Convergence des suites monotones et applications.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Convergence des suites monotones et applications."

Transcription

1 Université Paris Est Marne-la-Vallée L Sciences Physiques Compléments en Analyse Convergence des suites monotones et applications.. Quelques définitions Ce chapitre est consacré à la convergence des suites monotones, c est-à-dire croissantes ou décroissantes. Rappelons qu une suite (u n ) n N est dite croissante si pour tout n N, u n u n+. Elle est dite décroissante si pour tout n N, u n u n+. Quand ces inégalités sont strictes, on parle de suites strictement croissantes ou strictement décroissantes. Définition.. Une suite (u n ) n N à valeurs réelles est dite : majorée s il existe M R tel que pour tout n N, u n M. minorée s il existe m R tel que pour tout n N, u n m. bornée si elle est à la fois majorée et minorée. 2. Convergence des suites monotones Le théorème suivant est le résultat principal de ce chapitre. Théorème 2. (Convergence des suites croissantes). Soit (u n ) n N une suite croissante. () Si la suite est majorée, alors elle converge vers l = sup{u n : n N}. (2) Si la suite n est pas majorée, alors elle tend vers +. Autrement dit, une suite croissante admet toujours une limite finie ou infinie. Démonstration. () Supposons d abord que la suite est majorée par un nombre M R. Il en résulte que l ensemble U = {u n : n N} R est non vide et majoré par M. Par conséquent, il admet une borne supérieure, notée l. Le nombre l est par définition le plus petit des majorants de U. Comme l est un majorant de U, on a tout d abord n N, u n l. Prenons ε > 0 ; puisque l est le plus petit des majorants de U, le nombre l ε n est pas un majorant de U. Par suite, il existe N N tel que Comme la suite est supposée croissante, on a l ε < u N. n N, l ε < u N u n. Finalement, si n N, on a ε < u n l 0 < ε et donc u n l < ε.

2 2 On a donc montré : c est-à-dire que (u n ) n N converge vers l. ε > 0, N N, n N, u n l < ε, (2) On suppose maintenant que la suite n est pas majorée. Cela signifie que pour tout M R +, il existe au moins un N N tel que u N > M. Comme la suite est croissante, on a donc n N, u n u N > M. On a donc montré : M R +, N N, n N, u n M, c est-à-dire que la suite tend vers +. Théorème 2.2 (Convergence des suites décroissantes). Soit (u n ) n N une suite décroissante. () Si la suite est minorée, alors elle converge vers l = inf{u n : n N}. (2) Si la suite n est pas minorée, alors elle tend vers. Démonstration. Appliquer le théorème précédent à la suite u n qui est croissante. Exemples : () On considère la suite S n = n i= /i2, n N. La suite est strictement croissante, car S k+ S k = (k + ) 2 > 0, k N. Montrons que cette suite est majorée. Pour cela, remarquons que (k + ) 2 k(k + ) = k k +. Par conséquent, Or, et n (S k+ S k ) = k= On en déduit que n k= n k(k + ) k= n (S k+ S k ) = S n S k= n ( k ) = k + n. k= n 2, S n 2 n 2. ( k ). k + En conclusion, la suite (S n ) n N est croissante et majorée, donc elle converge. Attention, le raisonnement précédent ne permet pas de déterminer la valeur de la limite l de (S n ) n N. On peut montrer que l = π 2 /6, mais il faut utiliser pour cela des techniques plus élaborées.

3 (2) Considérons maintenant la suite H n = n i= /i, n N. Il s agit encore d une suite croissante, mais cette fois ci non majorée. En effet, pour tout i N Donc, pour tout n N H n = i n i= i+ i i dt = ln(i + ) ln(i). t n (ln(i + ) ln(i)) = ln(n + ). i= Comme la suite u n = ln(n + ) tend vers +, le théorème des gendarmes entraîne que H n tend aussi vers Suites adjacentes. 3. Applications Définition 3.. On dit que deux suites (u n ) n N et (v n ) n N sont adjacentes si l une est croissante, l autre est décroissante et v n u n 0 lorsque n +. Théorème 3.2. Si (u n ) n N et (v n ) n N sont deux suites adjacentes, alors elles convergent vers la même limite l. De plus, dans le cas où (u n ) n N est la suite croissante et (v n ) n N est la suite décroissante, on a pour tout n N, on a u n l v n. Démonstration. On suppose que u n est croissante et que v n est décroissante. Par hypothèse, la suite w n = v n u n 0 lorsque n. Comme w n est décroissante, on a inf{w n : n N} = 0, ce qui prouve que u n v n pour tout n N. Comme la suite v n est décroissante, on a v n v 0 pour tout n N. Par conséquent, u n v 0 pour tout n N. La suite u n est donc croissante et majorée, donc convergente. On voit de la même manière que la suite v n est décroissante et minorée, donc convergente. Notons l la limite de u n et l celle de v n. Comme 0 = lim v n u n = l l, on conclut que u n et v n ont la même limite. On a donc sup{u n : n N} = l = inf{v n : n N}, ce qui entraîne que u n l v n, pour tout n N. Exemples : Montrons d une autre manière que la suite S n = n k= /k2, n N est convergente. Posons T n = S n + n. On a T n+ T n = S n+ S n + n + n = (n + ) 2 n(n + ) < 0. Par conséquent, la suite T n est décroissante. Comme S n est croissante et T n S n = /n 0 lorsque n +, les suites S n et T n sont adjacentes. D après le théorème précédent, on conclut que les deux suites convergent vers la même limite Le théorème de Bolzano-Weierstrass. Définition 3.3. Soit (u n ) n N une suite à valeurs réelles et φ : N N une fonction strictement croissante. Une suite (v n ) n N de la forme n N, v n = u φ(n), est appelée suite extraite (ou sous suite) de (u n ) n N. 3

