Estimation des incertitudes sur les erreurs de mesure.

Dimension: px
Commencer à balayer dès la page:

Download "Estimation des incertitudes sur les erreurs de mesure."

Transcription

1 Estmto des certtdes sr les errers de mesre. I. Itrodcto : E sceces epérmetles, l este ps de mesres ectes. Celle-c e pevet être q etchées d errers pls o mos mporttes selo le protocole chos, l qlté des strmets de mesre o le rôle de l opérter. Évler l certtde sr e mesre est dome complee q ft l objet d e brche complète : l métroloe. Voc qelqes otls clssqes et qelqes méthodes précosées pr l AFNOR orsme offcel q déft les ormes à pplqer ds l dstre. L orme q os préoccpe c est l orme NF ENV 005 d oût 999, q est de por l epresso des certtdes de mesre. Ctos ss l orme NF X07-00 de décembre 994, q déft le vocblre à emploer. Vocblre : G : Mesrde, rder à mesrer. : Mesre de l rder G. G : Icerttde tpe. UG : Icerttde élre. U G : Icerttde reltve. Rq : O cofod sovet G et! Notez qe et U veet de l ls "certt". Tpes de mesre : L mesre d e rder G pet être : drecte : comme l pesée, mesrer e dstce. drecte comme l cocetrto, l vtesse. Ue mesre drecte doe à prtr d tres rders, comme ds l eemple svt : clclé U R.I D e mère éérle, o pet vor f,,. Évlto des certtdes : mesrés Il ft strmet de mesre costrt sr étlo. Mlré tot, cet strmet possède ss e certe précso. L cte de mesrer etre de tpes d errers : Évltos de tpe A : C est le cs où l opérter ft tote e sére de mesres. Le trtemet des errers est sttstqe : moee, écrt-tpe, Cette lse sttstqe se ft lorsq o pe d dctos sr les sorces d errers.

2 Évltos de tpe B : Il est mpossble, vore dffcle de fre clcl sttstqe cs de l mesre qe. L opérter dot chercher et évler les sorces d errers. Le costrcter de l strmet de mesre fort des doées telles qe l csse de l pprel, le clbre, l résolto. Il est écessre d vor e cossce éérle sr l epérece. Icerttdes composées : Ds certs cs complees, l ft sovet comber les méthodes de tpe A et de tpe B, por obter e mellere évlto de l certtde : G G G A B II. Méthodes d évlto des certtdes de tpe A et de tpe B : Tpe A : Ds les cs de plsers mesres dépedtes, l certtde se clcle à l de de l écrt-tpe σ - - d ordre ppelé ecore écrt tpe de l échtllo. O pred lors comme vler de, l moee des mesres :. S l dstrbto des mesres st e lo ssee, lors les observtos motret qe σ est bo estmter de l certtde por très rd ombre de mesres, ms o prtqe très rremet mesres!!! Tpe B : Il est écessre de fre bl des errers : Les errers sstémtqes telles qe l errer de prlle, le réle d zéro de l pprel, les errers de méthode, le vellssemet des composts, Les errers létores telles qe les errers de lectre o des à l pprel l-même, o des codtos etérers tempértre et dltto, presso tmosphérqe, hmdté,. Ds tel cs de fre, por rrver à eprmer l certtde sos forme d écrt-tpe, o pet cher d strmet de mesre, vore de protocole, fre vrer les prmètres flets. Ms o tlser tojors les doées d costrcter. L orme AFNOR dqe s qe : D e mère éérle, s le costrcter fort l certtde tpe, o l tlse drectemet. S l certtde est d tpe : Δ C ±, l certtde est :. N Δ C N est le ombre de mesres t doé le résltt

3 S o qe pe d dctos, o tot mos e certtde smple, l orme prévot de predre comme certtde :. N Δ C N est le ombre de mesres t doé le résltt Pr coséqet, por les pprels loqes, l errer est dvso. Por les pprels mérqes, l errer est e formle : % Lectre Dts. Pr eemple : l tolérce Δ C d e brette rdée de 5 ml est de ± 0,00 ml. 0,00 L certtde est : B 0, 07 ml. Pr eemple : l précso Δ C d e blce est de 0, m. 0, L certtde est de tpe B : B 0, 0887 m. S l certtde obét à e lo ormle, ce q est sovet le cs de phéomèes phsqes, lors :. N Δ C N est le ombre de mesres t doé le résltt Icerttdes élres : Le problème, et otmmet ds le cs d e évlto de tpe B por lqelle le clcl sttstqe est ps possble mesre qe, est q l ft doc rrver à fre "cofce" à otre écrt-tpe, e l élrsst, tot smplemet : S les mesres sot éqprobbles et qe l o coît m et m, l certtde élre se clcle e mltplt pr coeffcet d élrssemet k : U k * vec k por e cofce à 95 %. k por e cofce à 99 %. O prle be évdemet d tervlle de cofce : [ UG, UG]

4 Ms les mesres svet très sovet e dstrbto ssee, et ler ombre est sovet très fble, comme ds le cs d e évlto de tpe B : UG UG O pplqe l méthode de Stdet : U vol : σ G t%, svt le porcete de cofce t 95%,7 4,,8,78,57,45,7,,6 t 99% 6.7 9,9 5,84 4,6 4,0,7,5, t 95%,,6,,,09,04,0,98.96 t 99%,,0.95,9,86,76,68,6.57 III. Propto des certtdes : C est le cs des mesres drectes : S e rder se dédt de rders, pr e formle d tpe : f,,, lors, f, s les mesres des sot dépedtes o dt : o corrélées. l certtde se clcle pr : S les mesres des sot fortemet corrélées, le clcl est pls complee! Sot e vrble dépedt de l mesre de de prmètres et. O des certtdes et etrît e certtde sr l vler de. Le clcl de cette certtde est bsé sr de pettes vrtos, doc sr le clcl dfféretel. O detfe : d et d f f G f G f, doc dg d d d d As : dg f ' d et G f' f f sot G d d Techqes de clcl : - somme lébrqe : α 4

