On retrouve ce résultat en appliquant la proposition 1. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.3

9 Exemple : Dans le cas d une chaine pour laquelle E = {0,1} et p = 1 a a, b 1 b nous avons montré que P(X n = 0) = et P(X n = 1) = b a + b + (1 a b)n (µ(0) a a + b + (1 a b)n (µ(1) b a + b ) a a + b ) Par conséquent la probabilité π définie par π(0) = b a+b, π(1) = a a+b est stationnaire et c est la seule. On retrouve ce résultat en appliquant la proposition 1. En outre lim P(X n = 0) = n + b a + b = π(0), lim P(X n = 1) = n + a a + b = π(1). Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.3

10 En fait, si π est stationnaire et si la loi de X 0 est π, alors pour tout n, (X k+n ) k 0 a même loi que (X p ) p 0 au sens où : pour tout m 0, le vecteur (X n,x n+1,...,x n+m ) a même loi que le vecteur (X 0,X 1,...,X m ). Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.4

11 En fait, si π est stationnaire et si la loi de X 0 est π, alors pour tout n, (X k+n ) k 0 a même loi que (X p ) p 0 au sens où : pour tout m 0, le vecteur (X n,x n+1,...,x n+m ) a même loi que le vecteur (X 0,X 1,...,X m ). Cela signifie que la chaine de Markov regardée depuis l instant initial a même loi que la chaine de Markov regardée à partir de tout instant n. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.4

12 En fait, si π est stationnaire et si la loi de X 0 est π, alors pour tout n, (X k+n ) k 0 a même loi que (X p ) p 0 au sens où : pour tout m 0, le vecteur (X n,x n+1,...,x n+m ) a même loi que le vecteur (X 0,X 1,...,X m ). Cela signifie que la chaine de Markov regardée depuis l instant initial a même loi que la chaine de Markov regardée à partir de tout instant n. Il est commode d étendre la notion d invariance aux mesures sur E et de ne pas la réserver aux probabilités sur E. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.4

13 En fait, si π est stationnaire et si la loi de X 0 est π, alors pour tout n, (X k+n ) k 0 a même loi que (X p ) p 0 au sens où : pour tout m 0, le vecteur (X n,x n+1,...,x n+m ) a même loi que le vecteur (X 0,X 1,...,X m ). Cela signifie que la chaine de Markov regardée depuis l instant initial a même loi que la chaine de Markov regardée à partir de tout instant n. Il est commode d étendre la notion d invariance aux mesures sur E et de ne pas la réserver aux probabilités sur E. Définition : Une mesure m sur E (c est à dire une famille (m(x)) x E de réels positifs ou nuls) est dite invariante (ou stationnaire) si la mesure m n est pas la mesure identiquement nulle et si : y E x E m(x)p(x,y) = m(y). Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.4

14 Une probabilité invariante est évidemment une mesure invariante. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.5

15 Une probabilité invariante est évidemment une mesure invariante. Si m est une mesure invariante et si λ > 0, alors λm est une mesure invariante. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.5

16 Une probabilité invariante est évidemment une mesure invariante. Si m est une mesure invariante et si λ > 0, alors λm est une mesure invariante. Si m est une mesure invariante et si m(e) < +, alors m/m(e) est une probabilité invariante. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.5

17 Une probabilité invariante est évidemment une mesure invariante. Si m est une mesure invariante et si λ > 0, alors λm est une mesure invariante. Si m est une mesure invariante et si m(e) < +, alors m/m(e) est une probabilité invariante. En pratique, on cherche des mesures stationnaires et on les renormalise éventuellement pour avoir des probabilités stationnaires. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.5

18 Une probabilité invariante est évidemment une mesure invariante. Si m est une mesure invariante et si λ > 0, alors λm est une mesure invariante. Si m est une mesure invariante et si m(e) < +, alors m/m(e) est une probabilité invariante. En pratique, on cherche des mesures stationnaires et on les renormalise éventuellement pour avoir des probabilités stationnaires. Si E est fini et comprend d éléments, m peut être représentée par un vecteur colonne de d composantes et les équations de stationnarité s écrivent : m t p = m t. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.5

19 Une probabilité invariante est évidemment une mesure invariante. Si m est une mesure invariante et si λ > 0, alors λm est une mesure invariante. Si m est une mesure invariante et si m(e) < +, alors m/m(e) est une probabilité invariante. En pratique, on cherche des mesures stationnaires et on les renormalise éventuellement pour avoir des probabilités stationnaires. Si E est fini et comprend d éléments, m peut être représentée par un vecteur colonne de d composantes et les équations de stationnarité s écrivent : m t p = m t. Cela revient à chercher les vecteurs propres à gauche de p (c est-à-dire les vecteurs propres de p t associés à la valeur propre 1). On voit que 1 est valeur propre de p donc de p t, mais il n est pas évident qu il existe un vecteur propre dont toutes les composantes soient positives ou nulles. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.5

20 Exemple : Prenons le modèle d Ehrenfest avec d = 3. La matrice de transition p est : /3 0 2/ /3 0 1/ Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.6

21 Exemple : Prenons le modèle d Ehrenfest avec d = 3. La matrice de transition p est : /3 0 2/ /3 0 1/ On trouve : π(0) = 1 8, π(1) = 3 8, π(2) = 3 8, π(3) = 1 8. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.6

22 Exemple : Prenons le modèle d Ehrenfest avec d = 3. La matrice de transition p est : /3 0 2/ /3 0 1/ On trouve : π(0) = 1 8, π(1) = 3 8, π(2) = 3 8, π(3) = 1 8. Pour cette chaine, nous n avons pas lim n + P(X n = i) = π(i) car si n est impair P x (X n = x) = 0. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.6