4 4 Exemples : Les applications φ suivantes sont strictement croissantes : φ (n) = 2n, φ 2 (n) = 2n +, φ 3 (n) = 2n 2, φ 4 (n) = 2 n. Considérons la suite (u n ) n N définie par u n = ln(n) + ( ) n + /n 2, et déterminons les suites extraites obtenues à l aide des applications φ ci-dessus : a n = u φ (n) = ln(2n) + + 4n 2. b n = u φ2 (n) = ln(2n + ) + c n = u φ3 (n) = ln(2n 2 ) + + 4n 4. d n = u φ4 (n) = n ln(2) n. (2n + ) 2. Théorème 3.4 (Bolzano-Weierstrass). De toute suite bornée on peut extraire au moins une soussuite convergente. Démonstration. Nous allons construire une application φ : N N strictement croissante de telle sorte que la suite extraite v n = u φ(n) soit monotone. Puisque la suite de départ u n est bornée, la suite v n sera aussi bornée et par conséquent convergente. Pour mieux comprendre la construction qui suit, on dessine le graphe de la suite (u n ) n N {(n, u n ) : n N} R 2 et l on joint en pointillé les paires de points consécutifs de la forme (n, u n ) (n +, u n+ ). On interprète le schéma ainsi obtenu comme la représentation d une chaîne de montagne et on imagine une petite fourmi se déplaçant sur cette chaîne de montagne de la gauche vers la droite en regardant droit devant elle. Nous dirons que la vue est dégagée au point n N si m n, u m u n. Quand la fourmi se trouve au point (n, u n ) elle peut regarder jusqu à l horizon, aucun sommet ne vient lui boucher la vue. On note N l ensemble de tous les entiers où la vue est dégagée. Au contraire, nous dirons que la vue est bouchée au point n N si m n, u m > u n. Cette fois, si la fourmi se trouve au point (n, u n ), elle ne pourra pas voir au delà du point (m, u m ) qui se trouve à une altitude plus élevée qu elle. On note N 2 l ensemble des entiers où la vue est bouchée. Les ensembles N et N 2 forment une partition de N : N N 2 = N et N N 2 =. Supposons que l ensemble N soit infini. On peut énumérer ses éléments de manière strictement croissante : N = {n 0 < n < n 2 < n 3 <...}. On pose alors φ(k) = n k (le k ème élément de N par ordre croissant), ce qui définit une application strictement croissante. Comme la vue est dégagée au point n k et n k+ > n k, on a u nk > u nk+, c est-à-dire u φ(k) u φ(k+). Par conséquent la suite v k = u φ(k) est décroissante. Supposons maintenant que l ensemble N soit fini et notons M son plus grand élément (si N est vide, on pose par convention M = ). Il en résulte que {M +, M + 2, M + 3,...} N 2.

5 Autrement dit au delà du point M, la vue est toujours bouchée. Posons n 0 = M + ; en ce point la vue est bouchée, donc il existe n > n 0 tel que u n > u n0. La vue est aussi bouchée en n, donc il existe n 2 > n tel que u n2 > u n, etc... On construit de la sorte une suite strictement croissante d entiers n 0 < n < n 2 <... telle que u n0 < u n < u n2 < u n3 <... En posant φ(k) = n k on obtient une application strictement croissante telle que la suite v k = u φ(k) soit strictement croissante. Dans tous les cas, nous avons bien extrait de la suite (u n ) n N une sous suite monotone, ce qui achève la preuve. 4. Exercices 5 Exercice. Déterminer la borne inférieure de { } A = + n 2 ; n N. Exercice 2. Montrer que les suites (u n ) n N et (v n ) n N définies par n u n = et v n = u n + k! n!, k=0 sont adjacentes. On admet que la limite commune de ces deux suites est le nombre e = exp(). Montrer que e est irrationnel. Exercice 3. Montrer que toute suite extraite d une suite convergente est également convergente et a la même limite que la suite de départ. En déduire que la suite u n = ( ) n ne converge pas. Exercice 4. Soit (u n ) n N une suite à valeurs réelles. On suppose que les suites extraites (u 2n ) n N et (u 2n+ ) n N convergent et ont la même limite l. Montrer que la suite (u n ) n N converge aussi vers l. Exercice 5. Soit (w n ) n N la suite définie par n N, w n = n ( ) k. k Montrer que les suites u n = w 2n et v n = w 2n+ sont adjacentes. Que peut on en conclure sur la suite (w n ) n N? k=

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A.

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A. 16 Proposition : La somme des n premiers termes d une suite géométrique de raison q 1 est : n 1 u 0 q k 1 q n = u 0 1 q k=0 Il suffit de calculer (1 q) n 1 k=0 qk = n 1 k=0 qk n 1 k=0 qk+1 = n 1 k=0 qk

Plus en détail

LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre.

LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre. LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre. Pré-requis : Corps R construit : opérations, ordre total, axiome de la borne

Plus en détail

Chapitre 2 : Suites numériques

Chapitre 2 : Suites numériques Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 013-014 Chapitre : Suites numériques Dans tout ce qui suit on considère des suites (u n ) n N à valeurs réelles, c est à dire des applications de N

Plus en détail

CHAPITRE 2 SUITES NUMÉRIQUES

CHAPITRE 2 SUITES NUMÉRIQUES CHAPITRE 2 SUITES NUMÉRIQUES Définition 2.0. Une suite réelle est une application u : N R qui à tout n de N associe un élément u n de R, appelé terme général de la suite. On notera donc la suite (u n ),

Plus en détail

Bibliothèque d exercices L1 Feuille n 10. Suites

Bibliothèque d exercices L1 Feuille n 10. Suites Bibliothèque d exercices Énoncés L Feuille n 0 Suites Convergence Exercice Soit (u n ) n N une suite de R. Que pensez-vous des propositions suivantes : Si (u n ) n converge vers un réel l alors (u n )

Plus en détail

TD 3: Suites réelles

TD 3: Suites réelles Université Pierre et Marie Curie Année 2011/2012 LM115 TD 3: Suites réelles MIME Convergence des suites : Par définition, une suite (u n ) converge vers un réel l si : Pour tout ɛ réel strictement positif,

Plus en détail

Suites Réelles. Aptitudes à développer :

Suites Réelles. Aptitudes à développer : Suites Réelles Aptitudes à développer : Suites * Reconnaître qu un réel est un majorant ou un minorant d une suite du programme. * Etudier les variations d une suite du programme. * Représenter graphiquement

Plus en détail

Cours d Analyse I : les réels et les fonctions

Cours d Analyse I : les réels et les fonctions Introduction à R Suites numériques Cours d Analyse I : les réels et les fonctions Université Lyon 1 Institut Camille Jordan CNRS UMR 5208 FRANCE Automne 2014 - Licence L1 Introduction à R Suites numériques

Plus en détail

N K, n 0 < n 1 < n 2 <

N K, n 0 < n 1 < n 2 < Chapitre 1 Suites réelles et complexes Dans ce chapitre, K désigne le corps R des nombres réels, ou le corps C des nombres complexes. Pour x K, nous noterons x le module de x (égal à la valeur absolue

Plus en détail

Cours d analyse - Résumé sur les suites 2015/2016

Cours d analyse - Résumé sur les suites 2015/2016 Cours d analyse - Résumé sur les suites 2015/2016 CPUS I. Les suites numériques I.1. Premières définitions. Définition. Une suite réelle est une fonction dont l ensemble de départ est une partie de N du

Plus en détail

Suites de nombres réels, première année de premier cycle universitaire

Suites de nombres réels, première année de premier cycle universitaire Suites de nombres réels, première année de premier cycle universitaire F.Gaudon 10 août 2005 Table des matières 1 Définitions 2 2 Opérations sur les suites convergentes ou divergentes 3 3 Suites extraites

Plus en détail

Chapitre 3. Suites récurrentes

Chapitre 3. Suites récurrentes Chapitre 3 Suites récurrentes 3.1 Suites numériques Définition 3.1 On appelle suite de terme général u n et on note (u n ) n 0 ou plus simplement u la liste ordonnée des nombres u 0, u 1, u 2, u 3,....

Plus en détail

Analyse I : suites, limites et continuité

Analyse I : suites, limites et continuité Analyse I : suites, limites et continuité Maxime Legrand ENS - 7 décembre 2013 http ://matholympia.blogspot.fr/ 1 Petits rappels sur les quantificateurs Définition 1. On introduit (ou rappelle) les quantificateurs

Plus en détail

Suites de nombres réels

Suites de nombres réels Suites de nombres réels I Généralités 1.1 propriété vraie à partir d un certain rang Définition 1.1 On dit qu une propriété P (n) est vraie à partir d un certain rang N N si et seulement s il existe un

Plus en détail

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR.

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. I Notion de suite réelle ) Définition : Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. Le réel U(n) est noté U n il est appelé terme général

Plus en détail

1 Notions de logique mathématique.

1 Notions de logique mathématique. Université de Provence 2012 2013 Introduction à l Analyse Chapitre 3 - Logique et Suites. 1 Notions de logique mathématique. 1.1 Assertions, propositions logiques, tables de vérité. On rappelle la notion

Plus en détail

Fiche de cours 2 - Suites de réels.

Fiche de cours 2 - Suites de réels. Licence de Sciences et Technologies EM1 - Analyse Fiche de cours - Suites de réels. Généralités sur les suites. Définition : Une suite est une fonction u : N R, définie à partir dun certain rang au moins.

Plus en détail

Etude de limites de suites monotones

Etude de limites de suites monotones Etude de ites de suites monotones I) Définition On dit que la suite ( ) est majorée lorsqu il existe un nombre réel M tel que, pour tout entier naturel n, M. On dit que M est un majorant de la suite (

Plus en détail

LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence.

LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence. LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence. Pré-requis : Suites numériques : monotonie, convergence, divergence ; Théorème des valeurs intermédiaires ; R est complet :

Plus en détail

UNIVERSITÉ DE PARIS 8. Département de Mathématiques et Informatique. Cours d analyse

UNIVERSITÉ DE PARIS 8. Département de Mathématiques et Informatique. Cours d analyse UNIVERSITÉ DE PARIS 8 Département de Mathématiques et Informatique Cours d analyse Pierre-Louis CAYREL inspiré par les documents de : Guy Laffaille, Christian Pauly et Arnaud Bodin Cours Intensif 009-010

Plus en détail

Limites à l infini d une fonction

Limites à l infini d une fonction 9 Limites à l infini d une fonction On garde les notations du chapitre précédent en supposant ici que a = ou a = + est adhérent à l ensemble I, ce qui signifie que : ou : m R, ], m[ I M R, ]M, + [ I ce