5 5 doe : α s les mesres des sot dépedtes α s les mesres des sot corrélées - prodt o qotet : β α doe :... s les mesres des sot dépedtes... s les mesres des sot corrélées Rq : O retedr qe ds le cs de l ddto, o jote les certtdes bsoles, et ds le cs de l mltplcto, o jote les certtdes reltves. Rq : L méthode d élrssemet de l certtde reste vlble ds le cs de mesres composées. O pplqe lors sovet l méthode de Stdet. Eemple : U RI O mesre R± R et I± I o : du R.dII.dR Sot : R dr I di U du, d où l certtde reltve : R ΔR I ΔI U ΔU ρ γp c doc : ρ p γ dγ dc sot : γ dγ c dc E certtde reltve, cel doe : γ Δγ c Δc Présetto des résltts : O écrt ds tos les cs : Itervlle de cofce : ± té Fcter d élrssemet : k o Icerttde tpe : té Icerttde élre : U té Icerttde reltve :...% U L certtde UG dot comporter chffres sfctfs. Le ombre de chffres près l vrle de s e dédt loqemet, à codto de predre l même otto por UG et.

6 L certtde reltve U G dot ss comporter chffres sfctfs ; G L certtde tpe G et l certtde tpe reltve sot des résltts mthémtqes termédres q pevet resservr, doc ls dovet comporter 4 chffres sfctfs. Remrqe : O pet ss étder l comptblté des mesres ds le cs d ombre restret de mesres, comme pr eemple le cs d e vrto lére : Pete Pete L pete est détermée pr l moee des petes etrêmes :. L certtde est : Δ Ds cet eemple, les cro smbolset les coples d certtde sr et, à svor et. O pet, v d rphqe, élmer certs pots epérmet lés. O pet ss comprer des vlers, à codto q elles soet e ombre restretes, de fço très smple, pr comprso des semets d certtde: M ± M M ± M M ± M Les semets dovet vor e prte comme; ds le cs cotrre, sot l certtde est trop fble, sot l résltt érroé. Cette méthode est terresste por e comprso loble de résltts epérmet, provet pr eemple d epéreces dfféretes. 6

Méthodes «volumes finis»

Méthodes «volumes finis» Méhodes «volmes s» ArGECo MS²F Hydrologe, Hydrodymqe Applqée e Cosrcos Hydrlqes (HACH) Méhodes «volmes s» : rodco Déreces es Dscréso des éqos sr grd srcré crése Méhode smple e rpde Fclé de clcl des dérvées

Plus en détail

Calculs financiers. Auteur : Philippe GILLET

Calculs financiers. Auteur : Philippe GILLET Clculs fcers Auteur : Phlppe GILLET Le tux d térêt Pour l empruteur qu e dspose ps des fods écessres, l représete le prx à pyer pour ue cosommto mmédte. Pour le prêteur, l représete le prx ecssé pour l

Plus en détail

LES NOMBRES COMPLEXES Site MathsTICE de Adama Traoré Lycée Technique Bamako

LES NOMBRES COMPLEXES Site MathsTICE de Adama Traoré Lycée Technique Bamako LES NORES OPLEXES Ste thstie de dm Troré Lycée Techqe mko I Défto: Défto : Sot le ombre mgre té tel qe ² O ppelle esemble des ombres complexes, l esemble oté et déf pr : { b ( b ε R²} est ppelé l prte

Plus en détail

II - Estimation et Prévision Ponctuelles

II - Estimation et Prévision Ponctuelles II - Estt et Prévs Pctelles II.. Rppels sr l'estt Mdèle (Y P Θ) (Y X P Θ) Prètre θ sclre (Θ R) vectrel (Θ R K ) Estter : θ* f( ; ) Bs θ -E θ (θ*) θ* est dt ss s s qel qe st θ : E θ (θ*) θ 7 L'estter θ*

Plus en détail

Suites géométriques suite géométrique suite géométrique de raison q

Suites géométriques suite géométrique suite géométrique de raison q Sites géométriqes Itrodctio : M. Fiace dispose d e somme de 5 FF et désire faire frctifier so pactole ; por cela il va voir so baqier qi li propose de optios : e agmetatios forfaitaire, aelle, de 5 F =

Plus en détail

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant :

STATISTIQUES. La taille moyenne d un jeune enfant est donnée, en fonction de son âge (en mois), dans le tableau suivant : STATISTIQUES Cours Termale ES O observe que, das certas cas, l semble ester u le etre deu caractères statstques quattatfs (deu varables) sur ue populato ; par eemple, etre le pods et la talle d u ouveau-é,

Plus en détail

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41...

Suites arithmétiques et Géométriques. Exemple 1. La suite des nombres 1, 3, 5, 7, 11, 13. ou la suite des nombres 100, 110, 121, 133.1, 146.41... Sites arithmétiqes et Géométriqes Nos allos cosidérer des sites de ombres réels Exemple La site des ombres,, 5, 7,, o la site des ombres,,,, 464 Défiitio/Notatio : La site est e gééral oté ( ) (o ( v )

Plus en détail

Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état)

Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état) oqe V oqe Cor e ere foco de rfer e repréeo dé d èe fore coqe de l repréeo dé SI Coe oqe! Irodco! e ere le dfféree decrpo d èe! Pge odèle dé " foco de rfer # C d èe oovrle # C d èe lvrle! Pge foco de rfer

Plus en détail

GOURIO-JEWELL Pierre-Guillaume KOHN Céline. CONTROLE OPTIMAL Application à l'équation de la chaleur

GOURIO-JEWELL Pierre-Guillaume KOHN Céline. CONTROLE OPTIMAL Application à l'équation de la chaleur GOURIO-EWELL Perre-Gllme KOHN Céle CONROLE OPIMAL Alco à l'éqo de l cler Préseo d roblème 4 Méode de l'é djo 6 Mse e lce de l'lorme 7 Méode de corôle oml vec le ems 8 Méode de l'é djo 8 Mse e lce de l'lorme

Plus en détail

T.P. Le redressement commandé : le pont mixte.