23 Exemple : Prenons le modèle d Ehrenfest avec d = 3. La matrice de transition p est : /3 0 2/ /3 0 1/ On trouve : π(0) = 1 8, π(1) = 3 8, π(2) = 3 8, π(3) = 1 8. Pour cette chaine, nous n avons pas lim n + P(X n = i) = π(i) car si n est impair P x (X n = x) = 0. Cette chaine a un comportement périodique", nous y reviendrons à la fin du chapitre. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.6

24 Il peut être lourd de chercher les mesures stationnaires à l aide de la définition, la notion de réversibilité est plus restrictive mais plus facile à manipuler. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.7

25 Il peut être lourd de chercher les mesures stationnaires à l aide de la définition, la notion de réversibilité est plus restrictive mais plus facile à manipuler. Définition : La mesure m sur E est réversible pour la chaine de Markov de fonction de transition p si : m(x)p(x,y) = m(y)p(y,x), x;y E. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.7

26 Il peut être lourd de chercher les mesures stationnaires à l aide de la définition, la notion de réversibilité est plus restrictive mais plus facile à manipuler. Définition : La mesure m sur E est réversible pour la chaine de Markov de fonction de transition p si : m(x)p(x,y) = m(y)p(y,x), x;y E. Proposition 2 : Toute mesure réversible est stationnaire. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.7

27 Exemple d une chaine de naissance et mort : Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.8

28 Exemple d une chaine de naissance et mort : On suppose que q x > 0 pour tout x 1. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.8

29 Exemple d une chaine de naissance et mort : On suppose que q x > 0 pour tout x 1. On vérifie que la mesure m est réversible si et seulement si elle s écrit pour x 1, x E : m(x) = p 0...p x 1 q 1...q x m(0). Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.8

30 Exemple d une chaine de naissance et mort : On suppose que q x > 0 pour tout x 1. On vérifie que la mesure m est réversible si et seulement si elle s écrit pour x 1, x E : m(x) = p 0...p x 1 q 1...q x m(0). Si E = {0, 1,...d}, la probabilité π donnée par : π(x) = m(x) d y=0 m(y) = d y=0 p 0...p x 1 q 1...q x p 0...p y 1 q 1...q y pour 0 x d, est réversible donc stationnaire. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.8

31 Exemple d une chaine de naissance et mort : On suppose que q x > 0 pour tout x 1. On vérifie que la mesure m est réversible si et seulement si elle s écrit pour x 1, x E : m(x) = p 0...p x 1 q 1...q x m(0). Si E = {0, 1,...d}, la probabilité π donnée par : π(x) = m(x) d y=0 m(y) = d y=0 p 0...p x 1 q 1...q x p 0...p y 1 q 1...q y pour 0 x d, est réversible donc stationnaire. Si E = N, et si y 0 m(y) =< +, c est-à-dire si y 0 une seule probabilité réversible π donnée par : p 0...p y 1 q 1...q y < +, il existe une et π(x) = m(x) y 0 m(y) = y 0 p 0...p x 1 q 1...q x p 0...p y 1 q 1...q y pour x N. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.8

32 Exemple d une chaine de naissance et mort : On suppose que q x > 0 pour tout x 1. On vérifie que la mesure m est réversible si et seulement si elle s écrit pour x 1, x E : m(x) = p 0...p x 1 q 1...q x m(0). Si E = {0, 1,...d}, la probabilité π donnée par : π(x) = m(x) d y=0 m(y) = d y=0 p 0...p x 1 q 1...q x p 0...p y 1 q 1...q y pour 0 x d, est réversible donc stationnaire. Si E = N, et si y 0 m(y) =< +, c est-à-dire si y 0 une seule probabilité réversible π donnée par : p 0...p y 1 q 1...q y < +, il existe une et π(x) = m(x) y 0 m(y) = y 0 p 0...p x 1 q 1...q x p 0...p y 1 q 1...q y pour x N. Si E = N, et si y 0 p 0...p y 1 q 1...q y = +, il n existe pas de probabilité réversible. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.8

33 Proposition 3 : Soit π une probabilité stationnaire. Si y est un état transient ou récurrent nul, alors π(y) = 0. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.9

34 Proposition 3 : Soit π une probabilité stationnaire. Si y est un état transient ou récurrent nul, alors π(y) = 0. car si y est transient ou récurrent nul, alors pour tout x ( n ) 1 n E x 1 {Xk =y} 0. n + k=1 Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.9

35 II. Cas d une chaine récurrente irréductible Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.10

36 II. Cas d une chaine récurrente irréductible Lemme 5 : Soit m une mesure invariante (donc non identiquement nulle) d une chaine de Markov irréductible. Alors, pour tout y E, on a m(y) > 0. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.10

37 II. Cas d une chaine récurrente irréductible Lemme 5 : Soit m une mesure invariante (donc non identiquement nulle) d une chaine de Markov irréductible. Alors, pour tout y E, on a m(y) > 0. Théorème 5 : Une chaine de Markov récurrente irréductible possède une mesure invariante m. Cette mesure stationnaire est strictement positive en tout point et unique à une constante multiplicative près. En outre pour tout x 0 E on a : T x0 y E, m(y) = c(x 0 ) E x0 (c(x 0 ) > 0). k=1 1 {Xk =y} Par suite la chaine est récurrente positive si et seulement si ses mesures stationaires sont de masse totale finie. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.10