Plus en détail

Continuité des fonctions réelles

Continuité des fonctions réelles Chapitre 2 Continuité des fonctions réelles 2.1 Généralités Définition 2.1.1. Une fonction réelle f est une application d une partie D de R dans R. La partie D est appelée ensemble (ou domaine) de définition

Plus en détail

Convergence des suites monotones

Convergence des suites monotones Convergence des suites monotones Suites majorée, minorée, bornée Définition Une suite (u # ) est majorée par un nombre réel M si pour tout n N, u # M Une suite (u # ) est minorée par un nombre réel m si

Plus en détail

LEÇON N 56 : 56.1 Monotonie de la suite

LEÇON N 56 : 56.1 Monotonie de la suite LEÇON N 56 : Étude de suites de nombres réels définies par une relation de récurrence u n+1 = f(u n ) et une condition initiale. L exposé pourra être illustré par un ou des exemples faisant appel à l utilisation

Plus en détail

Département de mathématiques et informatique L1S1, module A ou B Maths. Chapitre 3. Suites numériques

Département de mathématiques et informatique L1S1, module A ou B Maths. Chapitre 3. Suites numériques Département de mathématiques et informatique L1S1, module A ou B Maths Chapitre 3 Suites numériques p. 2 Remarque importante. Ce cours n est pas indépendant du cours de Mathématiques pour tous. Ce document

Plus en détail

MPSI 2 : DL 03. pour le 12 décembre 2003

MPSI 2 : DL 03. pour le 12 décembre 2003 MPSI : DL 03 pour le décembre 003 Problème L objet du problème est de calculer eplicitement la limite de la suite des moyennes arithmétiques-géométriques pour certaines valeurs initiales. On considère

Plus en détail

(exercice : calculer u 2 puis u 5 )

(exercice : calculer u 2 puis u 5 ) Suites Prérequis : Division euclidienne Soient a et b deux entiers avec b 0. Il existe un unique couple (q, r) Z N tel que a = q b + r et 0 r < b. q s appelle le quotient de la division enclidienne de

Plus en détail

Des démonstrations en analyse

Des démonstrations en analyse Préparation au CAPES (IUFM/ULP) Nicole Bopp Strasbourg, novembre 007 Des démonstrations en analyse 1. Caractérisations équivalentes du fait que R est complet L une des trois propriétés ci-dessous est admise

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques 0 - - de terminale S Suites s LPO de Chirongui 20 mai 2016 1 - Introduction- Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel

Plus en détail

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre V : Suites numériques 1 Un peu de topologie de R On a vu dans le chapitre

Plus en détail

SUITES RÉELLES CHAPITRE 3. 1 Compléments sur les réels. 1.1 Rappels. Définition 3.1. Soient x et y deux réels. On note. x si x 0. x sinon.

SUITES RÉELLES CHAPITRE 3. 1 Compléments sur les réels. 1.1 Rappels. Définition 3.1. Soient x et y deux réels. On note. x si x 0. x sinon. CHAPITRE 3 SUITES RÉELLES 1 Compléments sur les réels 1.1 Rappels 1.1.a Définition 3.1 Valeur absolue Soient x et y deux réels. On note x max(x, y) = y si x y sinon x et min(x, y) = y si x y sinon On étend

Plus en détail

LES SUITES RÉELLES. = L > Montrer que, si L > 1, alors lim u n = +. , ln(n), n. n!nn n) 2 n.

LES SUITES RÉELLES. = L > Montrer que, si L > 1, alors lim u n = +. , ln(n), n. n!nn n) 2 n. LES SUITES RÉELLES Exercice Soit (u n ) et (v n ), deux suites convergeant respectivement vers α et β. On pose : pour tout n N, m n = min(u n, v n ) et M n = max(u n, v n ) : ces deux suites convergent-elles

Plus en détail

Limites et fonctions continues

Limites et fonctions continues Limites et fonctions continues Vidéo partie. Notions de fonction Vidéo partie 2. Limites Vidéo partie 3. Continuité en un point Vidéo partie 4. Continuité sur un intervalle Vidéo partie 5. Fonctions monotones

Plus en détail

LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone.

LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. LEÇON N 6 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. Pré-requis : I est un intervalle si a,b I a b, [a,b] I ; Toute partie non

Plus en détail

Interprétation graphique ] [ + tous les termes de la suite à partir d un certain rang appartiennent à cet intervalle ]a;b[ b) Limite infinie

Interprétation graphique ] [ + tous les termes de la suite à partir d un certain rang appartiennent à cet intervalle ]a;b[ b) Limite infinie SUITES NUMERIQUES 2 ème partie I- Limite d une suite a) Limite finie Définition Soit (U n ) une suite de nombres réels. On dit que la suite (U n ) admet pour limite, si tout intervalle ]a ;b[ contenant

Plus en détail

Résumé du cours sur les suites.

Résumé du cours sur les suites. Résumé du cours sur les suites. 1 Suites numériques réelles et principe de récurrence 1.1 Les deux façons de définir une suite numérique réelle Définition. On note n 0 un entier naturel (en général n 0

Plus en détail

Suites réelles et complexes. () Suites 1 / 36

Suites réelles et complexes. () Suites 1 / 36 Suites réelles et complexes () Suites 1 / 36 1 Limites et relation d ordre 2 Comparaison des suites 3 Suites de nombres complexes () Suites 2 / 36 Plan 1 Limites et relation d ordre 2 Comparaison des suites

Plus en détail

Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis

Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis I Limites Continuités Exercice 1 : Soit ] [ la fonction définie par : Déterminer les

Plus en détail

Suites numériques. Exemples élémentaires de suites

Suites numériques. Exemples élémentaires de suites MTA - ch5 Page 1/12 Suites numériques Notion de suite : Une suite numérique est une application de N (ou parfois de N ) à valeurs dans R ou dans C. La suite u : N C est notée de plusieurs façons : n u(n)

Plus en détail

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6.