T.P. Le redressement commandé : le pont mixte. I Introdcton : T.P. Le redressement commandé : le pont mxte. Précédemment, nos avons v qe nos povons réalser la converson d'ne tenson alternatve snsoïdale t =U 2sn t en ne tenson contne grâce à l'tlsaton

Plus en détail

Calcul des pertes du distributeur

Calcul des pertes du distributeur Clcul des pertes du dstrbuteur Jver 007 Clcul des pertes du dstrbuteur Tros étpes : Clcul des pertes techques pr tpe d ouvrge Modélsto des pertes o techques (PNT) Modélsto d ue courbe de tpe P²+bP+c ou

Plus en détail

Premier semestre de première année de BTS

Premier semestre de première année de BTS M. HOLST Florent 1BTS Electrotechnqe 1 Premer semestre premère année BTS Septembre Octobre Novembre Décembre Janver Péro préve por le dérolement ce TP : Ttre d TP Econome d énerge sr n ste solé Rapport

Plus en détail

ESTIMATION DES INCERTITUDES EN TRAVAUX PRATIQUES EN BTS TPIL ESTIMATION DES INCERTITUDES SUR LES MESURES DIRECTES

ESTIMATION DES INCERTITUDES EN TRAVAUX PRATIQUES EN BTS TPIL ESTIMATION DES INCERTITUDES SUR LES MESURES DIRECTES Cors TSTPIL Optqe ESTIMATION DES INCERTITUDES EN TRAVAUX PRATIQUES EN BTS TPIL. INTRODUCTION: Vos allez être ameé à effecter certa ombre de mesres lors de vos trava pratqes. Iévtablemet, votre résltat

Plus en détail

Chapitre 2 LES EMPRUNTS INDIVIS

Chapitre 2 LES EMPRUNTS INDIVIS Chptre LES EMPRUNTS INDIVIS.1 Actulsto de flux Actvté.1.1 : O dspose de chffres cocert l évoluto du chffre d ffres de l socété FLORIS depus 1985. E 1985, le Chffre d ffres étt de 1 Mllo de Frcs, e 1990

Plus en détail

Algorithmique sur les automates. Recherche de motifs. On cherche toutes les occurrences

Algorithmique sur les automates. Recherche de motifs. On cherche toutes les occurrences Algorithmiqe r le tomte Recherche de motif O cherche tote le occrrece. Algorithme tilit de tomte Recherche de motif. Recherche de réglrité. Compreio.. Algorithme por l étde de tomte Compleité d étt : coût

Plus en détail

RESEAUX DE NEURONES, LOGIQUE FLOUE ET ALGORITHMES GENETIQUES

RESEAUX DE NEURONES, LOGIQUE FLOUE ET ALGORITHMES GENETIQUES RESEAUX DE NEURONES, LOGIQUE FLOUE ET ALGORITHMES GENETIQUES Jalel ZRIDA Ecole Spérere des Scences et Technqes de Tns et Unté Sgna et Système, ENIT La Logqe Floe De nos jors, nos problèmes mplqent sovent

Plus en détail

La spirale de Théodore bis, et la suite «somme=produit».

La spirale de Théodore bis, et la suite «somme=produit». Etde d e vrite de l spirle de Théodore, dot issce à e site dot les sommes prtielles sot égles x prodits prtiels. Mots clés : spirle de Théodore, théorème de Pythgore, site, série, polyôme. L spirle de

Plus en détail

( ) ( 2) = x +. La fonction est la somme d une fonction linéaire (dérivable pour tout réel) et de la. 2x². 1 :lim. Bac blanc n 1 TS : correction :

( ) ( 2) = x +. La fonction est la somme d une fonction linéaire (dérivable pour tout réel) et de la. 2x². 1 :lim. Bac blanc n 1 TS : correction : Bc lc TS : corrcto : E : octo st l somm d octo lér dérl por tot rél t d l octo rs dérl s doc st dérl sr ] ; [ mértr st polôm s scod dgré q por rcs rélls : t sl post st l scod t : s O ott doc l tl st :

Plus en détail

Fiche 2 : les fonctions

Fiche 2 : les fonctions Nº : 300 Fice : les foctios Pl de l fice I - Limites, comportemet symptotique II - Dérivtio III - Cotiuité I - Limites, comportemet symptotique Défiitios Ue foctio f pour ite e lorsque : l foctio f est

Plus en détail

ELECTRICITE. Analyse des signaux et des circuits électriques. Michel Piou

ELECTRICITE. Analyse des signaux et des circuits électriques. Michel Piou LCTICIT nalyse des sgnax et des crcts électrqes Mchel Po Chaptre 2 Los générales de l électrcté en régme contn. Théorèmes de sperposton, Thévenn et Norton. dton 11/03/2014 Table des matères 1 POUQUOI T

Plus en détail

2/ Définition d un vecteur :

2/ Définition d un vecteur : GEOMETRIE NLYTIQUE 1 / oordonnées dans n repère : a) coordonnées d n pont : b) coordonnées d mle d n segment : c) dstance entre dex ponts dans n repère orthonormé: Proprété : ( x ; y ) et (x ; y ) sont

Plus en détail

Machine learning Systèmes à apprentissage Plan du cours

Machine learning Systèmes à apprentissage Plan du cours Mache learg Sstèmes à appretssage Pla d cors Itrodcto a sstèmes à appretssage - Motvatos - Q est-ce qe l appretssage? - Idcto et casalté - Appretssage et recherche d e focto - Dfférets tpes d appretssage