38 On fixe x 0 E et on pose T x0 λ x0 (y) = E x0 k=1 1 {Xk =y} = k 1 P x0 (T x0 k,x k = y) R +. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.11

39 On fixe x 0 E et on pose T x0 λ x0 (y) = E x0 k=1 1 {Xk =y} = k 1 P x0 (T x0 k,x k = y) R +. Etape 1 : λ x0 est une mesure invariante strictement positive Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.11

40 On fixe x 0 E et on pose T x0 λ x0 (y) = E x0 k=1 1 {Xk =y} = k 1 P x0 (T x0 k,x k = y) R +. Etape 1 : λ x0 est une mesure invariante strictement positive Etape 2 : toutes les mesures invariantes sont proportionnelles à λ x0 Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.11

41 On fixe x 0 E et on pose T x0 λ x0 (y) = E x0 k=1 1 {Xk =y} = k 1 P x0 (T x0 k,x k = y) R +. Etape 1 : λ x0 est une mesure invariante strictement positive - λ x0 (x 0 ) = 1, Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.11

42 On fixe x 0 E et on pose T x0 λ x0 (y) = E x0 k=1 1 {Xk =y} = k 1 P x0 (T x0 k,x k = y) R +. Etape 1 : λ x0 est une mesure invariante strictement positive - λ x0 (x 0 ) = 1, - pour tout z E, y E λ x 0 (y)p(y,z) = λ x0 (z), Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.11

43 On fixe x 0 E et on pose T x0 λ x0 (y) = E x0 k=1 1 {Xk =y} = k 1 P x0 (T x0 k,x k = y) R +. Etape 1 : λ x0 est une mesure invariante strictement positive - λ x0 (x 0 ) = 1, - pour tout z E, y E λ x 0 (y)p(y,z) = λ x0 (z), - pour tout y 0 E, λ x0 (y 0 ) < +. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.11

44 On fixe x 0 E et on pose T x0 λ x0 (y) = E x0 k=1 1 {Xk =y} = k 1 P x0 (T x0 k,x k = y) R +. Etape 1 : λ x0 est une mesure invariante strictement positive - λ x0 (x 0 ) = 1, - pour tout z E, y E λ x 0 (y)p(y,z) = λ x0 (z), - pour tout y 0 E, λ x0 (y 0 ) < +. Etape 2 : toutes les mesures invariantes sont proportionnelles à λ x0. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.11

45 On fixe x 0 E et on pose T x0 λ x0 (y) = E x0 k=1 1 {Xk =y} = k 1 P x0 (T x0 k,x k = y) R +. Etape 1 : λ x0 est une mesure invariante strictement positive - λ x0 (x 0 ) = 1, - pour tout z E, y E λ x 0 (y)p(y,z) = λ x0 (z), - pour tout y 0 E, λ x0 (y 0 ) < +. Etape 2 : toutes les mesures invariantes sont proportionnelles à λ x0. Soit m une mesure invariante Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.11

46 On fixe x 0 E et on pose T x0 λ x0 (y) = E x0 k=1 1 {Xk =y} = k 1 P x0 (T x0 k,x k = y) R +. Etape 1 : λ x0 est une mesure invariante strictement positive - λ x0 (x 0 ) = 1, - pour tout z E, y E λ x 0 (y)p(y,z) = λ x0 (z), - pour tout y 0 E, λ x0 (y 0 ) < +. Etape 2 : toutes les mesures invariantes sont proportionnelles à λ x0. Soit m une mesure invariante - pour tout z E, m(z) m(x 0 ) n k=1 P x 0 (T x0 k,x k = z), Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.11

47 On fixe x 0 E et on pose T x0 λ x0 (y) = E x0 k=1 1 {Xk =y} = k 1 P x0 (T x0 k,x k = y) R +. Etape 1 : λ x0 est une mesure invariante strictement positive - λ x0 (x 0 ) = 1, - pour tout z E, y E λ x 0 (y)p(y,z) = λ x0 (z), - pour tout y 0 E, λ x0 (y 0 ) < +. Etape 2 : toutes les mesures invariantes sont proportionnelles à λ x0. Soit m une mesure invariante - pour tout z E, m(z) m(x 0 ) n k=1 P x 0 (T x0 k,x k = z), - pour tout z E, m(z) m(x 0 )λ x0 (z), Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.11

48 On fixe x 0 E et on pose T x0 λ x0 (y) = E x0 k=1 1 {Xk =y} = k 1 P x0 (T x0 k,x k = y) R +. Etape 1 : λ x0 est une mesure invariante strictement positive - λ x0 (x 0 ) = 1, - pour tout z E, y E λ x 0 (y)p(y,z) = λ x0 (z), - pour tout y 0 E, λ x0 (y 0 ) < +. Etape 2 : toutes les mesures invariantes sont proportionnelles à λ x0. Soit m une mesure invariante - pour tout z E, m(z) m(x 0 ) n k=1 P x 0 (T x0 k,x k = z), - pour tout z E, m(z) m(x 0 )λ x0 (z), - m 1 = m m(x 0 )λ x0 est une mesure (positive) qui vérifie, pour tout y E, m 1 (y) = x E m 1(x)p(x,y). Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.11