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6. Exercice 1 : Dire en justifiant si les suites (u n ) définies ci-dessous sont arithmétiques, géométriques ou ni l'un ni l'autre. Dans le cas où elles sont arithmétiques ou géométriques, préciser le premier

Plus en détail

Convergence de suites. Suites récurrentes

Convergence de suites. Suites récurrentes Convergence de suites Les suites dont on donne ci-dessous le terme général sont-elles convergentes? cos n + 3n a) ln n + 2n g) sin n n b) 4n 2 + 5n + 6 2n c) en n h) 2 n ( 1) n n 2 d) sin n e n e) n 1

Plus en détail

1 Le développement décimal d un nombre réel

1 Le développement décimal d un nombre réel Université Paris 7 Denis Diderot Année 200/2008 Licence 2 MA 3 Compléments sur les séries 1 Le développement décimal d un nombre réel 1.1 La fonction «partie entière» ous partons de la propriété suivante

Plus en détail

Terminale S Suites numériques

Terminale S Suites numériques Terminale S Suites numériques Raisonnement par récurrence. Introduction En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel n. Par exemple, la n(n + ) somme des entiers naturels

Plus en détail

Chapitre 12 : Étude locale des fonctions : limites

Chapitre 12 : Étude locale des fonctions : limites Chapitre 12 : Étude locale des fonctions : limites Dans tout ce chapitre, I désigne un intervalle de R, x 0 R, f est une fonction définie sur son domaine de définition D f à valeurs réelles. C f désigne

Plus en détail

Chapitre 7 Suites de nombres réels et complexes

Chapitre 7 Suites de nombres réels et complexes Chapitre 7 Suites de nombres réels et complexes I - Généralités sur les suites réelles I.1 - Dénition et Structure Définition 1 (Suite). Une suite réelle u est une application de N dans R. Pour tout n

Plus en détail

MT90/91-Fonctions d une variable réelle

MT90/91-Fonctions d une variable réelle MT90/91-Fonctions d une variable réelle Chapitre 3 : Suites numériques Équipe de Mathématiques Appliquées UTC Juillet 2014 suivant Chapitre 3 Suites numériques 3.1 Définition, convergence, propriétés......................

Plus en détail

CH V : Généralités sur les suites réelles

CH V : Généralités sur les suites réelles CH V : Généralités sur les suites réelles I. Notion de suite I.1. Définition générale Définition Une suite de nombre réels u est une application de N dans R i.e. une fonction de N dans R telle que tout

Plus en détail

Les suites. Introduction. 1. Définitions Définition d une suite

Les suites. Introduction. 1. Définitions Définition d une suite Les suites Vidéo partie Premières définitions Vidéo partie Limite Vidéo partie 3 Exemples remarquables Vidéo partie 4 Théorèmes de convergence Vidéo partie 5 Suites récurrentes Fiche d'exercices Suites

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 5 [ ] [correction] Soient u 0 ]0, 1[ et pour tout n N,

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 5 [ ] [correction] Soient u 0 ]0, 1[ et pour tout n N, [http://mp.cpgedupuydelome.fr] édité le 0 juillet 04 Enoncés Suites récurrentes Exercice [ 0038 ] [correction] Etudier la suite définie par u 0 > 0 et pour tout n N, Exercice [ 00330 ] [correction] Soient

Plus en détail

1 Introduction sur les suites numériques

1 Introduction sur les suites numériques ISEL - Année Mathématiques SUITES NUMERIQUES Introduction sur les suites numériques. Dénition Dénition On appelle suite réelle toute application U d'une partie A de IN dans IR. A IR U : avec A IN. L'image

Plus en détail

LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application.

LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application. LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application. Pré-requis : Suites : définition, bornées, convergentes,

Plus en détail

Chapitre 4. Suites réelles

Chapitre 4. Suites réelles Département de mathématiques et informatique L1S1, module A ou B Chapitre 4 Suites réelles Emmanuel Royer emmanuel.royer@math.univ-bpclermont.fr Ce texte mis gratuitement à votre disposition a été rédigé

Plus en détail

Chapitre 8. Suites numériques. 8.1 Généralités sur les suites numériques. 8.2 Comparaison de suites Définition et notation

Chapitre 8. Suites numériques. 8.1 Généralités sur les suites numériques. 8.2 Comparaison de suites Définition et notation Chapitre 8 Suites numériques La notion de suite numérique a été déjà introduite en classe de Première. On rappelle ici la définition d une suite numérique et complète les connaissances déjà acquises. On

Plus en détail

Suites numériques. Z, auctore. 4 octobre u n+1 = u n + r. (1) u n = u 0 + n r (2) u 0 + u 1 + u u n = (n + 1) u 0 + u n 2

Suites numériques. Z, auctore. 4 octobre u n+1 = u n + r. (1) u n = u 0 + n r (2) u 0 + u 1 + u u n = (n + 1) u 0 + u n 2 Suites numériques Z, auctore 4 octobre 005 1 Suites arithmétiques Définition. Une suite de nombres (u n ) n N est arithmétique lorsqu il existe un nombre r tel que pour tout entier n on ait Ce nombre r