Plus en détail

2009/2010. Elaboré par : ALI AKIR

2009/2010. Elaboré par : ALI AKIR BAC MATHS 9/ Cors et 8 eercices Elboré pr : ALI AKIR Doe des cors prticliers e mthémtiqes por tos les ive Pls d iformtios : Cotcter à GSM : 4 96 4 Emil : kircm@gmilcom Site Web : http://mths-kirmidiblogscom/

Plus en détail

Suites arithmétiques et suites géométriques Bilan et croissances

Suites arithmétiques et suites géométriques Bilan et croissances Sites arithmétiqes et sites géométriqes Bila et croissaces I Bila sr les sites arithmétiqes et géométriqes ) Tablea de formles Défiitio Relatio etre dex termes coséctifs Calcl d terme 4 ) Ue qestio de

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

TRANSFORMATEUR MONOPHASE

TRANSFORMATEUR MONOPHASE - ROLE ET NTERET. Rôle TRANSFORMATER MONOHASE n transformater est ne machne électrqe statqe permettant n changement de tenson alternatve avec n excellent rendement. l pet être tlsé en abasser de tenson

Plus en détail

ELECTRICITE. Analyse des signaux et des circuits électriques. Michel Piou

ELECTRICITE. Analyse des signaux et des circuits électriques. Michel Piou LCTICIT nalyse des sgnax et des crcts électrqes Mchel Po Chaptre 2 Los générales de l électrcté en régme contn. Théorèmes de sperposton, Thévenn et Norton. dton 23/05/2005 nméro d'enregstrement de

Plus en détail

ANALYSE DES ENQUETES CAS-TEMOINS. AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séries non appariées) ad bc. , bc. 762, nmnm

ANALYSE DES ENQUETES CAS-TEMOINS. AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séries non appariées) ad bc. , bc. 762, nmnm I. DEFINITION ANALYSE DES ENQUETES CAS-TEMOINS AVEC PRISE EN COMPTE DE FACTEURS DE CONFUSION (Séres o apparées) Dr F. Séguret Départemet d Iformato Médale, Épdémologe et Bostatstques U facteur F est ue

Plus en détail

II- Estimation et prévision par intervalle

II- Estimation et prévision par intervalle Uversé rs -hé re UR 0 Lcece de ceces Ecqes TATITIQUE crs de Me RADEL II- Es e révs r ervlle Déf r re fxé ere 0 e à e réls (x... x de l'échll ssce ervlle I(x... x de elle fç qe r e vler θ d rère l rlé qe

Plus en détail

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires UE 4 Evaluato des méthodes d aalyse applquées au sceces de la ve et de la saté Statstque Varables aléatores Frédérc Mauy - 27 septembre et 3 octobre 2013 1 Pla du cours 1. Varable aléatore 1. Défto 2.

Plus en détail

Coefficient de partage

Coefficient de partage Coeffcet de partage E chme aque, la sythèse d'u composé se fat e pluseurs étapes : la réacto propremet dte (utlsat par exemple u motage à reflux quad la réacto dot être actvée thermquemet), les extractos

Plus en détail

sont distincts 2 à 2.

sont distincts 2 à 2. Lycée Thers CORRIGÉ TP PYTHON - 09 L algorthme des k-meas pour partager u uage de pots e u ombre doé de classes peu dspersées 1 - La méthode de Forgy [Qu. 1] 1) Cette double somme comporte termes pusque

Plus en détail

Calculs en chromatographie

Calculs en chromatographie Calculs e chroatographe éthode de la oralsato tere... 1 Coeffcet de répose assque relatf... 1 Calcul des pourcetages assques... 2 Calcul des pourcetages olares... 3 xeple d aalyse CG d ue substtuto copéttve

Plus en détail

TP N 4 MESURES SUR LES BOBINES

TP N 4 MESURES SUR LES BOBINES Unversté de TOUON et d Nos Prénos : Insttt Unverstre de Technologe Note : GENIE EECTIQUE & INFOMTIQUE INDUSTIEE Trvx Prtqes d Electrotechnqe Grope : Dte : PEPTION : TP N 4 MESUES SU ES BOBINES 1 ) Coent

Plus en détail

SETIT 2005. 3 rd International Conference: Sciences of Electronic, Technologies of Information and Telecommunications March 27-31, 2005 TUNISIA

SETIT 2005. 3 rd International Conference: Sciences of Electronic, Technologies of Information and Telecommunications March 27-31, 2005 TUNISIA SEI 2005 3 rd Iteratoal Coferece: Sceces of Electroc, echologes of Iformato ad elecommcatos arch 27-3, 2005 UNISIA se e place d' système de recoassace facal basé sr l'approche statstqe "Aalyse e composates

Plus en détail

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES

CHAPITRE I : LES SERIES STATISTIQUES A DEUX DIMENSIONS : DISTRIBUTIONS MARGINALES ET CONDITIONNELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES CHAPITRE I : LES SERIES STATISTIQUES A DEU DIMESIOS : DISTRIBUTIOS MARGIALES ET CODITIOELLES Il est très courat

Plus en détail

Simulation d un réseau simple avec le programme d affectation de transport en commun du LVMT

Simulation d un réseau simple avec le programme d affectation de transport en commun du LVMT Smulto d u réseu smple vec le progrmme d ectto de trsport e commu du LVMT Itroducto Le progrmme de smulto d ectto du trc sur u réseu de trsport e commu du LVMT sert à tester et vlder les modèles d ecttos

Plus en détail

Chapitre III : Loi de déplacement d équilibre

Chapitre III : Loi de déplacement d équilibre Chme Applcto du secod prcpe de l thermodymque à l étude de l récto chmque Chptre III : Lo de déplcemet d équlbre l (Clquer sur le ttre pour ccéder u prgrphe) I- ********************** Evoluto spotée d

Plus en détail

4. Puissances et racines

4. Puissances et racines PUISSANCES ET RACINES 4. Puissces et rcies 4.. Puissces à exposts etiers Défiitio L puissce ième d'u ombre réel est u produit de fcteurs tous égux à : =, =, etc. O dit que est l bse de l puissce et l'expost.