49 On fixe x 0 E et on pose T x0 λ x0 (y) = E x0 k=1 1 {Xk =y} = k 1 P x0 (T x0 k,x k = y) R +. Etape 1 : λ x0 est une mesure invariante strictement positive - λ x0 (x 0 ) = 1, - pour tout z E, y E λ x 0 (y)p(y,z) = λ x0 (z), - pour tout y 0 E, λ x0 (y 0 ) < +. Etape 2 : toutes les mesures invariantes sont proportionnelles à λ x0. Soit m une mesure invariante - pour tout z E, m(z) m(x 0 ) n k=1 P x 0 (T x0 k,x k = z), - pour tout z E, m(z) m(x 0 )λ x0 (z), - m 1 = m m(x 0 )λ x0 est une mesure (positive) qui vérifie, pour tout y E, m 1 (y) = x E m 1(x)p(x,y). - m 1 (x 0 ) = 0, donc m 1 = 0 (lemme 4). Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.11

50 Théorème 6 : Une chaine de Markov irréductible et récurrente positive possède une et une seule probabilité stationnaire π. Cette probabilité stationnaire π vérifie : x 0 E, y E, π(y) = E x 0 ( T x0 k=1 1 {X k =y}) E x0 (T x0 ) En outre, pour tout y E : = 1 E y (T y ). 1 n n k=1 1 {Xk =y} p.s. n + π(y). Plus généralement, pour toute fonction f positive ou π-intégrable : 1 n n f(x k ) k=1 p.s. n + y E f(y)π(y) = fdπ. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.12

51 Remarque : : lim n + 1 n n k=1 1 {Xk =y} = lim n + 1 n n k=0 1 {Xk =y} = lim n + 1 n n 1 k=0 1 {Xk =y}, et de même : lim n + 1 n n k=1 f(x k ) = lim n + 1 n n k=0 f(x k ) = lim n + 1 n n 1 k=0 f(x k ). Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.13

52 Remarque : : lim n + 1 n n k=1 1 {Xk =y} = lim n + 1 n n k=0 1 {Xk =y} = lim n + 1 n n 1 k=0 1 {Xk =y}, et de même : lim n + 1 n n k=1 f(x k ) = lim n + 1 n n k=0 f(x k ) = lim n + 1 n n 1 k=0 f(x k ). Corollaire 8 : Une chaine irréductible est récurrente positive si et seulement si elle possède une probabilité stationnaire (et celle-ci est alors unique). Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.13

53 Remarque : : lim n + 1 n n k=1 1 {Xk =y} = lim n + 1 n n k=0 1 {Xk =y} = lim n + 1 n n 1 k=0 1 {Xk =y}, et de même : lim n + 1 n n k=1 f(x k ) = lim n + 1 n n k=0 f(x k ) = lim n + 1 n n 1 k=0 f(x k ). Corollaire 8 : Une chaine irréductible est récurrente positive si et seulement si elle possède une probabilité stationnaire (et celle-ci est alors unique). Corollaire 8 : Une chaine irréductible sur un espace d états fini possède une et une seule probabilité stationnaire π et tous ses états sont récurrents positifs. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.13

54 En pratique, pour trouver la probabilité invariante éventuelle d une chaine irréductible, on peut commencer par chercher des mesures réversibles γ, Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.14

55 En pratique, pour trouver la probabilité invariante éventuelle d une chaine irréductible, on peut commencer par chercher des mesures réversibles γ, si on en trouve une, alors la mesure m = γ est invariante, Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.14

56 En pratique, pour trouver la probabilité invariante éventuelle d une chaine irréductible, on peut commencer par chercher des mesures réversibles γ, si on en trouve une, alors la mesure m = γ est invariante, si on n en trouve pas, on ne peut conclure et il faut revenir à la recherche directe de mesures invariantes, Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.14

57 En pratique, pour trouver la probabilité invariante éventuelle d une chaine irréductible, on peut commencer par chercher des mesures réversibles γ, si on en trouve une, alors la mesure m = γ est invariante, si on n en trouve pas, on ne peut conclure et il faut revenir à la recherche directe de mesures invariantes, si on ne trouve pas de mesure invariante non identiquement nulle, alors la chaine est transiente. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.14

58 En pratique, pour trouver la probabilité invariante éventuelle d une chaine irréductible, on peut commencer par chercher des mesures réversibles γ, si on en trouve une, alors la mesure m = γ est invariante, si on n en trouve pas, on ne peut conclure et il faut revenir à la recherche directe de mesures invariantes, si on ne trouve pas de mesure invariante non identiquement nulle, alors la chaine est transiente. si on a trouvé une mesure invariante m non identiquement nulle : Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.14

59 En pratique, pour trouver la probabilité invariante éventuelle d une chaine irréductible, on peut commencer par chercher des mesures réversibles γ, si on en trouve une, alors la mesure m = γ est invariante, si on n en trouve pas, on ne peut conclure et il faut revenir à la recherche directe de mesures invariantes, si on ne trouve pas de mesure invariante non identiquement nulle, alors la chaine est transiente. si on a trouvé une mesure invariante m non identiquement nulle : - ou bien x m(x) < +, la chaine est alors récurrente positive et la probabilité invariante est π(x) = m(x)/ y m(y), Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.14

60 En pratique, pour trouver la probabilité invariante éventuelle d une chaine irréductible, on peut commencer par chercher des mesures réversibles γ, si on en trouve une, alors la mesure m = γ est invariante, si on n en trouve pas, on ne peut conclure et il faut revenir à la recherche directe de mesures invariantes, si on ne trouve pas de mesure invariante non identiquement nulle, alors la chaine est transiente. si on a trouvé une mesure invariante m non identiquement nulle : - ou bien x m(x) < +, la chaine est alors récurrente positive et la probabilité invariante est π(x) = m(x)/ y m(y), - ou bien x m(x) = +, la chaine est alors récurrente nulle ou transiente. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.14