Plus en détail

Exercices du chapitre 3 avec corrigé succinct

Exercices du chapitre 3 avec corrigé succinct Exercices du chapitre 3 avec corrigé succinct Exercice III.1 Ch3-Exercice1 Soient α et u 0 deux réels donnés. Soit alors (u n ) une suite géométrique définie par u n = αu n 1. Donner le terme général de

Plus en détail

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme :

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme : Chapitre I : Raisonnement par récurrence et comportement des suites Extrait du programme : 1 I Rappels sur les suites Il existe deux façons de définir une suite : 1 Formule explicite Il existe une fonction

Plus en détail

Corrigé TD 2 Tribus et mesures

Corrigé TD 2 Tribus et mesures Corrigé TD 2 Tribus et mesures Exercice 0. Soit f : E R + {+ } une fonction. Pour tout n 1 et tout i {0, 1,..., n2 n 1} on note A n = {x E : f(x) n}, B n,i = {x E : i2 n f(x) < (i + 1)2 n }, et pour un

Plus en détail

Nombres réels, bornes supérieures et inférieures

Nombres réels, bornes supérieures et inférieures Nombres réels, bornes supérieures et inférieures Exercice 1 : Si et sont des réels positifs ou nuls, montrer que Allez à : Correction exercice 1 : Exercice 2 : Déterminer les ensembles suivants, mettre

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

Chapitre I : LES SUITES

Chapitre I : LES SUITES Chapitre I : LES SUITES I- Généralités sur les suites 1) Définition et notations Définition 1 : 1) Définir une suite par une formule explicite, c est donner une relation entre le terme et l entier, pour

Plus en détail

Limites de suites. Révisions

Limites de suites. Révisions Limites de suites Révisions Soit ( ) une suite définie pour tout n N par = n 2 + n Exprimer en fonction de n : a b + c + 2 La suite ( ) est-elle arithmétique? 3 Quel est le sens de variation de ( )? 2

Plus en détail

4.1 L ensemble des réels est un corps ordonné

4.1 L ensemble des réels est un corps ordonné Table des matières 4 Propriétés de R 4. L ensemble des réels est un corps ordonné....................... 4.. Propriétés d ordre de R............................. 4..2 Valeur absolue..................................

Plus en détail

Commun à tous les candidats. Le graphique de l annexe sera complété et remis avec la copie. Soit la fonction f définie sur l intervalle [0; 2] par

Commun à tous les candidats. Le graphique de l annexe sera complété et remis avec la copie. Soit la fonction f définie sur l intervalle [0; 2] par EXERCICE (6 points ) Commun à tous les candidats Le graphique de l annexe sera complété et remis avec la copie Soit la fonction f définie sur l intervalle [0; ] par f(x) x + x + ) Etudier les variations

Plus en détail

Chapitre 2. Séries Numériques. Université Mohammed I Ecole Nationale des Sciences Appliquées Oujda

Chapitre 2. Séries Numériques. Université Mohammed I Ecole Nationale des Sciences Appliquées Oujda Université Mohammed I Ecole Nationale des Sciences Appliquées Oujda Année 2007-2008 ENSA - Analyse II Enseignant : I.Elmahi Chapitre 2 Séries Numériques Table des matières Généralités. Dénition d'une série...................................2

Plus en détail

Généralisation de la notion d intégrale

Généralisation de la notion d intégrale Généralisation de la notion d intégrale I) Intégration d une fonction discontinue.) Fonction définie par morceaux On considère une fonction continue sur un intervalle, sauf en un nombre fini de points

Plus en détail

Continuité, dérivabilité des fonctions d une variable réelle

Continuité, dérivabilité des fonctions d une variable réelle 7 Continuité, dérivabilité des fonctions d une variable réelle Pour ce chapitre I désigne un intervalle réel et f une fonction définie sur I et à valeurs réelles ou complees. 7. Continuité en un point,

Plus en détail

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5 I Rappels de vocabulaire Suites réelles Définition 1 Une suite réelle u est une application de I R où I est une partie de N. Au lieu de noter u(n), pour les suites on note u n l image de n par l application

Plus en détail

Suites - Récurrence 10X. 2 quiselit:sommedes 2 pouriallantde1à10vaut:

Suites - Récurrence 10X. 2 quiselit:sommedes 2 pouriallantde1à10vaut: Suites - Récurrence 1. Définitions - Rappels 1.1.Modes de définition d une suite La suite 0 =0 1 = =4 3 =6 peut être définiededeuxmanières: Définition explicite : ½ = Définition récurrente : 0 =0 +1 =

Plus en détail

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Notations. K désigne R ou C. S (K désigne l'ensemble des suites d'éléments de K et u, v des éléments de S (K. I, J désignent des

Plus en détail

u n lim S n (2) n=0 u n = ± quand lim n S n = ±. u n, ou n N u n si n 0 = 1.

u n lim S n (2) n=0 u n = ± quand lim n S n = ±. u n, ou n N u n si n 0 = 1. Chapitre III Séries III.a. Introduction Définition 31 (série) Soit (u n ) une suite de N dans un K-espace vectoriel normé E. La somme partielle S n = u 0 + u 1 + u 2 + + u n (1) définit une nouvelle suite,

Plus en détail

lim n + Kholle B2 Programme 1 25 septembre 2012 Sujet 1

lim n + Kholle B2 Programme 1 25 septembre 2012 Sujet 1 Kholle B Programme 5 septembre 0 Sujet Exercice de cours : Montrer que si (u n ) et (v n ) sont deux suites réelles à termes strictement positifs, équivalentes et ayant une ite différente de, alors ln(u