Plus en détail

SUITES ARITHMETIQUES ET GEOMETRIQUES SUITES GEOMETRIQUES

SUITES ARITHMETIQUES ET GEOMETRIQUES SUITES GEOMETRIQUES ITE ARITHMETIQE ET GEOMETRIQE EXERCICE : Voc e sére de formle mse e place das le cors : ITE ARITHMETIQE r r p q (p q r 5 ( (...... ( ITE GEOMETRIQE q 6 q q... q q q 7 q 8... q q r s r s q Voc este e sére

Plus en détail

NOMBRES DECIMAUX. APPLICATIONS. N tel que 10 n x Z. R N. Par définition de la partie entière, notée E, nous avons : E ( x) x E ( x)

NOMBRES DECIMAUX. APPLICATIONS. N tel que 10 n x Z. R N. Par définition de la partie entière, notée E, nous avons : E ( x) x E ( x) NOMBRES DECIMAUX APPLICATIONS () I L eseble D Défto : U obe décl est obe éel tel q l este N et Z tels qe obes déc est oté D Reqe : U éel D s et seleet s N tel qe Z Z D Q Poposto : (),, ( D ) est sos-e

Plus en détail

Devoir surveillé n o 2 niveau 2 Mercredi 27 novembre de 13h à 17h. sint t + x dt.

Devoir surveillé n o 2 niveau 2 Mercredi 27 novembre de 13h à 17h. sint t + x dt. Lycée Ponts de Tyard 3/4 ECS Devoir srveillé n o nivea Mercredi 7 novembre de 3h à 7h La qalité de rédaction, de notation et de présentation prendra ne large part dans la note finale. Le sjet comporte

Plus en détail

OSCILLATEURS COUPLÉS

OSCILLATEURS COUPLÉS TP OSCILLATEURS COUPLÉS Capacités exigibles : mtre en évidence l action d n filtre linéaire sr n signal périoqe dans les domaines fréqentiel temporel La théorie générale des oscillaters coplés n est pas

Plus en détail

Conseil économique et social

Conseil économique et social Na t i ons U ni e s E / C N. 1 7 / 20 0 1 / PC / 1 7 Conseil économique et social D i s t r. gé n é r a l e 2 ma r s 20 0 1 F r a n ç a i s O r ig i n a l: a n gl a i s C o m m i s s io n d u d é v el

Plus en détail

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période)

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période) A-PDF OFFICE TO PDF DEMO: Purchase from www.a-pdf.com to remove the watermark Mathématques Facères : l essetel Les formules cotourables (F de érode) htt://www.ecogesam.ac-a-marselle.fr/esed/gesto/mathf/mathf.html#e5aels

Plus en détail

Cours (Terminale S) Limite d une fonction

Cours (Terminale S) Limite d une fonction Cours (Termile S) Limite d ue octio Limite d ue octio e + ou Foctio déiie u voisige de + (resp ) Soit ue octio d esemble de déiitio D O dir que «l octio est déiie u voisige de + (resp )» s il eiste u réel

Plus en détail

MAT7381 Exercices Chapitre 2 - Loi normale

MAT7381 Exercices Chapitre 2 - Loi normale MAT78 Eercces Chptre - Lo ormle Rppelos l coveto doptée ds ce cours : e ou e désge u vecteur de ; J ou J désge ue mtrce de Géérlemet C ou C désge l mtrce I-J/ Sot ~ (0 ; I ) O st que ( - ) et ( + ) sot

Plus en détail

TS Les nombres complexes (1)

TS Les nombres complexes (1) TS Les omres complexes () Chptre d lgère I Itroducto ) ref hstorque Nomres mpossles omres mgres (Descrtes) omres complexes ) Esemles de omres x 7 0 x 7 0 x 0 L équto x ps de soluto ds ( x ou x ) x chque

Plus en détail

Rappels : valeurs remarquables du cosinus. Le produit scalaire dans le plan (1) Expression trigonométrique. 1 ère S.

Rappels : valeurs remarquables du cosinus. Le produit scalaire dans le plan (1) Expression trigonométrique. 1 ère S. ère S Le prodit sclire dns le pln () Expression trigonométriqe Rppels : lers remrqbles d cosins ngle en degrés Pln d chpitre : x 0 0 45 60 90 0 5 50 80 I Définition d prodit sclire de dex ecters cos x

Plus en détail

ELECTRICITE. Analyse des signaux et des circuits électriques. Michel Piou

ELECTRICITE. Analyse des signaux et des circuits électriques. Michel Piou ELECTCTE Analyse des sgnax et des crcts électrqes Mchel Po Chaptre Los générales de l électrcté en régme contn Los de Krchhoff Baselecpro Edton /03/04 Table des matères POUQUO ET COMMENT? DEFNTONS, OCABULAE

Plus en détail

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20.