61 III. Cas d une chaine non irréductible Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.15

62 III. Cas d une chaine non irréductible Lemme 10 : Soit C une classe fermée et m une mesure portée par C (c est-à-dire telle que m(c c ) = 0). Alors m est invariante pour la chaine de Markov initiale si et seulement si elle est invariante pour la chaine de Markov restreinte à C. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.15

63 III. Cas d une chaine non irréductible Lemme 10 : Soit C une classe fermée et m une mesure portée par C (c est-à-dire telle que m(c c ) = 0). Alors m est invariante pour la chaine de Markov initiale si et seulement si elle est invariante pour la chaine de Markov restreinte à C. Théorème 10 : Soit C une classe fermée irréductible formée d états récurrents positifs, alors la chaine possède une et une seule probabilité stationnaire π concentrée sur C. Elle est donnée par : π(x) = { 1 E x (T x ) si x C, 0 sinon. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.15

64 Théorème 11 : Soit (C k ) k K (K fini ou dénombrable) l ensemble des classes récurrentes irréductibles qui sont récurrentes positives (c est-à-dire formées d états récurrents positifs). Notons π k (k K) l unique probabilité stationnaire concentrée sur C k. Alors les probabilités stationnaires de la chaine sont les mesures de la forme : π = c k π k, avec c k 0, c k = 1. k K k K Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.16

65 IV. Convergence en loi vers la loi stationnaire Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.17

66 IV. Convergence en loi vers la loi stationnaire Tous les résultats suivants sont admis. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.17

67 IV. Convergence en loi vers la loi stationnaire Tous les résultats suivants sont admis. Définition : Etant donné x E pour lequel P x (T x < + ) > 0 (c est-à-dire il existe n 1 tel que p n (x,x) > 0), sa période d x est le p.g.c.d. de {n : n 1,p n (x,x) > 0}. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.17

68 IV. Convergence en loi vers la loi stationnaire Tous les résultats suivants sont admis. Définition : Etant donné x E pour lequel P x (T x < + ) > 0 (c est-à-dire il existe n 1 tel que p n (x,x) > 0), sa période d x est le p.g.c.d. de {n : n 1,p n (x,x) > 0}. Remarque : 1 d x min{n 1 : p n (x,x) > 0}, en particulier s il existe x tel que p(x,x) > 0, alors d x = 1. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.17

69 IV. Convergence en loi vers la loi stationnaire Tous les résultats suivants sont admis. Définition : Etant donné x E pour lequel P x (T x < + ) > 0 (c est-à-dire il existe n 1 tel que p n (x,x) > 0), sa période d x est le p.g.c.d. de {n : n 1,p n (x,x) > 0}. Remarque : 1 d x min{n 1 : p n (x,x) > 0}, en particulier s il existe x tel que p(x,x) > 0, alors d x = 1. Proposition 12 : Si x conduit à y alors d x = d y Par conséquent, tous les éléments d une chaine de Markov irréductible ont même période. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.17

70 IV. Convergence en loi vers la loi stationnaire Tous les résultats suivants sont admis. Définition : Etant donné x E pour lequel P x (T x < + ) > 0 (c est-à-dire il existe n 1 tel que p n (x,x) > 0), sa période d x est le p.g.c.d. de {n : n 1,p n (x,x) > 0}. Remarque : 1 d x min{n 1 : p n (x,x) > 0}, en particulier s il existe x tel que p(x,x) > 0, alors d x = 1. Proposition 12 : Si x conduit à y alors d x = d y Par conséquent, tous les éléments d une chaine de Markov irréductible ont même période. On dit que la chaine est périodique de période d si d > 1 et apériodique si d = 1. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.17

71 Théorème 13 : Soit (X n ) n N une chaine de Markov récurrente irréductible. Si elle est récurrente nulle, alors : lim n + pn (x,y) = lim P x(x n = y) = 0. n + Si elle est récurrente positive de loi stationnaire π : soit elle est apériodique, et alors : lim n + pn (x,y) = lim n + P x(x n = y) = π(y). soit elle est périodique de période d, et alors pour tout couple x,y d états de E, il existe un entier r (0 r < d) dépendant de x et y, tel que : P x (X n = y) = 0 si n n est pas de la forme md + r avec m N lim m + P x(x md+r = y) = d π(y). Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.18

72 Application : algorithme de Métropolis Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.19

73 Application : algorithme de Métropolis But : simuler une v.a. Z à valeurs dans E fini, de loi π(> 0) donnée, mais π n est connue qu à un coefficient multiplicatif près qu on ne peut calculer car E est trop grand. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.19

74 Application : algorithme de Métropolis But : simuler une v.a. Z à valeurs dans E fini, de loi π(> 0) donnée, mais π n est connue qu à un coefficient multiplicatif près qu on ne peut calculer car E est trop grand. En fait on simule une chaine de Markov récurrente, irréductible et apériodique (X n ) n 0 de loi stationnaire π. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.19

75 Application : algorithme de Métropolis But : simuler une v.a. Z à valeurs dans E fini, de loi π(> 0) donnée, mais π n est connue qu à un coefficient multiplicatif près qu on ne peut calculer car E est trop grand. En fait on simule une chaine de Markov récurrente, irréductible et apériodique (X n ) n 0 de loi stationnaire π. On se donne une fonction de transition q symétrique (q(x,y) 0, y q(x,y) = 1, q(x,y) = q(y,x)) et irréductible. Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.19