Plus en détail

Chapitre 8 : Suites. PTSI B Lycée Eiffel. 10 janvier 2014

Chapitre 8 : Suites. PTSI B Lycée Eiffel. 10 janvier 2014 Chapitre 8 : Suites PTSI B Lycée Eiffel janvier 4 Toute la suite des hommes doit être considérée comme un même homme. Blaise Pascal. Deux suites adjacentes décident d aller s éclater dans une soirée «no

Plus en détail

Suites et récurrence

Suites et récurrence Suites et récurrence 1 Suites arithmétiques et géométriques 1.1 Définitions * On dit que la suite (u n ) est arithmétique s il existe un réel r appelé raison tel que, pour tout n dans N, on ait : u n+1

Plus en détail

Université Mohammed V - Agdal Faculté des Sciences. Département de Mathématiques. Avenue Ibn Batouta, B.P Rabat, Maroc.

Université Mohammed V - Agdal Faculté des Sciences. Département de Mathématiques. Avenue Ibn Batouta, B.P Rabat, Maroc. 1 Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques Avenue Ibn Batouta, B.P. 1014 Rabat, Maroc Filière SMIA : Exercices avec Corrigés Analyse 1 : Par BENAZZOUZ HANA Série1

Plus en détail

Propriétés fondamentales de R et suites numériques réelles

Propriétés fondamentales de R et suites numériques réelles Propriétés fondamentales de R et suites numériques réelles Denis Vekemans Ordre total compatible En algèbre générale, un groupe ordonné est la donnée d une ensemble G, muni d une loi de composition interne

Plus en détail

Suites réelles. 1 Introduction, généralités Définitions fondamentales, vocabulaire Structure Premières définitions...

Suites réelles. 1 Introduction, généralités Définitions fondamentales, vocabulaire Structure Premières définitions... Suites réelles Mickaël Péchaud 2008 Table des matières 1 Introduction, généralités 4 1.1 Définitions fondamentales, vocabulaire.......................... 4 1.2 Structure..........................................

Plus en détail

Complément sur les suites. Suites adjacentes

Complément sur les suites. Suites adjacentes DERNIÈRE IMPRESSION LE 27 février 2017 à 16:33 Complément sur les suites. Suites adjacentes Table des matières 1 Le procédé 2 2 Suites adjacentes 2 2.1 Définition................................. 2 2.2

Plus en détail

Limites et Continuité

Limites et Continuité Voisinages, Points adhèrents Limites Fonctions continues Les grands théorèmes sur les fonctions continues Département de Mathématiques, Faculté des Sciences de Fès. Octobre 2013 Voisinages, Points adhèrents

Plus en détail

Cours 5: Une introduction aux suites numériques

Cours 5: Une introduction aux suites numériques Cours 5: Une introduction aux suites numériques Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module complémentaire de maths, année 2012-2013 1 Généralités sur les suites

Plus en détail

Université Denis Diderot - Paris 7 Année L2 CPEI - Mathématiques Chapitre 1 Auteur : Mostafa Sabri. Suites numériques

Université Denis Diderot - Paris 7 Année L2 CPEI - Mathématiques Chapitre 1 Auteur : Mostafa Sabri. Suites numériques Université Denis Diderot - Paris 7 Année 2013-2014 L2 CPEI - Mathématiques Chapitre 1 Auteur : Mostafa Sabri Suites numériques 1. Limites de suites complexes Définition 1. Une suite complexe est une application

Plus en détail

Etude de limites de suites définies par

Etude de limites de suites définies par Etude de limites de suites définies par récurrence u n+1 = f(u n ) I) Généralités 1) Définition Une suite définie par récurrence est une suite définie par son premier terme et par une relation de récurrence,

Plus en détail

TERMINALE S Chapitre 1 : Les suites

TERMINALE S Chapitre 1 : Les suites Généralités 1. Mode de génération ( ) ( ) La La ( ) définie par ( ) définie par 2. Monotonie REMARQUE5 Si une suite ( ) est définie de maniére explicite telle que ( ) suivent celles de f =f(n) pour tout

Plus en détail

Les Suites réelles. MPSI Prytanée National Militaire. Pascal Delahaye - D après le cours d Alain Soyeur 17 novembre 2015

Les Suites réelles. MPSI Prytanée National Militaire. Pascal Delahaye - D après le cours d Alain Soyeur 17 novembre 2015 Les Suites réelles MPSI Prytanée National Militaire Pascal Delahaye - D après le cours d Alain Soyeur 7 novembre 205 Premières définitions Définition : Suite Une suite réelle est une application u : N

Plus en détail

SUITES DE NOMBRE REELS

SUITES DE NOMBRE REELS SUITES DE NOMBRE REELS Version 1 Dr Euloge KOUAME UVCI 2017 Aout 2017 Table des matières Objectifs 5 I - I. Généralités 7 A. I-1. Définition d'une suite...7 B. II-2. Suite majorée, minorée, bornée...7

Plus en détail

valeurs dans un espace normé de dimension finie

valeurs dans un espace normé de dimension finie Séries numériques, ou séries à valeurs dans un espace normé de dimension finie Définitions. Dans ce chapitre K représente indifférement le corps des réels R, ou le corps des complexes C. Le symbole E représente

Plus en détail

Chapitre 1 : Correction des Travaux dirigés

Chapitre 1 : Correction des Travaux dirigés U.P.S. I.U.T. A, Département d Informatique Année 009-00 Chapitre : Correction des Travaux dirigés. Soit v n n i0 qi la somme des n premiers termes d une suite géométrique de raison q, et de premier terme.