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20. BTS CG 996 Eercce : (0 pots) Ue agece mmoblère evsage de commercalser u programme de costructo d'appartemets Deu projets lu sot soums: Projet P : Le coût de producto de appartemets ( eter et 0 )est doé

Plus en détail

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

TD Techniques de prévision pour la Gestion de production

TD Techniques de prévision pour la Gestion de production Orgasato et gesto dustrelle Page / 6 TD Techques de prévso pour la Gesto de producto er Exercce Vetes d u rayo de jouraux das u supermarché Javer Févrer Mars Avrl Ma Ju Jullet Août Septembre Octobre Novembre

Plus en détail

2 Produit scalaire - Exercices

2 Produit scalaire - Exercices 6 Edton 007-008 / DELM Géométre métrqe Prodt scalare - Exercces Les exercces dont le nméro content la lettre A, par exemple -A1, sont des exercces complémentares destnés ax élèves d nvea avancé. Lens hypertextes

Plus en détail

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen Aexe. Estmato d u quatle o-paramétrque par la méthode de Haze La probablté cumulée emprque d ue doée au se d u échatllo est pas u cocept parfatemet déf : pluseurs estmatos sot possbles ; l e est de même

Plus en détail

TD: Transformée de Fourier

TD: Transformée de Fourier TD: Transformée de Forier Définition + Soit ne fonction complee f de la variable réelle Si elle est de carré sommable, c est-à-dire si l intégrale f( d converge (on se reportera a cors de mathématiqes

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

III ESPERANCE MATHEMATIQUE

III ESPERANCE MATHEMATIQUE /9 ésumé de ours e alul des probabltés (JJ bellager III ESPEAE MATHEMATIQUE I.Défto et alul de l espérae mathématque d ue VA La défto la plus géérale de l espérae d u VA : (do à valeurs postves ou ulles

Plus en détail

Analyse de régression

Analyse de régression Itroducto à la régresso Aalyse de régresso La régresso est utlsée pour estmer ue focto f( ) décrvat ue relato etre ue varable explquée cotue,, et ue ou pluseurs varables explcatves,. = f(,, 3,, )+ε Remarque

Plus en détail

Chapitre III- 2- RÉGIME SINUSOÏDAL GÉNÉRALITÉS. 2π T II- GRANDEURS RELATIVES AU RÉGIME SINUSOÏDAL OBJECTIFS I- POURQUOI ÉTUDIER LE RÉGIME SINUSOÏDAL?

Chapitre III- 2- RÉGIME SINUSOÏDAL GÉNÉRALITÉS. 2π T II- GRANDEURS RELATIVES AU RÉGIME SINUSOÏDAL OBJECTIFS I- POURQUOI ÉTUDIER LE RÉGIME SINUSOÏDAL? OBJECTFS Chapre - - RÉGME SNSOÏDAL GÉNÉRALTÉS - Monrer l'mporance d régme snsoïdal en élecronqe e dans d'ares domanes. - Défnr les granders relaves à n sgnal snsoïdal. - Savor représener ne grander snsoïdale

Plus en détail

Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe

Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe Méthode du smplee: prélmares Modèles de recherche opératoelle (RO). Programmato léare b. Méthode du smplee Das le cas où l y a ue fté de solutos, la méthode d élmato de Gauss-Jorda permet d detfer tros

Plus en détail

Exercices sur les suites arithmétiques (2)

Exercices sur les suites arithmétiques (2) ère S Exercices sr les sites arithmétiqes () Soit la site arithmétiqe de premier terme et de raiso Exprimer e foctio de r Soit la site arithmétiqe de premier terme 0 et de raiso Détermier tel qe 09 r Soit

Plus en détail

ASI 3. Méthodes numériques pour l ingénieur

ASI 3. Méthodes numériques pour l ingénieur SI éthodes umérques pour l géeur Résoluto de systèmes léres pr des méthodes drectes : Guss, LU, : u cs smple est ue mtrce dgole [ ],, ft jusqu'à pour Focto dgo, prolème soluto lgorthme est de forme trgulre

Plus en détail

Séries numériques. Chap. 02 : cours complet.

Séries numériques. Chap. 02 : cours complet. Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm

Plus en détail

ETUDES DE SUITES DEFINIES PAR DIFFERENTS TYPES DE RECURRENCE

ETUDES DE SUITES DEFINIES PAR DIFFERENTS TYPES DE RECURRENCE Etes e stes éfes r fférets tyes e récrrece S DUCHET - wwweslofrst /5 ETUDES DE SUTES DEFNES PAR DFFERENTS TYPES DE RECURRENCE K ésger R o C Stes récrretes léres orre éfto stes récrretes léres orre Sot

Plus en détail

II. Permutations sans répétitions et notation factorielle

II. Permutations sans répétitions et notation factorielle février 2012 ORRIGE II. Permutatios sas répétitios et otatio factorielle Aalyse combiatoire 4 ème - 1 I. Itroductio Les différets modèles mathématiques costruits pour étudier les phéomèes où iterviet le

Plus en détail

Dentaurum Boutique en ligne. www.dentaurum.fr. plus rapide plus ergonomique plus simple

Dentaurum Boutique en ligne. www.dentaurum.fr. plus rapide plus ergonomique plus simple FR Dentarm Botiqe en ligne www.dentarm.fr pls rapide pls ergonomiqe pls simple shop.dentarm.fr Votre adresse por l orthodontie, les implants et la prothèse dentaire sr Internet Décovrez la botiqe en ligne

Plus en détail

Les puissances à exposants négatifs

Les puissances à exposants négatifs CHAPITRE Les puissces à exposts égtifs. Itroductio : les puissces de Nous coissos bie l ottio où est u etier positif : E géérl : ( ) 0 8 6 N... fcteurs Rerquos qu'il y ue reltio évidete etre deux puissces

Plus en détail

IFT3913 Qualité du logiciel et métriques. Chapitre 7 Collecte et analyse des métriques

IFT3913 Qualité du logiciel et métriques. Chapitre 7 Collecte et analyse des métriques IFT393 Qualté du logcel et métrques Chaptre 7 Collecte et aalyse des métrques Pla du cours Itroducto Qualté du logcel Théore de la mesure Mesure du produt logcel Mesure de la qualté du logcel Études emprques

Plus en détail

CLASSES PREPARATOIRES AUX GRANDES ECOLES TRONC COMMUN DES UNIVERSITES (TCT)