76 Application : algorithme de Métropolis But : simuler une v.a. Z à valeurs dans E fini, de loi π(> 0) donnée, mais π n est connue qu à un coefficient multiplicatif près qu on ne peut calculer car E est trop grand. En fait on simule une chaine de Markov récurrente, irréductible et apériodique (X n ) n 0 de loi stationnaire π. On se donne une fonction de transition q symétrique (q(x,y) 0, y q(x,y) = 1, q(x,y) = q(y,x)) et irréductible. On suppose que X k = x, - on tire y avec la probabilité q(x, ) - on prend X k+1 = y avec probabilité min( π(y) π(x), 1) et X n+1 = x avec probabilité 1 min( π(y) π(x), 1). Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.19

77 Application : algorithme de Métropolis But : simuler une v.a. Z à valeurs dans E fini, de loi π(> 0) donnée, mais π n est connue qu à un coefficient multiplicatif près qu on ne peut calculer car E est trop grand. En fait on simule une chaine de Markov récurrente, irréductible et apériodique (X n ) n 0 de loi stationnaire π. On se donne une fonction de transition q symétrique (q(x,y) 0, y q(x,y) = 1, q(x,y) = q(y,x)) et irréductible. On suppose que X k = x, - on tire y avec la probabilité q(x, ) - on prend X k+1 = y avec probabilité min( π(y) π(x), 1) et X n+1 = x avec probabilité 1 min( π(y) π(x), 1). Alors la probabilité π est réversible pour la chaine de Markov (X n ) n 0. La chaine est irréductible, récurrente positive et apériodique. On prend Z = X n pour n "grand". Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.19

Examen de rattrapage

Examen de rattrapage Université Denis Diderot Paris 7 7 juin 4 Probabilités et Simulations UPS36 Examen de rattrapage durée : 3 heures Les documents et calculatrices ne sont pas autorisés. On prendra soin de bien justifier

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Séminaire MTDE 22 mai 23 INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Vincent Mazet CRAN CNRS UMR 739, Université Henri Poincaré, 5456 Vandœuvre-lès-Nancy Cedex 1 juillet 23 Sommaire

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Notes de cours de spé maths en Terminale ES

Notes de cours de spé maths en Terminale ES Spé maths Terminale ES Lycée Georges Imbert 05/06 Notes de cours de spé maths en Terminale ES O. Lader Table des matières Recherche de courbes sous contraintes, matrices. Systèmes linéaires.......................................

Plus en détail

MAT-3071 Processus Stochastiques

MAT-3071 Processus Stochastiques Université du Québec à Montréal Hiver 2012 Département de Mathématiques Groupe : 011 MAT-3071 Processus Stochastiques Chargée de cours : Hélène Guérin Courriel : guerin.helene@uqam.ca Merci de prendre

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence

L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence L essentiel du cours 2014/2015 Terminale S Spécialité Maths, Lycée Français de Valence Sommaire 1. Arithmétique 2 1.1. Division euclidienne......................... 2 1.2. Congruences.............................

Plus en détail

Applications Bilinéaires et Formes Quadratiques

Applications Bilinéaires et Formes Quadratiques Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Majeure d informatique

Majeure d informatique Nicolas Sendrier Majeure d informatique Introduction la théorie de l information Cours n 1 Une mesure de l information Espace probabilisé discret L alphabet est X (fini en pratique) Variable aléatoire

Plus en détail

Travail d Initiative Personnel Encadré : Chaines de Markov et protocole de gestion des communications radios par satellite relais.

Travail d Initiative Personnel Encadré : Chaines de Markov et protocole de gestion des communications radios par satellite relais. Yongwe Jean-Luc Travail d Initiative Personnel Encadré : Chaines de Markov et protocole de gestion des communications radios par satellite relais. (Système ALOHA) (Sous la tutelle de Madame Anne Perrut)

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines

Plus en détail

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR

COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Université Paris VII. Préparation à l Agrégation. (François Delarue) COMPORTEMENT ASYMPTOTIQUE D UNE FILE D ATTENTE À UN SERVEUR Ce texte vise à l étude du temps d attente d un client à la caisse d un

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

Arithmétique modulaire et applications à la cryptographie

Arithmétique modulaire et applications à la cryptographie Arithmétique modulaire et applications à la cryptographie Etant donné un entier n, l arithmétique modulo n consiste à faire des calculs sur les restes dans la division euclidienne des entiers par n. Exemples

Plus en détail

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens.

Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. . Queue de la solution stationnaire d un modèle auto-régressif d ordre 1 à coefficients markoviens. Benoîte de Saporta Université de Nantes Université de Nantes - 9 juin 2005 p. 1/37 Plan de l exposé 1.

Plus en détail

DEA Environnement Marin : processus stochastiques. Avner Bar-Hen

DEA Environnement Marin : processus stochastiques. Avner Bar-Hen DEA Environnement Marin : processus stochastiques Avner Bar-Hen Université Aix-Marseille II 2001-2002 Table des matières 1 Rappels de calcul matriciel et de probabilité (cas discret) 3 1 Matrices...................................