Plus en détail

Exercices : Suites réelles

Exercices : Suites réelles Exercices : Suites réelles Exercice : Démontrer par récurrence les résultats suivants : n+. n N, k k = n n+ + n. n N, (k +) = n. Soit a R + fixé, n N, (+a) n +na 4. n, n! n Analyse : Chapitre Exercices

Plus en détail

Math 104 ANALYSE (première partie) Université Paris Sud Orsay

Math 104 ANALYSE (première partie) Université Paris Sud Orsay Math 104 ANALYSE (première partie) Université Paris Sud Orsay 2015 2016 Notes de cours de José Montesinos préparées à partir du précédent Polycopié de Math 104 de Thierry Ramond Table des matières 1 La

Plus en détail

Bornes supérieures et inférieures

Bornes supérieures et inférieures Bornes supérieures et inférieures Exercice :. Montrer que pour tout n N, m N 0 < (m + n) 2 4 2. En déduire que A = { (m + n) 2, n N, m N } Admet une borne inférieure et une borne supérieure que l on déterminera.

Plus en détail

Chapitre 10 : Continuité

Chapitre 10 : Continuité Chapitre 0 : Continuité PTSI B Lycée Eiffel 23 janvier 204 Un prof de maths explique à une blonde comment montrer que lim x 8 =. La blonde assure avoir parfaitement compris. Pour vérifier, le prof lui

Plus en détail

(Q) non vide et majorée, alors il existe dans R un plus petit majorant de A, appelé la borne CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES

(Q) non vide et majorée, alors il existe dans R un plus petit majorant de A, appelé la borne CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES 1.1. Propriétés de R On suppose connus N = {0, 1, 2, 3,...}, l anneau des entiers Z = {..., 2, 1, 0, 1, 2,...} et le corps des rationnels Q = { a a, b Z,

Plus en détail

1M002 - Première partie : Suites Chapitre 2 : Suites réelles et complexes

1M002 - Première partie : Suites Chapitre 2 : Suites réelles et complexes 1M002 - Première partie : Suites Chapitre 2 : Suites réelles et complexes Antonin Guilloux 27 janvier 2017 Antonin Guilloux Suites réelles et complexes 27 janvier 2017 1 / 13 L espace des suites Définitions

Plus en détail

LIMITES À PARTIR DES SUITES DE RÉFÉRENCE

LIMITES À PARTIR DES SUITES DE RÉFÉRENCE LIMITES À PARTIR DES SUITES DE RÉFÉRENCE Marc JAMBON Université de la Réunion 1. Introduction Après une période d une vingtaine d années (1960 à 1980) où l on a connu une formalisation de l enseignement

Plus en détail

Exo7. Espaces complets. Théorème de Baire. Espaces métriques complets, espaces de Banach. Enoncés : M. Quéffelec, V. Mayer Corrections : A.

Exo7. Espaces complets. Théorème de Baire. Espaces métriques complets, espaces de Banach. Enoncés : M. Quéffelec, V. Mayer Corrections : A. Enoncés : M. Quéffelec, V. Mayer Corrections : A. Bodin Exo7 Espaces complets Théorème de Baire Exercice 1 À l aide du théorème de Baire, montrer qu un fermé dénombrable non vide X de R a au moins un point

Plus en détail

Suites récurrentes du type u n+1 = f(u n )

Suites récurrentes du type u n+1 = f(u n ) Suites récurrentes du type u n+ = f(u n ) Exemple : Soit la suite définie par la relation de récurrence : n N u n+ = u n u 2 n. En posant f la fonction définie sur R par x x x 2, on obtient que pour tout

Plus en détail

LES SUITES. 1 Dénitions générales

LES SUITES. 1 Dénitions générales LES SUITES Objectifs Connaître les dénitions générales. Savoir calculer une limite. Connaître les théorèmes généraux de convergence. Connaître les notions de suites négligeables et de suites équivalentes.

Plus en détail

EXERCICES SUR LES SUITES VERIFIANT u n+1 = f(u n )

EXERCICES SUR LES SUITES VERIFIANT u n+1 = f(u n ) EXERCICES SUR LES SUITES VERIFIANT 1. Soit la fonction f définie sur R par f(x) = 1 2 (1+x2 ). Montrer que la suite (u n ) n 0 définie par la relation de récurrence est croissante quel que soit u 0 réel.

Plus en détail

Exercices corrigés Théorème de Rolle, accroissements finis

Exercices corrigés Théorème de Rolle, accroissements finis Eercices corrigés Théorème de Rolle, accroissements finis Enoncés Eercice Démonstration du théorème des accroissements finis Soit f : [a, b] R, continue sur [a, b], dérivable sur ]a, b[ En appliquant le

Plus en détail

EXERCICES. 1 - Montrer que A et B sont non vide, que A est majoré par tout élément de B et que B

EXERCICES. 1 - Montrer que A et B sont non vide, que A est majoré par tout élément de B et que B EXERCICES 1 Soit E l ensemble des rationnels inférieurs à 2. 1 - Montrer que E admet une borne supérieure M dans R. 2 - Montrer que M = 2 (on pourra raisonner par l absurde). 3 - E est-il une partie fermée

Plus en détail

Les fonctions de plusieurs variables (suite)

Les fonctions de plusieurs variables (suite) Les fonctions de plusieurs variables (suite) Exemple d application de ce résultat Comme x x (x, y) (x, y ) et y y (x, y) (x, y ), les applications définies par (x, y) x, (x, y) y sont continues sur R 2

Plus en détail