CLASSES PREPARATOIRES AUX GRANDES ECOLES TRONC COMMUN DES UNIVERSITES (TCT) E ETE UX NDE EE FF TN UN DE UNETE TT ENE TEHNQUE T seestre D ENQUE TNNEE ors & eercces résols ppels sr les ecters es Torsers ttqe es oles éoétre es sses nétqe ont et ole nétqe et Dnqe es oles. KD U NETE

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

Fonctions - Dérivation

Fonctions - Dérivation Termiale S Dériatio Chapitre 4 Foctios - Dériatio I- Dériabilité f est e foctio défiie sr D f (iteralle o réio d iteralles C f est sa corbe représatie Foctio dériable e a Nombre dérié Défiitio (Rappels

Plus en détail

1S 1 : DEVOIR SURVEILLÉ N 8 (2 heures)

1S 1 : DEVOIR SURVEILLÉ N 8 (2 heures) S : DEVOIR SURVEILLÉ N 8 ( heres) Exercice ( poits) Calcler les sommes sivates : S + + 3 +... + + et S + + 3 +... + 8 +. Exercice (3 poits) La site ( ) est arithmétiqe de raiso r. O sait qe 5 46 et 86..

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 003 EPREUVE SPECIFIQUE FILIERE MP MAHEMAIQUES 1 Durée : 4 heures Les calculatrces sot terdtes * * * NB : Le caddat attachera la plus grade mportace à la clarté, à la précso et à la cocso de la

Plus en détail

Augmentation de capital - Comptabilisation

Augmentation de capital - Comptabilisation Ctluppi & Hug AG Softwre d Augmettio de cpitl - Comptbilistio Descriptio Ue ugmettio de cpitl est ue ugmettio du cpitl ctio d'ue société oyme pr émissio de ouvelles ctios. Il existe différetes formes d'ugmettio

Plus en détail

I. Qu est-ce qu une variable aléatoire?

I. Qu est-ce qu une variable aléatoire? I. Qu est-ce qu ue varable aléatore?. Défto : Sot ue expérece aléatore dot l esemble des résultats possbles (l uvers est oté Ω. Ue varable aléatore est ue focto X allat de Ω sur R, c est-à-dre que c est

Plus en détail

RÉPONSES À UN ÉCHELON. Sortie u(t) réponse. t(s)

RÉPONSES À UN ÉCHELON. Sortie u(t) réponse. t(s) BTS S ÉPONSS À UN ÉHON. éponse à n échelon d n système d premer ordre xemple : almentaton d n condensater de capacté par ne sorce de tenson e(t) à travers résstance a tenson varable e(t) est n échelon

Plus en détail

Physique appliquée. 1 re STI. Génie électronique

Physique appliquée. 1 re STI. Génie électronique Physqe applqée 1 re STI Géne électronqe Mare-Clade Dder Lycée les Irs, Lormont Jacqes Lafarge Lycée Gstave ffel, Bordeax Therry Lecorex Lycée Rchele, Rel-Malmason Gérard Montaster Lycée Doran, Pars Sos

Plus en détail

LA THEORIE SUR L ELECTRICITE

LA THEORIE SUR L ELECTRICITE ours d électricité L THEORE SR L ELETRTE LES NOTONS DE BSE Le courant alternatif PRTE N : LES OMPOSNTS PSSFS La théorie sur l électricité - les notions de base - Le courant alternatif RL TBLE DES MTERES

Plus en détail

Qualité de service des GNSS pour les applications routières Journée ITS CETE du S-O le 15/12/2010

Qualité de service des GNSS pour les applications routières Journée ITS CETE du S-O le 15/12/2010 Qlité de service des GNSS por les pplictions rotières Jornée ITS CETE d S-O le 15/1/010 Intervennts : Frnçois PEYRET (LCPC) Dte : 15/1/10 Pln de l présenttion 1. Les performnces d n service de positionnement.

Plus en détail

1. Rappels sur la loi binomiale

1. Rappels sur la loi binomiale . Rppels sr l loi inomile On ppelle épree de Bernolli tote expérience létoire ne présentnt qe dex isses possiles (contrires l ne de l tre). On ppelle schém de Bernolli tote répétition d éprees de Bernolli

Plus en détail

L atome et la mécanique de Newton : ouverture au monde quantique

L atome et la mécanique de Newton : ouverture au monde quantique ACTIVITE- COURS PHYSIQUE N 14 TS 1/5 ATOME ET MECANIQUE DE NEWTON Activité-cors de physiqe N 14 L atome et la mécaniqe de Newton : overtre a monde qantiqe Objectifs Connaître les expressions de la force

Plus en détail

Chapitre 3 Théorème de Gauss

Chapitre 3 Théorème de Gauss hpite 3 Théoème de Gss estions : #) be métlliqe vec ne chge ponctelle positive cente E Le chmp électiqe ppliqé s les pois d cbe condcte povoqe n movement de chges s celici. ependnt, le chmp n est ps le

Plus en détail

GUIDE POUR L EXPRESSION DE L INCERTITUDE DE MESURE (GUM)

GUIDE POUR L EXPRESSION DE L INCERTITUDE DE MESURE (GUM) Une norme por la détermination des incertitdes de mesres : N ENV 005 GUIDE POUR L EXPRESSION DE L INCERTITUDE DE MESURE (GUM) Introdction : Les instances de normalisation ( ISO, BIPM, ANOR, ) ont pblié

Plus en détail

Electronique TD1 Corrigé

Electronique TD1 Corrigé nersté du Mane - Faculté des Scences! etour D électronque lectronque D1 Corrgé Pour un sgnal (t) quelconque : 1 $ (t) # MOY! (t) dt 1 FF! (t) dt (t) MX MOY mpltude crête à - crête mpltude Mn Pérode t emarque

Plus en détail

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE UE4 : Bostatstques Chaptre 8 Corrélato et régresso léare smple José LABARERE Aée uverstare 20/202 Uversté Joseph Fourer de Greoble - Tous drots réservés. Pla I. Corrélato et régresso léare II. Coeffcet

Plus en détail

6GEI300 - Électronique I. Examen Partiel #1

6GEI300 - Électronique I. Examen Partiel #1 6GEI3 Électroque I Autome 27 Modalté: Aucue documetato est permse. Vous avez drot à ue calculatrce o programmable. La durée de l exame est de 3h Cet exame compte pour 2% de la ote fale. Questo 1. Questos

Plus en détail

Exercice 1 : Analogie entre équilibres acido-basiques et équilibres de complexation (Application du Principe de Le Châtelier).

Exercice 1 : Analogie entre équilibres acido-basiques et équilibres de complexation (Application du Principe de Le Châtelier). Bla UE 1C G. EXERCICES BILAN Exercce 1 : Aaloge etre équlbres acdo-basques et équlbres de complexato (Applcato du Prcpe de Le Châteler). Objectfs de l'exercce - Coassaces/Compéteces testées das cet exercce

Plus en détail

Exercices sur les suites arithmétiques (2)

Exercices sur les suites arithmétiques (2) ère S Exercices sr les sites arithmétiqes () Soit la site arithmétiqe de premier terme et de raiso Exprimer e foctio de r Soit la site arithmétiqe de premier terme 0 et de raiso Détermier tel qe 09 r Soit

Plus en détail

Soit une grandeur A. Nous noterons ici : a = valeur numérique de la mesure de A ; a = valeur vraie de A ;

Soit une grandeur A. Nous noterons ici : a = valeur numérique de la mesure de A ; a = valeur vraie de A ; INTRODUCTION U LORTOIRE Pe 03. INTRODUCTION U LORTOIRE Pluseurs trvu prtques de phsque proposet l vérfcto d ue lo théorque s eprmt u moe d ue formule mthémtque. Cette vérfcto dot turellemet ter compte

Plus en détail

Chapitre VI. Méthodes d identification

Chapitre VI. Méthodes d identification hpre VI éhdes d def Vers /..00 I.D. Ld, mmde des ssèmes, hpre 6 hpre 6. éhdes d'def 6. éhdes d'def sées sr le lhsseme de l'errer de préd pe I 6.. dres rrés rérsfs..r. 6.. dres rrés éeds..e. 6..3 xmm de

Plus en détail

TS Exercices sur les limites de suites (3) 4 Pour tout entier naturel n 1, on pose :

TS Exercices sur les limites de suites (3) 4 Pour tout entier naturel n 1, on pose : T Exercices sr les limites de sites () Por tot etier atrel, o pose : O cosidère la site ( ) défiie sr N par so premier terme récrrece ( ) = + por tot etier atrel ) Démotrer par récrrece qe, por tot etier

Plus en détail

1 ère partie : STATISTIQUE DESCRIPTIVE

1 ère partie : STATISTIQUE DESCRIPTIVE ère parte : STATISTIQUE DESCRIPTIVE CHAPITRE : COLLECTE DE L INFORMATION, TABLEAUX ET GRAPHIQUES. I. Défto et vocabulare Défto : la statstque est ue méthode scetfque qu cosste à réur des doées chffrées

Plus en détail

Guide de présentation

Guide de présentation Syndicat Centre Héralt Gide de présentation Activités et otils pédagogiqes Por sensibiliser vos élèves à la gestion des déchets, mettre en place des projets, réaliser ne visite o réserver nos otils...

Plus en détail

APPLICATIONS AFFINES Site MathsTICE de Adama Traoré Lycée Technique Bamako

APPLICATIONS AFFINES Site MathsTICE de Adama Traoré Lycée Technique Bamako APPLICATIONS AFFINES Ste thstice de Adm Troré Lée Tehnqe Bmko I Appltons lnéres: Atvté : Sot V l ensemle des veters d pln P et φ: V V ϕ ( ) k ( k IR*) ) montrer qe ( ; v ) ε V : ϕ ( v) ϕ( ) ϕ( v) ; ) montrer

Plus en détail

SYSTEME FERME EN REACTION CHIMIQUE

SYSTEME FERME EN REACTION CHIMIQUE SYSTEME FERME EN REACTION CHIMIQUE I. DESCRIPTION D UN SYSTEME. Les dfférets types de système (ouvert, fermé, solé U système S est formé d u esemble de corps séparés du reste de l uvers (appelé mleu extéreur

Plus en détail

Exercices sur les forces, 2 e partie Module 3 : Des phénomènes mécaniques Objectif terminal 4 : La dynamique

Exercices sur les forces, 2 e partie Module 3 : Des phénomènes mécaniques Objectif terminal 4 : La dynamique Dte : No : Groupe : Résultt : / 76 Exercices sur les orces, e prtie Module 3 : Des phéoèes éciques Objecti teril 4 : L dyique. Quelle est l ccélértio de cet objet tiré obliqueet, si o élie le rotteet?

Plus en détail

arlesrsuitesraurbacr2013r==corriges=z

arlesrsuitesraurbacr2013r==corriges=z arlesrsuitesraurbacrr==corriges=z Frace métropolitaie septembre 5 poits 7 La foctio x x, ratioelle, est dérivable sr tot itervalle cote das so esemble x de défiitio * doc f est dérivable sr ] ; + [ et,

Plus en détail

le livret de soins avon Trouver les indispensables de vos clientes en un clin d œil!

le livret de soins avon Trouver les indispensables de vos clientes en un clin d œil! le livret de soins avon Trover les indispensables de vos clientes en n clin d œil! Soins anti-âge hate Choisir la ligne de soins Anew Progression des signes de vieillissement 25+ 30+ Prévention Correction

Plus en détail