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

Master de mathématiques Analyse numérique matricielle

Master de mathématiques Analyse numérique matricielle Master de mathématiques Analyse numérique matricielle 2009 2010 CHAPITRE 1 Méthodes itératives de résolution de systèmes linéaires On veut résoudre un système linéaire Ax = b, où A est une matrice inversible

Plus en détail

Introduction générale

Introduction générale Chapitre 1 Introduction générale Ce chapitre est consacré à une présentation rapide des méthodes numériques qui sont étudiées en détail dans ce cours Nous y donnons une approche très simplifiée des quatre

Plus en détail

Chaînes de Markov. Mireille de Granrut

Chaînes de Markov. Mireille de Granrut Chaînes de Markov Mireille de Granrut Quelques précisions à propos de ce cours : Préambule 1. Tel que je l ai conçu, le cours sur les chaînes de Markov interviendra dès la rentrée, pour faire un peu de

Plus en détail

Formellement, un processus aléatoire est une succession de variables aléatoires (X n ) n 0

Formellement, un processus aléatoire est une succession de variables aléatoires (X n ) n 0 Chapitre 1 Modélisation markovienne 11 Introduction Un processus aléatoire est un phénomène dont une partie de l évolution temporelle est aléatoire On rencontre ces processus dans divers domaines de la

Plus en détail

BACCALAURÉAT BLANC 2013

BACCALAURÉAT BLANC 2013 BACCALAURÉAT BLANC 203 Série S Corrigé Exercice. a) On traduit les données de l énoncé et on représente la situation par un arbre pondéré. PF ) = 2, PF 2) = 3, P F ) = 5 00 = 20, P F 2 ) =,5 00 = 3 3,5,

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Cours élémentaire d arithmétique. Valentin Vinoles

Cours élémentaire d arithmétique. Valentin Vinoles Cours élémentaire d arithmétique Valentin Vinoles décembre 2009 Introduction «Wir müssen wissen. Wir werden wissen.» (Nous devons savoir. Nous saurons.) David Hilbert Voici un document présentant les principales

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Simulations stochastiques

Simulations stochastiques ÉC O L E P O L Y T E C H N IQ U E FÉ DÉR A L E D E L A U S A N N E Christophe Ancey Laboratoire hydraulique environnementale (LHE) École Polytechnique Fédérale de Lausanne Ecublens CH-1015 Lausanne Simulations

Plus en détail

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions

Polynômes. Motivation. 1. Définitions. Exo7. 1.1. Définitions Exo7 Polynômes Vidéo partie 1. Définitions Vidéo partie 2. Arithmétique des polynômes Vidéo partie 3. Racine d'un polynôme, factorisation Vidéo partie 4. Fractions rationnelles Exercices Polynômes Exercices

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 Relations binaires Relations d équivalence Exercice 1 [ 02643 ] [Correction] Soit R une relation binaire sur un ensemble E à la fois réflexive

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Examen 2 Mathématiques L1S1 TD 1104 2015 2016 Université Paris 1

Examen 2 Mathématiques L1S1 TD 1104 2015 2016 Université Paris 1 Examen Mathématiques LS TD 04 05 06 Université Paris Nom : Prénom : Durée : heure. Calculatrice interdite. Aucun document autorisé. Chaque question de la partie QCM vaut un point. Identifiez toutes les

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Arithmétique. Préambule. 1. Division euclidienne et pgcd. Exo7. 1.1. Divisibilité et division euclidienne

Arithmétique. Préambule. 1. Division euclidienne et pgcd. Exo7. 1.1. Divisibilité et division euclidienne Exo7 Arithmétique Vidéo partie 1. Division euclidienne et pgcd Vidéo partie 2. Théorème de Bézout Vidéo partie 3. Nombres premiers Vidéo partie 4. Congruences Exercices Arithmétique dans Z Préambule Une

Plus en détail

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples 36 Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples (Ω, B, P est un espace probabilisé. 36.1 Définition et propriétés des probabilités conditionnelles Définition 36.1

Plus en détail

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M Topologie 1 Espaces métriques 1.1 Distance Dans toute cette partie E représente un ensemble qui n est pas forcément un espace vectoriel. Définition

Plus en détail

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Les trois parties A, B et C sont indépendantes Une fabrique de desserts glacés

Plus en détail

Suites : Calcul et comportement asymptotique.

Suites : Calcul et comportement asymptotique. 4 Chapitre 3 Suites : Calcul et comportement asymptotique. 3. Méthodes de définition. Comment définir une suite (u n ) n N de réels? Par l expression de son terme général, Par une formule de récurrence

Plus en détail

THEORIE DES CORPS Cours de mathématiques pour Licence L3 et Master M1 Cours et Exercices corrigés 1

THEORIE DES CORPS Cours de mathématiques pour Licence L3 et Master M1 Cours et Exercices corrigés 1 THEORIE DES CORPS Cours de mathématiques pour Licence L3 et Master M1 Cours et Exercices corrigés 1 Michel Goze, Elisabeth Remm 1. Edité par Ramm Algebra Center 2 Introduction Ce cours s adresse aux étudiants

Plus en détail

Chaînes de Markov au lycée

Chaînes de Markov au lycée Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

3.8 Introduction aux files d attente

3.8 Introduction aux files d attente 3.8 Introduction aux files d attente 70 3.8 Introduction aux files d attente On va étudier un modèle très général de problème de gestion : stocks, temps de service, travail partagé...pour cela on considère

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Cours MP. Espaces vectoriels normés

Cours MP. Espaces vectoriels normés Table des matières Espaces vectoriels normés B. Seddoug. Médiane Sup, Oujda I Norme et distance 1 I.1 Définitions..................... 1 I.2 Evn produit.................... 12 I.3 Notions topologiques

Plus en détail

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-201 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Polynômes 1 Fonctions polynômes & polynômes Définition 1. Soit

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 Voici une fiche contenant 100 exercices de difficulté raisonable, plutôt techniques, qui recouvrent l ensemble du programme étudié cette année. A raison

Plus en détail

Équations non linéaires

Équations non linéaires Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Recherche Opérationnelle:

Recherche Opérationnelle: Recherche Opérationnelle: Programmation dynamique, chaînes de Markov, files d attente Cours de Tronc Commun Scientifique FICM 2A Notes de cours et exercices corrigés Frédéric SUR sur@loria.fr http://www.loria.fr/

Plus en détail

MATHS Rappels Suites, Fonctions, Développements limités

MATHS Rappels Suites, Fonctions, Développements limités INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE MATHS Rappels Suites, Fonctions, Développements limités Pascal Floquet Xuân Meyer Première Année à Distance Septembre 006 Jean-Claude Satge Table des matières

Plus en détail

Jeffrey S. Rosenthal

Jeffrey S. Rosenthal Les marches aléatoires et les algorithmes MCMC Jeffrey S. Rosenthal University of Toronto jeff@math.toronto.edu http ://probability.ca/jeff/ (CRM, Montréal, Jan 12, 2007) Un processus stochastique Qu est-ce

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE

CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE ÉCOLE NATIONALE DE L AVIATION CIVILE ANNÉE 2006 CONCOURS DE RECRUTEMENT D ÉLÈVES PILOTE DE LIGNE ÉPREUVE DE MATHÉMATIQUES Durée : 2 Heures Coefficient : 1 Ce sujet comporte (dans l énoncé d origine, pas

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

1.3 Produit matriciel

1.3 Produit matriciel MATRICES Dans tout ce chapitre, K désigne les corps R ou C, p et n des entiers naturels non nuls 1 Matrices à coefficients dans K 11 Définition Définition 11 Matrice On appelle matrice à coefficients dans

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs.

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Le jury n exige pas une compréhension exhaustive du texte. Vous êtes laissé(e) libre d organiser votre discussion

Plus en détail

Module 7: Chaînes de Markov à temps continu

Module 7: Chaînes de Markov à temps continu Module 7: Chaînes de Markov à temps continu Patrick Thiran 1 Introduction aux chaînes de Markov à temps continu 1.1 (Première) définition Ce module est consacré aux processus à temps continu {X(t), t R

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mathématiques Lycee Gustave Eiffel PTSI 02/03 Chapitre 3 Fonctions usuelles 3.1 Théorème de la bijection Une fonction dérivable sur un intervalle I, strictement monotone déþnit une bijection.

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 09 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 009 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

PROCESSUS STOCHASTIQUES

PROCESSUS STOCHASTIQUES POLYTECH LILLE GIS 4 PROCESSUS STOCHASTIQUES DAVID COUPIER Table des matières Introduction 3 Exercices.............................................. 7 1 Chaînes de Markov 8 1.1 Définitions...........................................

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

VIII Relations d ordre

VIII Relations d ordre VIII Relations d ordre 20 février 2015 Dans tout ce chapitre, E est un ensemble. 1. Relations binaires Définition 1.0.1. On appelle relation binaire sur E tout triplet R = (E, E, Γ) où Γ est une partie

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

1 Espaces vectoriels normés

1 Espaces vectoriels normés Université Paris 7 Denis Diderot Année 2005/2006 Licence 2 MIAS MI4 1 Espaces vectoriels normés 1.1 Définitions Soit E un espace vectoriel sur R. Topologie des espaces vectoriels de dimension finie Définition

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Résumé du cours d algèbre de Maths Spé MP

Résumé du cours d algèbre de Maths Spé MP 1 POLYNÔMES Résumé du cours d algèbre de Maths Spé MP 1 Polynômes 1) Formule de Taylor pour les polynômes. Soit P un polynôme non nul de degré n N. a K, P(X) = k=0 P (k) (a) (X a) k et en particulier P(X)

Plus en détail

Actions de groupes. Exemples et applications

Actions de groupes. Exemples et applications 4 Actions de groupes. Exemples et applications G, ) est un groupe multiplicatif et on note ou G si nécessaire) l élément neutre. E est un ensemble non vide et S E) est le groupe des permutations de E.

Plus en détail

M11 - Résumé de cours et exercices d analyses Premier cycle universitaire TABLES DES MATIÈRES

M11 - Résumé de cours et exercices d analyses Premier cycle universitaire TABLES DES MATIÈRES M11 - Résumé de cours et exercices d analyses Premier cycle universitaire TABLES DES MATIÈRES I. Logique. II. Ensemble. III. Relation, fonction, application. IV. Composition, réciprocité. V. Relation d

Plus en détail

2. u 3 = 16, u 7 = 1 et u p = 1 8.

2. u 3 = 16, u 7 = 1 et u p = 1 8. EXERCICE 1 (u n ) est une suite arithmétique de raison a, déterminer l entier k dans chacun des cas suivants : 1. u 21 = 34, a=1,5 et u k = 1 2. u 10 = 64, u 5 = 14 et u k = 114. EXERCICE 2 (u n ) est

Plus en détail

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de et v n Déterminer si possible, ( +

Plus en détail

Programmation Linéaire - Cours 2

Programmation Linéaire - Cours 2 Programmation Linéaire - Cours 2 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Sommaire 1 2 3 Retournons dans le yaourt! Reprenons l exemple du 1er cours Forme normale

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Existence et unicité de la fonction exponentielle 2 1.1 Deux résultats préliminaires.......................................

Plus en détail

Notes du cours Mathématiques pour l ingénieur. Sup Galilée - année 2008-2009

Notes du cours Mathématiques pour l ingénieur. Sup Galilée - année 2008-2009 Notes du cours Mathématiques pour l ingénieur Sup Galilée - année 2008-2009 Benoît Merlet Ces notes de cours s adressent aux élèves ayant suivi le cours. Elles contiennent peu d explications. Elles pourront

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail